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Abstract. The log realized volatility (RV) is often modeled as an autoregressive fractionally
integrated moving average model ARFIMA(1,d, 0). Two conflicting empirical results have
been found in the literature. One stream shows that log RV has a long memory (i.e., the frac-
tional parameter d> 0). The other stream suggests that the autoregressive coefficient α is near
unity with antipersistent errors (i.e., d < 0). This paper explains how these conflicting empiri-
cal findings can coexist in the context of ARFIMA(1,d, 0) model by examining the finite sam-
ple properties of popular estimation methods, including semiparametric methods and
parametricmaximum likelihoodmethods. Thefinite sample results suggest that it is challeng-
ing to distinguishModel 1 (ARFIMA(1,d, 0) with α close to 0 and d close to 0.5) fromModel 2
(ARFIMA(1,d, 0) with α close to unity and d close to –0.5). An intuitive explanation is given.
For the 10 financial assets considered, despite that no definitive conclusions can be drawn
regarding the data-generating process, we find that the frequency domain maximum likeli-
hood (orWhittle)method can generate themost accurate out-of-sample forecasts.
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1. Introduction
The availability of intraday prices of financial assets fos-
ters the development of high-frequency financial eco-
nometrics, making an accurate measurement of daily
“realized” volatility (RV) possible. The estimated daily
RV has been shown to be helpful for various pur-
poses, including forecastingmacroeconomic fundamen-
tals (Andersen et al. 2005), making investment decisions
(Fleming et al. 2003), pricing options (Christoffersen
et al. 2014), managing financial risk (Christoffersen
and Diebold 2000), and estimating model parameters
(Phillips and Yu 2009, Tao et al. 2019).

A class of autoregressive fractionally integrated mov-
ing average (ARFIMA)models, particularly ARFIMA(p,
d, q) with p � 1 and q � 0, has gained much prominence
in modeling daily log RV. For notational convenience,
in the rest of this paper, we re-label ARFIMA(1,d,0) by
AR1FI(α, d), representing an autoregressive order one
and fractional integrated model with coefficients α and
d. When d > 0, the autocorrelation function (ACF) of
AR1FI(α,d) decays hyperbolically and is not absolutely
summable. This feature matches well with the empirical
ACF observed in real data. The value of the fractional
parameter d has important implications for both the the-
oretical and empirical analyses of RV. As such, the

main focus of the literature has been on the estimation
of d.

Several estimation techniques for d have been pro-
posed, including the local Whittle estimation (LWE)
method (Künsch 1987, Robinson 1995a) and the log perio-
dogram estimation method (Geweke and Porter-Hudak
1983, Robinson 1995b). These two methods rely on the
asymptotic behavior of the spectral density at frequencies
near zero (ignoring short-run dynamics) and hence, are
often referred to as semiparametric methods. When the
two semiparametric methods are applied to log RV, it is
often found that the point estimate of d is around 0.5. See,
for example, Andersen and Bollerslev (1997), Andersen
et al. (2001a, b, 2003), and Baillie et al. (2019). Such an esti-
mate implies that the log RV has a long memory,1

which has been widely regarded as a stylized fact. Fur-
thermore, one could estimate the short-run parameter
from the prefiltered data (based on the estimated d).
The estimated short-run parameter typically suggests
weak short-run behavior or strong mean reversion.
When an autoregressive order onemodel is fitted to the
filtered data, the estimated autoregressive parameter α
is often close to zero. For convenience, we label the
AR1FI(α,d) process with α close to 0 and d near 0.5 by
Model 1.
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One advantage of the semiparametric methods is
their asymptotic robustness to short-run dynamics, as
short-run behavior does not change the asymptotic
spectral density at near-zero frequencies. This insensi-
tive relationship, however, does not necessarily hold in
finite samples. In particular, AR1FI(α,d) with α close to
unity is similar to AR1FI(0,d+ 1), and the spectral den-
sity that ignores the near-unity behavior is expected to
approximate the actual spectral density poorly, even
with a large sample size, at frequencies near zero.2 This
concernmight have important empirical implications.

It is known that the ARFIMA(0,d, 0) model with d ∈
(0, 1=2) is asymptotically equivalent to the fractional Gaus-
sian noise (fGn) with the Hurst parameter H with
H � d+ 0:5. The fGn is the increment of the fractional
Brownian motion (fBm), denoted by BH(t), whose sample
path is (locally)Hölder continuousup to orderH. Based on
fBm, Wang et al. (2021) consider a fractional Ornstein–
Uhlenbeck (fOU) process for log RV. Under the in-fill
asymptotic scheme, the discrete-time representation of the
fOU process is a local to unity (Phillips 1987) process with
fGn, which is asymptotically equivalent to AR1FI(α,d)
with α close to unity and d �H− 0:5.3 A change of fre-
quency method is proposed to estimate H in fOU in
Wang et al. (2021). The estimatedH from several log RV
series suggestsH < 0.5 (i.e., d < 0). Similar empirical esti-
mates ofH are found in Bolko et al. (2022) when the fOU
model is used to capture themovement of log spot volatil-
ity and the generalizedmethod ofmoments is used to esti-
mate H. The (pre-imposed) local to unity dynamic of the
fOUmodel generates strong persistency that is attenuated
by the antipersistent errors. We label the AR1FI(α,d) proc-
esswithα close tounity and d< 0 byModel 2.

Clearly, the empirical evidence for log RV by semipara-
metricmethods is at oddswith that obtained from the fOU
model. Although the semiparametric methods suggest a
process with a weak short-run dynamic and longmemory
errors (i.e., Model 1) for log RV, the empirical evidence
obtained from the fOUmodel reveals near-unity behavior
and antipersistent errors (i.e.,Model 2). We investigate the
causes of this volatility puzzle in thepresent paper.

The first goal of this paper is to understand how these
conflicting empirical findings coexist in the literature.
To achieve this goal, we examine the finite sample
properties of several popular estimation methods for
AR1FI(α,d) under a wide range of parameter settings.
The methods include two semiparametric methods and
two parametric maximum likelihood (ML) methods.
The semiparametric methods are LWE applied to log
RV and LWE applied to the first difference of log RV.
We refer to the latter as LWE(diff) hereafter. The two
ML approaches are the modified profile time-domain
likelihood (MPL) method and the frequency domain
maximum likelihood (Whittle) method. Both classes of
estimation approaches have some finite sample prob-
lems under one or both ofModel 1 andModel 2.

For the semiparametric methods, it is found that
when the true data-generating process (DGP) isModel 2,
LWE points toModel 1. When the true DGP isModel 1,
LWE(diff) points to AR1FI(1,d) with d being negative.
These findings hold true even when the sample size is
very large in an empirically realistic situation. Moreover,
the LWE (LWE(diff)) estimator is substantially biased
when the autoregressive coefficient deviates far from
zero (unity).4 In contrast, the two parametric ML meth-
ods generally perform well. However, it is possible for
both MPL and Whittle to mix up Model 1 and Model 2
in finite samples. Specifically, when theDGP isModel 1,
with a small and nonnegligible probability, both meth-
ods lead to Model 2. On the other hand, when the true
DGP is Model 2, the parametric ML methods could
point to Model 1. These problems arise because there
are two modes in their likelihood functions, and the
mode around the true parameter values may be lower
than the other mode in finite samples. As a result, the
finite sample distribution can be bimodal. The simula-
tionfindings call for cautious interpretation of empirical
estimation results when using those techniques.

We consider the log RV time series of 10 financial assets
spanning over a decade from 2010 to 2021. The estimates
from LWE lead to Model 1 (α ∈ [−0:162, 0:004] and
d ∈ [0:54, 0:70]), whereas the two ML methods point to
Model 2 (α ∈ [0:995, 0:999] and d ∈ [−0:47, −0:38]).
Results of LWE(diff) are close to those from the MLmeth-
ods but with α � 1 by assumption. Both LWE and LWE(-
diff) suggest nonstationarity, whereas by assumption, the
estimated processes from twoMLmethods are stationary.
Because theMLmethods are relatively reliable,Model 2 is
more likely to be the true model thanModel 1. Neverthe-
less, there is still a small chance that Model 1 is the true
DGP.Despite the inconclusive estimation results, we show
that theWhittlemethod canprovide the best out-of-sample
forecast out of the four estimation techniques (especially at
long forecastinghorizons) followedbyMPL.

Our paper contributes to the literature in two aspects.
First, our simulation findings explain how Model 1 and
Model 2 coexist in the RV literature. Although the simu-
lation studies in the existing literature5 have found a sub-
stantial upward bias in d with the semiparametric
methods when α takes a large positive value and exam-
ined the performance of the ML methods under various
parameter settings, the simulation designs adopted in
these studies prevent them from discovering the diffi-
culty of the two classes of estimation methods in distin-
guishing Model 1 from Model 2. In particular, the
selected values for α are too far away from unity so that
the bias generated by semiparametric methods is not
substantial enough and ML methods can well distin-
guish Model 1 from Model 2. We find that under
Model 1 and Model 2, the finite sample distributions of
the two ML methods are bimodal. One mode is in the
parameter ranges of Model 1, and the other one

Shi and Yu: Volatility Puzzle: Long Memory or Antipersistency
3862 Management Science, 2023, vol. 69, no. 7, pp. 3861–3883, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
.5

5.
10

0.
18

0]
 o

n 
07

 A
ug

us
t 2

02
3,

 a
t 2

3:
27

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



corresponds to Model 2. Consequently, the traditional
summary statistics of the estimates, such as means (or
the biases) and standard errors (or root mean squared
errors), are poor choices. Alternative measures are pro-
posed. Second, although we cannot draw definitive con-
clusions regarding the DGP with the estimation methods
in empirical applications because of their finite sample
issues, we find that the Whittle method provides the best
out-of-sample forecasts out of the four.

The paper is organized as follows. Section 2 introduces
the RV estimator. Section 3 presents the model specifica-
tion and reviews some statistical properties of themodel.
Section 4 introduces the four popular estimation meth-
ods. Section 5presents the simulationdesigns and reports
the finite sample properties of the estimation approaches.
Section 6 reports empirical estimation and forecasting
results. Section 7 concludes. The appendix reviews a tech-
nique, known as tapering, for the Whittle method. We
also examine the robustness of our empirical results
using alternative volatilitymeasures in the appendix.

2. Realized Volatility
Assume data are observed at a regular frequency. Let
t � 1, : : : ,T and n � T=δ be the total number of intraday
observations available within the sample period, where
δ is the distance between two consecutive observations.
LetXt,i be the observed ith log prices at period t. The tra-
ditional realized volatility is constructed as

RVt �
∑1=δ
i�2

ΔXt,i
( )2, with ΔXt,i � Xt,i −Xt,i−1: (1)

Under a standard Itō semimartingale process, the real-
ized volatility is shown to be a consistent estimator of
the quadratic variation of the process.

One of the most recent contributions in the volatility
estimation literature was made by Da and Xiu (2021),
who developed a quasi-maximum likelihood (QML)
approachprovidinguniformvalid inference on volatility
under an extremely general model setting with both
moving average infinity,MA (∞),marketmicrostructure
noises and jumps.6 The model specification considered
by Da and Xiu (2021) is as follows. The observed log
asset prices consist of two components:

Xo
t � Xt +Ut,

where Xt is the underlying log efficient price and Ut is
the noise component. The noise process Ut is assumed
to have flexible serial correlations, modeled as a MA(∞)
process. The underlying price is assumed to be an Itō
semimartingale process defined on some filtered proba-
bility space Ω,F , F t( ),P( ) and satisfies

Xt � X0 +
∫ t

0
µsds+

∫ t

0
σsdWs + δ1 δ| |≤1{ } ∗ η− υ

( )( )
t

+ δ1 δ| |>1{ }
( )

µt, (2)

where µt and σt are adapted and locally bounded,W is a
standard Brownian motion, η is a Poisson random
measure on R+ × E with a nonrandom intensity meas-
ure υ dt,ds( ) � dt⊗λ ds( ), and λ is a σ-finite measure on
(E, ξ), which is a Polish space. The last two components
of (2) capture the dynamics of jumps. See, for example,
Jacod et al. (2017) or Da and Xiu (2021) for more details
of the assumptions.

The likelihood function of QML is taken from a
much-simplified process, assuming the efficient price
follows a Brownian motion with constant volatility and
a Gaussian MA(q) noise component. The QML estima-
tor of the volatility, denoted by σ̂2 q̂

( )
with q̂ obtained

from the Akaike information criterion, is shown to con-
verge to the following quadratic variation,

δ

∫ t

t−1
σ2s ds+

∑1=δ
i�2

ΔXt,i
( )2[ ]

,

which comprises both continuous (integrated variance)
and discontinuous (jump) components.

This paper investigates the dynamics of the QML vol-
atility estimates of various financial assets. The QML
realized volatility data are conveniently provided by
the Risk Lab7 and computed using transaction prices
sampled at the highest available frequency. For conven-
ience, we refer to the QML volatility estimator as log RV
(QML) subsequently, and with a slight abuse of nota-
tion, we denote the log RV (QML) volatility estimator
log σ̂2 q̂

( )
by yt.

3. Model Specification
Consider theAR1FI(α,d) model

(1− αL) yt −µ
( ) � σuut, (3)

where L is the lag operator and ut is the error term. The
error term is a fractionally integrated process (Granger
and Joyeux 1980) such that

ut � 1− L( )−dεtwith εt ~ iid N 0, 1( ), (4)

where d is the memory parameter. The AR1FI(α,d)
model is one of themost popular specifications formod-
eling log RV in the literature. See, for example, Ander-
sen et al. (2003) and Wang et al. (2021).8 For any real
number d, the fractional integrated error process can be
rewritten as

ut �
∑∞
k�0

Γ k+ d( )
Γ d( )Γ k+ 1( )εt−k, (5)

where Γ ·( ) is the Gamma function. See Beran (1994, p. 60).
The long-run variance of ut is one when d � 0,∞ when d
> 1/2, and zero when d < 1/2. Assuming |α | < 1, we say
that yt is a longmemoryprocesswhenever d> 0 as in Phil-
lips and Shimotsu (2004) and a rough processwhen d< 0.
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The AR1FI model reduces to a standard autoregressive
processwhen d� 0.

When d ∈ (−1=2, 1=2), ut is stationary and invertible
(Bloomfield 1985).9 Let γu k( ) :� Cov ut,ut−k( ) be the kth
order autocovariance of ut. Under the specification of
(4), according to Hosking (1981), the autocovariance
function of ut is

γu k( ) � −1( )k −2d( )!
k− d( )! −k− d( )! �

−1( )kΓ 1− 2d( )
Γ k− d+ 1( )Γ 1− k− d( ) , (6)

where ·( )! is the factorial of the argument. The kth order
ACF of ut is

ρu k( ) � −d( )! k+ d− 1( )!
d− 1( )! k− d( )! ~

−d( )!
d− 1( )! k

2d−1 as k→∞:

The correlation coefficient ρu k( ) decays at a hyperbolic rate
as k goes to infinity. This is in contrast to the exponential
decaying rate of an autoregressivemoving averagemodel.

If |α | < 1 and d ∈ (−1=2, 1=2), yt is covariance station-
ary, and hence, we can write γy k( ) :� Cov yt,yt−k

( )
. Let

−π ≤ λ ≤ π be the Fourier frequency. The spectral den-
sity of yt is

fy λ( ) � σ2

2π
2− 2cos (λ)( )−d

1− 2αcos (λ) +α2 ~ Cλ−2d

when λ is near zero: (7)

This is also the “pseudo spectral” density (Velasco and
Robinson 2000) of AR1FI(α,d) when d ∈ (1=2, 1).

4. Estimation Methods
In this section, we review four alternative estimation
methods, namely LWE, LWE(diff), the time-domainML
method, and theWhittleMLmethod.

4.1. LWE and LWE(diff)
Künsch (1987) and Robinson (1995a) investigate a class
of models whose spectral densities satisfy the following
property:

fy λ( ) ~ Cλ−2d as λ → 0+, (8)

with C being a positive constant. The property concerns
only frequencies approaching zero.

The LWE method of Künsch (1987) and Robinson
(1995a) is defined as

(Ĉ, d̂) � arg max
C, d

1
m

∑m
j�1

−log fy(λj) − I(λj)
fy(λj)

[ ]
(9)

� arg max
C, d

1
m

∑m
j�1

−logC + 2d logλj − 1
C
λ2dI(λj)

[ ]
,

(10)

where I(λj) denotes the periodogram at the jth Fourier
frequency λj � 2πj=Twith j � 1, 2, : : : ,m and T being the

sample size. Specifically,

I(λj) � 1
2πT

∑T
t�0

ytexp (−itλj)
∣∣∣∣∣

∣∣∣∣∣
2

, (11)

which is a nonparametric estimate of the density. The
parameter m satisfies the condition m ≤ (T − 1)=2 and
diverges to infinity at a rate that is slower than T as
T→∞. The analytical solution of LWE is

d̂ � arg max
d

−log Ĉ d( ) + 2d
1
m

∑m
j�1

logλj

[ ]
and

Ĉ d( ) � 1
m

∑m
j�1

λ2d
j I(λj): (12)

Robinson (1995a) shows that the local Whittle estimator
is consistent at the

���
m

√
rate and asymptotically normal

with variance 1= 4m( ): that is,���
m

√ (d̂ − d)→d N 0, 1=4( ),
when d ∈ (−1=2, 1=2). Velasco (1999) investigates the
possibility of using LWE for some nonstationary situa-
tions (i.e., 1=2 ≤ d < 3=2), showing that the consistency
of LWE holds for d ∈ (−1=2, 1) and the asymptotic nor-
mality holds for d< 3/4with the same variance as in the
stationary situation.10

There are significant advantages to using LWE. First,
it works for a wider range of d, which goes beyond the
stationary region d ∈ (−1=2, 1=2). Second and perhaps
most importantly, it is asymptotically robust against the
short-run dynamic, which is determined by α in the
AR1FI(α,d) model. However, the robustness comes
with the cost of a reduced rate of convergence (

���
m

√
instead of

��
T

√
). Moreover, a more significant and poten-

tially empirically relevant problem is that LWE may
have poor finite sample properties when the short-run
dynamic is near unity. In this case, we expect that fy(λ)
is poorly approximated by Cλ−2d. At an intuitive level,
the AR1FI(0,d) model is observationally equivalent to
theAR1FI(1,d− 1)model because

(1− L) yt −µ
( ) � σu 1− L( )−d+1εt

can be rewritten as

yt −µ � σu 1− L( )−dεt:
As a result, it is expected that the spectral density of the
AR1FI(α,d) model, whose α is strictly less than but very
close to unity, is better approximated by Cλ−2d−2 when λ
is close to zero. A detailed comparison between log ( fy(λ))
and log (Cλ−2d)will bemade later (see Figure 2).

When α is very close to unity, a sensible method to
estimate d is to apply LWE toΔyt, resulting in LWE(diff).
If the estimated memory parameter by LWE(diff) is
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d̂, within the class of AR1FI(α,d), it implies that the
estimated model for yt is either AR1FI(0, d̂ + 1) or
AR1FI(1, d̂). Although LWE(diff) does not yield a consis-
tent estimator of d when α is not exactly unity as dis-
cussed in Section 5.4, it may have good finite sample
performanceswhen α is very close to unity.

4.2. Time-Domain ML Estimation
To implement the MLmethods, we assume yt is station-
ary: that is, |α | < 1 and d ∈ −1=2, 1=2( ). The stationary
assumption is imposed for two reasons. First, stationar-
ity ensures that the likelihood function is relatively eas-
ier to calculate as elements in the variance-covariance
matrix are finite and time invariant. Second, most asset
pricing models have been developed based on the con-
dition that volatility is stationary. Examples include
bond pricing (Duffie and Kan 1996) and option pricing
(Hull andWhite 1987, Heston 1993). See also the remark
made by Robert Engle in Diebold (2003) against nonsta-
tionary volatilitymodels.

Let y � y1,y2,: : : ,yT
( )′ and u � α,d( ). Under the model

specification of (3) with ut specified as (4), yt −µ follows
a normal distribution with mean zero and variance-
covariance matrix, denoted by Sy. The objective func-
tion of theML estimator is given by

(û, σ̂u) � arg max
u,σu

logLN µ,σu,u
( )

,

where

logLN µ,σu,u
( ) ∝ 1

2T
log Sy

∣∣ ∣∣+ 1
2T

y−µl
( )′

S−1
y y−µl
( )

(13)

and l � 1,: : : ,1( )′.
For the case of known mean value µ, the limiting

properties of θ̂ were derived byHannan (1973) for short
memory processes and Yajima (1985) for long memory
processes. That is, under some mild regularity condi-
tions, ��

T
√ (û − u0)→d N(0,J−1

u0
),

where u0 is the true parameter vector and Ju0 is the
Fisher informationmatrix.

4.2.1. Modified Profile Likelihood. Dahlhaus (1989)
extends the results of Yajima (1985) to the case with
unknown mean. In case of unknown µ, a plug-in
method is required. The plug-in method substitutes µ
by a consistent estimator of the mean (e.g., the sample
mean). Although the method provides a

��
T

√
consistent

and asymptotically normal estimator, it is contaminated
by an additional second-order negative bias (Lieberman
2005) because of the need of estimating µ.

An alternative solution is the MPL estimator pro-
posed by Cox and Reid (1987). The idea of the MPL

estimator is to use a linear transformation of parame-
ters of interest to make them orthogonal to nuisance
parameters (µ and σu). The modified profile likelihood
is given by

log LM y, µ̂, u
( ) ∝ 1

T
− 1
2

( )
log R| | − 1

2
log (l′R−1l)

+ 3 − T
2

log T−1 y − µ̂l
( )′R−1 y − µ̂l

( )[ ]
, (14)

where R � Sy=σ
2
u and µ̂ � l′R−1l

( )−1
l′R−1y. The asymp-

totic distribution of the MPL estimator is unchanged
compared with the exact ML but eliminates some
degree of bias in the exact ML (An and Bloomfield 1993,
Hauser 1999).

4.2.2. Variance-Covariance Matrix Ry . Let the t, s( )th ele-
ment of Sy be γy(k), where t, s � 1, ⋯ ,T and k � |t− s | .
The covariance function of the ARFIMA(p, d, q) process
was derived by Hosking (1981, lemma 1(c)) and Sowell
(1992, equations 8 and 9) and approximated to improve
computational speed by Chung (1994). In the special case
of p � 1 and q � 0, the covariance function of Hosking
(1981) is

γy k( ) � σ2u
1− α2 γu k( )A k,α( ), (15)

where A k,α( ) � C k,α( ) +C −k,α( ) − 1, C k,α( ) � F d+ k,(
1;1− d+ k;α), and F ·( ) is the hypergeometric function.

The hypergeometric function is computational costly
and extremely large when k is large and α is far from
unity,11 leading to extreme behavior of the covariance
function. As an alternative, one may compute the cova-
riance function as

γy k( ) � σ2u
∑∞
i�k

∑∞
j�0

αi+j−kγu | i − j |( )
, (16)

which resembles that of a standardAR(1) process. Unre-
ported simulations show that the computed covariance
values from (16) with a truncation of 20,000 for both
summands are identical to those obtained from (15)
when the hypergeometric behaves normally (e.g., α �
0:996 and k<1,000). This method is, however, quite
computationally intensive.

Another method, which is proposed by Bertelli
and Caporin (2002), is referred to as the splitting ap-
proach. It is based on the following property of the cova-
riance function for stationary processes (Brockwell and
Davis 1987):

γy k( ) � ∑∞
s�−∞

γ̃ s( )γu k − s( ), (17)

where γ̃ s( ) is the autocovariance of the pure AR
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component. For practical implementation, the sum-
mand is truncated atK.

To provide some practical guidance for the choice of
K, in Figure 1, we show the differences between the log
determinants of Sy computed from (16) and (17) for
each value of K, ranging from 1,000 to 10,000 (with an
increment of 100). It is expected that one would need a
larger K to ensure the estimation accuracy when the
data series is highly persistent and has a long memory
(i.e., when α is close to one and d is close to 0.5), as both
γs and γu decay slower. We consider the autoregressive
coefficient α � 0:5, 0:8, 0:9, 0:95,0:99,0:995, 0:999{ }, n �
3,000 for the dimension of the covariance matrix, and d
� 0.45.12 Evidently, the splitting method can provide
very accurate estimation for the variance-covariance
matrix with K � 200 when α ≤ 0:9, which is consistent
with the finding of Bertelli and Caporin (2002).
However, for processes with autoregressive root
close to unity, one would need a substantially larger
value of K to ensure accuracy. Based on the sim-
ulation results presented in Figure 1, we recommend
using K�300 for 0:9 < α ≤ 0:95, K�1,700 for 0:95 <
α ≤ 0:99, K � 3,000 for 0:99 < α ≤ 0:995, and K � 7,000
for 0:995 < α < 1 so that the differences between the
log determinants are at a maximum order of 10−3 when
d� 0.45.

4.3. Whittle ML Estimation
To avoid inverting Sy that is required in calculating
the time-domain likelihood function, following Whittle
(1953, 1954), one can approximate S−1

y by 2π( )−2∫ π

−π
fy λ( )−1cos i− j

( )
λ

( )
dλ and log Ry

∣∣ ∣∣ by T 2π( )−1∫ π

−π
log fy

λ( )dλ for a stationary process. The discrete-time version
of theWhittle likelihood function (up to a scalemultipli-
cation) is

logLW u,σ2u
( ) ∝−∑m

j�1
log fy(λj |u,σ2u) −

∑m
j�1

I(λj)
fy(λj |u,σ2u)

:

(18)

TheWhittle likelihood functionwas presented in Künsch
(1987) and Dahlhaus (1988). Fox and Taqqu (1986) show
that the asymptotic properties of the estimators remain
the same if we simplify the objective function to the
following:

logLW u, σ2u
( ) ∝ −∑m

j�1

I(λj)
fy(λj |u,σ2u)

(19)

where the distance between the spectrum density
fy(λj |θ,σ2u) and I(λj) is minimized. We employ the sim-
plified objective function for the estimation.13 LikeMPL,
the parameter µ does not enter the objective function of

Figure 1. (Color online) The Differences Between the Log Determinants of Σy Computed from (16) and (17)

Notes. The insets within each subplot are zoomed-in versions of the graphs within a particular range. (a) α � 0:5, 0:8, 0:9, 0:95{ }. (b) α � 0:99. (c)
α � 0:995. (d) α � 0:999.
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the Whittle method as the zero frequency is not
included. The spectral density of AR1FI(α,d) is given in
(7). The Whittle ML method yields

��
T

√
-consistent,

asymptotically normal, and efficient parameter esti-
mates (Hannan 1973, Fox and Taqqu 1986, Giraitis and
Surgailis 1990)when d ∈ 0, 1=2( ).

5. Monte Carlo Simulations
We now examine the finite sample properties of various
estimation techniques. The DGP is AR1FI(α,d),14 cover-
ing both Model 1 and Model 2. We assume α takes a
value in {–0.2, 0, 0.3, 0.5, 0.7, 0.9, 0.99, 0.996} and d takes a
value in {–0.4, 0, 0.4}. We set σu � 1 and µ to zero but
assume them unknown. The initial value of each simu-
lated sample path is set to the long-run mean (i.e.,
µ=(1− α)), which is zero under this setting. The first
5,000 observations are discarded from each simulated

sample path to minimize the impact of the initial value.
The number of replications is 1,000.

We investigate the estimation accuracy of the semi-
parametric methods and the ML methods for both the
memory parameter d and the short-run dynamic
parameter α. Table 1 provides a brief summary of the
existing literature on the simulation and their Monte
Carlo designs. Our Monte Carlo design extends those
in the existing studies by considering more empiri-
cally relevant parameter values. In particular, we (1)
allow themaximum value of α to be much closer to the
unity (i.e., 0.996 versus 0.8 in Smith et al. 1997 and
Nielsen and Frederiksen 2005 and 0.9 in Nadarajah
et al. 2021) and (2) consider larger sample sizes (i.e., T
� 1,024 as well as T � 2,048, 4,096 in the case α ≥ 0:9 for
LWE). The choices of near unit α and sample size are
guided by the empirical results that will be reported
later.

Figure 2. (Color online) The Difference Between the Theoretical Spectral Density and the Approximate Spectral Density for
AR1FI(α,d): log ( f (λ)) − log (Cλ−2d)

Notes. (a) d � −0:4. (b) d � 0. (c) d � 0.4. (d) α � 0. (e) α � 0:3. (f) α � 0:9.

Table 1. Existing Monte Carlo Studies

Paper Relevant tables Relevant estimation methods Sample size

Smith et al. (1997) Tables I and VI ML and LPE (m � T0:5, T0:6, T0:7) 256
Nielsen and Frederiksen (2005) Tables 8 and 9 Exact ML, MPL, Whittle, conditional ML 128, 256, 512

LWE and LPE (m � T0:5, T0:65)
Nadarajah et al. (2021) Tables 6 and 7 ML and LPE (m � T0:65) 96, 576
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Implementing the time-domain ML method under
these parameter settings is not straightforward, as exist-
ing methods for computing the variance-covariance
matrix do not work. As discussed in Section 4.2.2, the
hypergeometric function in the formulas of Hosking
(1981), Sowell (1992), and Chung (1994) behaves abnor-
mallywhen the dimension of thematrix (which is T× T)
is large. The suggested truncation of K � 200 in (17) of
the splitting method cannot provide accurate results
when α is close to unity.Wepropose an alternative trun-
cation scheme as detailed in Section 4.2.2. For the semi-
parametric methods, in addition to the popular LWE
and LPE methods, we also investigate the finite sample
performance of LWE(diff). The LWE(diff) method has
already been used in empirical applications (e.g., Phil-
lips and Shimotsu 2004), but its finite sample perform-
ance has yet been studied.

Several interesting findings emerge from the simula-
tions. In particular, we document the poor finite sample
performance of LWE (LWE(diff)) when the short-run
dynamic is strong (weak) and explain why. We show

that the ML estimators have a bimodal distribution
under certain parameter settings, leading to a possible
misidentification between Model 1 and Model 2. Under
this circumstance, the traditional performancemeasures,
such as means and standard deviations, are not appro-
priate. Alternative measures are used to present the esti-
mation results. A summary of the simulation findings is
provided in Section 5.3.

5.1. Semiparametric Methods
We first investigate the performance of LWE and
LWE(diff). The parameter support for d is (−1, 3=2),
and the bandwidth m � T0:55�, T0:65�, T0:75�, T0:85�{ }

,
where :� denotes the integer part of the argument. The
objective functions are optimized with the command
fminbnd in MATLAB, as there is only one model
parameter. Table 2 reports the means and standard
errors (in brackets) of the LWE and LWE(diff) estimates
of d̂, obtained from 1,000 replications. The sample size
is set at T � 1,024.15 There are several interesting obser-
vations fromTable 2.

Table 2. Means and Standard Errors (in Parentheses) of the LWE and LWE(diff) Estimates for d with m � T0:55,T0:65,T0:75,
{

T0:85} and T � 1,024

LWE LWE(diff)

m � T0:55 m � T0:65 m � T0:75 m � T0:85 m � T0:55 m � T0:65 m � T0:75 m � T0:85

α � −0:2
d � −0.4 −0.39 (0.10) −0.40 (0.06) −0.41 (0.04) −0.45 (0.03) −0.49 (0.26) −0.68 (0.21) −0.82 (0.15) −0.92 (0.09)
d � 0 −0.01 (0.09) −0.01 (0.06) −0.03 (0.04) −0.07 (0.03) −0.64 (0.21) −0.74 (0.16) −0.82 (0.12) −0.88 (0.09)
d � 0.4 0.40 (0.09) 0.39 (0.06) 0.38 (0.04) 0.31 (0.03) −0.55 (0.11) −0.57 (0.07) −0.59 (0.05) −0.63 (0.03)

α � 0
d � −0.4 −0.39 (0.10) −0.40 (0.06) −0.39 (0.04) −0.38 (0.03) −0.56 (0.25) −0.73 (0.19) −0.85 (0.13) −0.92 (0.09)
d � 0 −0.01 (0.09) −0.01 (0.06) −0.00 (0.04) −0.00 (0.03) −0.69 (0.20) −0.77 (0.15) −0.83 (0.11) −0.84 (0.08)
d � 0.4 0.40 (0.09) 0.40 (0.06) 0.40 (0.04) 0.38 (0.03) −0.56 (0.10) −0.57 (0.07) −0.57 (0.05) −0.56 (0.03)

α � 0:3
d � −0.4 −0.39 (0.09) −0.37 (0.06) −0.32 (0.04) −0.21 (0.03) −0.66 (0.23) −0.80 (0.16) −0.88 (0.12) −0.90 (0.10)
d � 0 −0.00 (0.09) 0.02 (0.06) 0.07 (0.04) 0.17 (0.03) −0.74 (0.17) −0.80 (0.13) −0.81 (0.09) −0.73 (0.05)
d � 0.4 0.41 (0.09) 0.42 (0.06) 0.47 (0.04) 0.55 (0.03) −0.56 (0.10) −0.56 (0.07) −0.51 (0.04) −0.39 (0.03)

α � 0:5
d � −0.4 −0.38 (0.09) −0.33 (0.06) −0.22 (0.04) −0.04 (0.03) −0.73 (0.21) −0.84 (0.14) −0.88 (0.11) −0.85 (0.09)
d � 0 0.01 (0.09) 0.06 (0.06) 0.17 (0.04) 0.33 (0.03) −0.77 (0.15) −0.80 (0.11) −0.74 (0.07) −0.58 (0.04)
d � 0.4 0.42 (0.09) 0.46 (0.06) 0.57 (0.04) 0.71 (0.03) −0.55 (0.10) −0.52 (0.06) −0.41 (0.04) −0.23 (0.03)

α � 0:7
d � −0.4 −0.33 (0.09) −0.21 (0.06) −0.02 (0.04) 0.18 (0.03) −0.80 (0.18) −0.86 (0.13) −0.84 (0.11) −0.71 (0.05)
d � 0 0.06 (0.09) 0.18 (0.06) 0.37 (0.04) 0.55 (0.03) −0.78 (0.13) −0.73 (0.09) −0.58 (0.05) −0.38 (0.03)
d � 0.4 0.47 (0.09) 0.58 (0.06) 0.77 (0.04) 0.92 (0.03) −0.51 (0.10) −0.41 (0.06) −0.21 (0.04) −0.01 (0.03)

α � 0:9
d � −0.4 −0.04 (0.10) 0.17 (0.07) 0.34 (0.05) 0.43 (0.03) −0.80 (0.15) −0.72 (0.09) −0.60 (0.05) −0.50 (0.03)
d � 0 0.36 (0.09) 0.57 (0.07) 0.74 (0.05) 0.80 (0.03) −0.58 (0.10) −0.40 (0.07) −0.24 (0.05) −0.13 (0.03)
d � 0.4 0.76 (0.10) 0.96 (0.07) 1.12 (0.05) 1.16 (0.04) −0.23 (0.10) −0.02 (0.07) 0.15 (0.05) 0.24 (0.03)

α � 0:99
d � −0.4 0.52 (0.09) 0.55 (0.06) 0.56 (0.04) 0.56 (0.03) −0.45 (0.10) −0.43 (0.06) −0.41 (0.04) −0.39 (0.03)
d � 0 0.91 (0.09) 0.94 (0.06) 0.96 (0.04) 0.93 (0.03) −0.08 (0.09) −0.05 (0.06) −0.03 (0.04) −0.01 (0.03)
d � 0.4 1.21 (0.11) 1.21 (0.11) 1.20 (0.11) 1.14 (0.11) 0.32 (0.09) 0.35 (0.06) 0.37 (0.04) 0.36 (0.03)

α � 0:996
d � −0.4 0.57 (0.09) 0.58 (0.06) 0.58 (0.04) 0.57 (0.03) −0.41 (0.09) −0.41 (0.06) −0.40 (0.04) −0.38 (0.03)
d � 0 0.97 (0.09) 0.97 (0.06) 0.97 (0.04) 0.94 (0.03) −0.03 (0.09) −0.02 (0.06) −0.01 (0.04) −0.01 (0.03)
d � 0.4 1.19 (0.13) 1.17 (0.12) 1.14 (0.11) 1.08 (0.11) 0.37 (0.09) 0.38 (0.06) 0.38 (0.04) 0.38 (0.03)
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First, LWE works very well in estimating d when α is
near zero (say α ≤ 0:3), with negligible biases and small
standard errors. This is especially true when m � T0:65�.
Togetherwith its asymptotic robustness property against
short-run dynamics, the good finite sample property
may be the reason why it has been popular in estimating
d for log RVs. However, it leads to a substantial upward
bias (spurious long memory) when the process becomes
more persistent. The substantial upward bias in d by
the semiparametric methods when α � 0:8 or 0.9 and
T � 96, 256, 512, 576{ }hasbeendocumentedinSmithetal.
(1997), Nielsen and Frederiksen (2005), and Nadarajah
et al. (2021). Our results indicate that this upward bias
problem continues to hold when α � 0:99, 0:996{ } and
T � 1,028. Interestingly, the bias increases toward one as
α gets closer to unity. For example, when α is 0.996 and
d is −0.4 (i.e.,Model 2 is the DGP), with a small standard
error of 0.06, the estimated d (withm � T0:65�) is located
around 0.58, always suggesting spurious long memory.
This is expected because when α is very close to unity,
the spectral density is better approximated by Cλ−2d−2,
and hence, LWE essentially estimates d+ 1.

To better understand this point, we show the gaps
between the theoretical spectral density of yt and the
approximate spectral densityCλ−2d used by LWEunder
various parameter settings. The larger the distance
between f (λ) and Cλ−2d is, the less accurate estimated
results are expected from LWE. Figure 2 plots the quan-
tity log ( f (λ)) − log (Cλ−2d) against the frequency λ. We
choose the value of C such that the quantity takes value
zero at frequency zero. It is obvious that the distances at
frequencies close to zero are affected substantially by α
but not so much by d. This is consistent with our find-
ings in Table 2 that LWE leads to a substantial bias
when α is close to unity, whereas the bias is similar
across various values of d given a value of α.

Second, there is a trade-off between bias and standard
error with the different choice of m for LWE. When the
bandwidth parameter m reduces from T0:85� to T0:55�,
the bias of the d estimate decreases. However, the use of
smaller tuning parameterm does not alleviate the prob-
lem of severe bias in LWE of d when α is very close to
unity (i.e., α � 0:996).

The finite sample problem in LWE for the case when
α is close to unity naturally suggests that one may use
LWE(diff) to estimate d. The right side of Table 2 reports
the means and standard errors of LWE(diff) under the
same parameter settings. There are several interesting
observations. First, as expected, the performance of
LWE(diff) is goodwhen α � 0:996. Themean and stand-
ard error are nearly a mirror image of those of LWE
when α � 0. In general, LWE(diff) works very well in
estimating d when α is near unity (say α ≥ 0:99), with
negligible biases and small standard errors. The results
are relatively stable across different settings of m,
with m � T0:85� providing estimates with the smallest

variations. Second, LWE(diff) leads to a substantial
downward bias in d when α is not so close to zero,
including the case α � 0:9. The further α is away from
unity, the larger the downward bias is. For example,
when the true value of d is 0.4 and the true value of α is
0.3 (i.e., the true DGP isModel 1), with a small standard
error of 0.03, the estimated d (with m � T0:85) is located
around −0.39, always suggesting spurious antipersis-
tent errors.

To understand if larger sample sizes can help address
the finite sample problems in LWE, in Table 3 we report
the means and standard errors of LWE with m � T0:65�
when T � 2, 048, 4, 096{ } and α � 0:9:0:99, 0:996{ }, ob-
tained from 1,000 replications. The sample sizes T � 2,{
048, 4, 096} are large but remain empirically reasonable
for RV. For the ease of comparison, we also report the
results when T � 1,024. It is clear that although the stand-
ard error reduces asT increases, the bias remains substan-
tial. For example, when α is 0.996, d is −0.4 (i.e., Model 2
is the DGP), and T � 4,096, with a small standard error of
0.04, the estimated d is located around 0.57, always sug-
gesting spurious long memory. Similar finite sample
problems apply to LWE(diff) when T � 2048,{ 4096} and
α is far away fromunity.

To obtain an estimate of α using LWE,we fit an AR(1)
model to a prefiltered data series using d̂ obtained from
LWE.16 This two-stage approach has been used in the
literature; see, for example, Andersen et al. (2003). The
last column of Table 4 reports the means and standard
errors of α̂, based on LWE (m � T0:65�), for the same
parameter setting as before and T � 1,024. From Table 4,
the estimated α from LWE is fairly close to its true value
when α ≤ 0:3. However, when α > 0:3, the upward
biases in d̂ lead to equally significant downward biases
in α̂1. When d � −0:4 and α � 0:99, 0:996{ } (i.e., the true
DGP is Model 2), with a small standard error, LWE
tends to conclude that α is located around zero.
Together with the simulation results on d̂ reported ear-
lier, we conclude that LWE always suggests that the

Table 3. Means and Standard Errors (in Parentheses) of the
LWE Estimates for d with m � T0:65� and T � 1,024, 2,048,
4,096

α � 0:9 α � 0:99 α � 0:996

T � 1,024
d � −0.4 0.17 (0.07) 0.55 (0.06) 0.58 (0.06)
d � 0 0.57 (0.07) 0.94 (0.06) 0.97 (0.06)
d � 0.4 0.96 (0.07) 1.21 (0.11) 1.17 (0.12)

T � 2,048
d � −0.4 0.09 (0.05) 0.54 (0.05) 0.57 (0.05)
d � 0 0.49 (0.05) 0.93 (0.05) 0.97 (0.05)
d � 0.4 0.89 (0.05) 1.24 (0.09) 1.21 (0.11)

T � 4,096
d � −0.4 0.00 (0.04) 0.52 (0.04) 0.57 (0.04)
d � 0 0.40 (0.04) 0.92 (0.04) 0.96 (0.04)
d � 0.4 0.80 (0.04) 1.26 (0.07) 1.24 (0.10)
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estimated model is Model 1 when the DGP is Model 2.
Once again, this finding is not surprising as AR1FI(α,d)
with α � 0:99, 0:996 is very similar toAR1FI(0,d+ 1).

Our simulation studies suggest that one should
be cautious against using LWE and LWE(diff). LWE
tends to point to Model 1 when the DGP is Model 2;
LWE(diff) tends to point to Model 2 when the DGP is
Model 1. Because we do not know the value of α ex ante
in practice, we generally do not know if we should use
LWEor LWE(diff).

5.2. Parametric Methods
For theWhittlemethod, we use a grid searchingmethod
to choose the “optimal” initial values of d and α. The
grids range from –0.499 to 0.499 for d and from –0.999 to
0:999 for α, with an increment of 0.005. We evaluate the
Whittle log likelihood for all possible combinations of d
and α. The pair that produces the highest log-likelihood
value is taken as our initial values for the Whittle
method. For MPL, we set the initial values of the two
parameters to be the estimates of the Whittle method.
For bothMPL andWhittle, the parameter supports for α
and d are (−1, 1) and (−0:5, 0:5), respectively. The log

likelihoods of the two parametric MLmethods are opti-
mized using the fmincon function in MATLABwith the
sequential quadratic programming algorithm. The two
MLmethods estimate both d and α simultaneously.

Following the common practice in the literature, in
Tables 4 and 5, we report themeans and standard errors
of d̂ and α̂ for MPL, Whittle, and Whittle (taper) under
the same parameter settings as before with T � 1,024,
obtained from all 1,000 replications.17 For the ease of
comparison, we repeat results of LWE and LWE(diff) in
the last two columns of Table 4 and results of LWE in
the last column of Table 5.

As evidenced in the two tables, although the two ML
methods generally work well across all parameter set-
tings for both d and α, there are two important excep-
tions that are empirically relevant to RV. When the true
DGP is Model 1 or Model 2 (highlighted in bold in the
two tables), the standard errors are unusually large. For
example, from Table 5, if α � 0, the standard error of d̂
for both MPL andWhittle is 0.28 when d � 0.4, which is
about six times larger than those when d � 0; if α � 0:99,
the standard errors of d̂ for MPL andWhittle (taper) are
0.13 and 0.15, respectively, when d � −0:4, which are

Table 4. Means and Standard Errors (in Parentheses) of d̂ when T � 1,024

MPL Whittle Whittle (taper) LWE LWE(diff)

α � −0:2
d � −0.4 −0.40 (0.04) −0.40 (0.04) −0.41 (0.04) −0.40 (0.06) −0.97 (0.17)
d � 0 −0.00 (0.04) −0.01 (0.04) −0.01 (0.04) −0.01 (0.06) −0.88 (0.10)
d � 0.4 0.40 (0.04) 0.39 (0.04) 0.40 (0.04) 0.39 (0.06) −0.63 (0.03)

α � 0
d � −0.4 −0.40 (0.05) −0.41 (0.04) −0.42 (0.05) −0.40 (0.06) −0.97 (0.15)
d � 0 −0.01 (0.04) −0.01 (0.04) −0.02 (0.05) −0.01 (0.06) −0.84 (0.08)
d � 0.4 0.29 (0.28) 0.29 (0.28) 0.31 (0.26) 0.40 (0.06) −0.56 (0.03)

α � 0:3
d � −0.4 −0.41 (0.06) −0.41 (0.06) −0.42 (0.06) −0.37 (0.06) −0.92 (0.12)
d � 0 −0.01 (0.08) −0.03 (0.08) −0.04 (0.11) 0.02 (0.06) −0.73 (0.05)
d � 0.4 0.35 (0.17) 0.33 (0.17) 0.34 (0.18) 0.42 (0.06) −0.39 (0.03)

α � 0:5
d � −0.4 −0.41 (0.07) −0.42 (0.07) −0.43 (0.07) −0.33 (0.06) −0.85 (0.09)
d � 0 −0.03 (0.10) −0.06 (0.11) −0.07 (0.13) 0.06 (0.06) −0.58 (0.04)
d � 0.4 0.38 (0.10) 0.35 (0.11) 0.36 (0.12) 0.46 (0.06) −0.23 (0.03)

α � 0:7
d � −0.4 −0.39 (0.08) −0.42 (0.08) −0.42 (0.08) −0.21 (0.06) −0.71 (0.05)
d � 0 −0.00 (0.09) −0.04 (0.09) −0.03 (0.10) 0.18 (0.06) −0.38 (0.03)
d � 0.4 0.39 (0.08) 0.36 (0.08) 0.38 (0.09) 0.58 (0.06) −0.01 (0.03)

α � 0:9
d � −0.4 −0.39 (0.06) −0.40 (0.06) −0.40 (0.07) 0.17 (0.07) −0.50 (0.03)
d � 0 0.01 (0.06) −0.00 (0.05) 0.00 (0.07) 0.57 (0.07) −0.13 (0.03)
d � 0.4 0.41 (0.05) 0.36 (0.06) 0.40 (0.06) 0.96 (0.07) 0.24 (0.03)

α � 0:99
d � −0.4 20.38 (0.13) 20.38 (0.13) 20.37 (0.15) 0.55 (0.06) −0.39 (0.03)
d � 0 0.00 (0.03) 0.00 (0.03) 0.00 (0.03) 0.94 (0.06) −0.01 (0.03)
d � 0.4 0.43 (0.05) 0.19 (0.12) 0.41 (0.03) 1.21 (0.11) 0.36 (0.03)

α � 0:996
d � −0.4 20.38 (0.12) 20.38 (0.12) 20.36 (0.18) 0.58 (0.06) −0.38 (0.03)
d � 0 0.00 (0.03) 0.00 (0.03) 0.01 (0.03) 0.97 (0.06) −0.01 (0.03)
d � 0.4 0.44 (0.05) 0.13 (0.11) 0.42 (0.03) 1.17 (0.12) 0.38 (0.03)

Notes. The bandwidth parameter m � T0:65� for LWE and m � T0:85� for LWE(diff). Bold corresponds to cases where the DGP is Model1 or
Model2.
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about four times larger than those when d � 0. Similar
features are observed for α̂ fromTable 4.

These unusually large standard errors motivate us to
examine the finite sample property in different ways. In
Figure 3, we report the scatterplots of the estimated d and
α by MPL and Whittle from the 1,000 replications when
the true parameter values are α� 0 and d� 0.4 (Model 1)
and α � 0:996 and d � −0:4 (Model 2). The scatterplots
indicate that when the true DGP is Model 1 or Model 2,
two disjoint clusters are obtained: one located around the
true parameter values and the other one far away. Inter-
estingly, one of the clusters corresponds toModel 1, and
the other corresponds toModel 2. That is, the finite sam-
ple distribution is a mixture of two disjoint distributions.
In the figures, we also report the percentage of replica-
tions (of 1,000 replications) that fall in each cluster. When
the true parameter values areα�0 and d�0.4,with prob-
ability 89% (or for 890 replications), the twoMLmethods
yield estimates around the true values; with probability
11%, the two ML methods yield an estimate of α near
unity and an estimate of d near –0.5. When the true
parameter values are α � 0:996 and d � −0:4, with

probability 98.2%, the two ML methods yield estimates
around the true values; with probability 1.8% (or for 18
replications), the twoMLmethods yield an estimate of α
near zero and an estimate of d near 0.5.

The scatterplots indicate that it is very plausible that
there are two modes in the likelihood functions for MPL
and Whittle. Figure 4 displays the contour plots of the
log-likelihood surfaces of MPL (Figure 4, (a) and (c)) and
Whittle (Figure 4, (b) and (d)) for one simulated sample
path under the setting of α� 0 and d� 0.4 (Figure 4, (a)
and (b)) or α � 0:996 and d � −0:4 (Figure 4, (c) and (d)).
We remove log-likelihood values that are smaller than
certain thresholds to obtain better visualization of the sur-
face at the peak. The twomodes can be seen in all cases.

When the distribution is bimodal, mean and standard
error are not ideal performancemeasures. In Table 6, for
each of the two parametric ML methods, we report the
means and standard errors of d̂ and α̂ for each cluster
(instead of the whole distribution) and the probability
of false identification (PFI) when the DGP is from
Model 1 (i.e., (d,α) � (0:4, 0) or (0:4, 0:3)) and from
Model 2 (i.e., (d,α) � (−0:4, 0:99) or (−0:4, 0:996)). We
also report the means and standard errors for the whole
distribution (all 1,000 replications) for comparison. It
can be seen that when α is close to zero, the means
and standard errors of the correct cluster for both ML
methods compare well with those of LWE. When α is
close to unity, the means and standard errors of the
correct cluster for both ML methods compare well
with those of LWE(diff). Moreover, when d�0.4 and
α�0, the standard error of d̂ for the twoMLmethods,
obtained from all 1,000 replications, is larger than
that in other cases. This is because PFI is the largest
(11%) in this case.

In Figure 5, we plot the kernel densities of d̂ and α̂
(solid lines) for MPL andWhittle when d�0.4 and α�0
from1,000 replications. The bimodality in thefinite sam-
ple distribution can be seen clearly. In the same figure,
we also show the 95% highest density intervals (the
shortest confidence intervals), identified by the two seg-
ments of the dotted line around eachmode. Not surpris-
ingly, in all cases, the highest density interval contains
two disjoint intervals.

5.3. Summary of Monte Carlo Studies
Our simulation results suggest that the LWE and
LWE(diff) methods show significant bias when the
autoregressive coefficient of the process is not close to
zero and unity, respectively. Most importantly, the
semiparametric methods cannot separate Model 1 and
Model 2Although LWE can provide accurate estimation
results under Model 1, it always falsely points to
Model 1 when the true DGP isModel 2, even with large
sample sizes. This finding explains why research papers
employing semiparametric methods (LWE or LPE) tend
to find evidence of long memory with d around 0.5

Table 5. Means and Standard Errors (in Parentheses) of α̂
when T � 1,024

MPL Whittle Whittle (taper) LWE

α � −0:2
d � −0.4 −0.20 (0.05) −0.20 (0.04) −0.19 (0.05) −0.20 (0.06)
d � 0 −0.20 (0.04) −0.19 (0.04) −0.19 (0.05) −0.19 (0.06)
d � 0.4 −0.20 (0.04) −0.20 (0.04) −0.20 (0.05) −0.19 (0.06)

α � 0
d � −0.4 0.00 (0.06) 0.01 (0.05) 0.01 (0.06) −0.00 (0.07)
d � 0 0.00 (0.05) 0.01 (0.05) 0.01 (0.06) 0.01 (0.07)
d � 0.4 0.11 (0.31) 0.11 (0.31) 0.09 (0.28) 0.00 (0.07)

α � 0:3
d � −0.4 0.30 (0.07) 0.31 (0.07) 0.32 (0.07) 0.27 (0.07)
d � 0 0.31 (0.09) 0.33 (0.09) 0.34 (0.12) 0.28 (0.07)
d � 0.4 0.35 (0.17) 0.36 (0.17) 0.36 (0.17) 0.28 (0.07)

α � 0:5
d � −0.4 0.50 (0.09) 0.52 (0.07) 0.52 (0.08) 0.43 (0.07)
d � 0 0.52 (0.10) 0.55 (0.11) 0.56 (0.12) 0.44 (0.06)
d � 0.4 0.52 (0.10) 0.55 (0.11) 0.53 (0.11) 0.43 (0.06)

α � 0:7
d � −0.4 0.69 (0.08) 0.71 (0.07) 0.71 (0.08) 0.52 (0.06)
d � 0 0.69 (0.08) 0.72 (0.07) 0.72 (0.09) 0.53 (0.06)
d � 0.4 0.70 (0.07) 0.72 (0.07) 0.71 (0.08) 0.53 (0.06)

α � 0:9
d � −0.4 0.89 (0.05) 0.89 (0.04) 0.89 (0.05) 0.37 (0.08)
d � 0 0.89 (0.04) 0.89 (0.04) 0.89 (0.05) 0.37 (0.08)
d � 0.4 0.89 (0.03) 0.91 (0.03) 0.90 (0.03) 0.39 (0.08)

α � 0:99
d � −0.4 0.97 (0.12) 0.97 (0.12) 0.96 (0.14) 0.05 (0.07)
d � 0 0.99 (0.01) 0.98 (0.01) 0.98 (0.01) 0.06 (0.08)
d � 0.4 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) −0.03 (0.46)

α � 0:996
d � −0.4 0.98 (0.11) 0.97 (0.11) 0.95 (0.17) 0.02 (0.07)
d � 0 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.03 (0.09)
d � 0.4 0.99 (0.01) 0.99 (0.00) 0.99 (0.00) −0.01 (0.56)

Notes. The bandwidth parameter m � T0:65� for LWE. Bold
corresponds to cases where the DGP isModel1 orModel2.
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Figure 3. (Color online) Scatterplots of the Estimated d and α byMPL andWhittle from the 1,000 Simulated Paths When α � 0
and d � 0.4

Notes. The numbers on the graphs are the percentages of replications where the estimates fall in the wrong parameter region. (a) MPL: α � 0 and
d � 0.4 (Model1). (b)Whittle: α � 0 and d � 0.4 (Model1). (c) MPL: α � 0:996 and d � −0:4 (Model2). (d) Whittle: α � 0:996 and d � −0:4 (Model2).

Figure 4. Contour Plots of the Log-Likelihood Surfaces of MPL andWhittle for a Simulated Sample Path Under the Settings of
α � 0 and d � 0.4 ((a) and (b)) and α � 0:996 and d � −0:4 ((c) and (d))

Notes. (a) MPLwith α � 0,d � 0:4. (b)Whittle with α � 0,d � 0:4. (c) MPLwith α � 0:996,d � −0:4. (d) Whittle with α � 0:996,d � −0:4.
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(Model 1). The LWE(diff) is the opposite of LWE. It
workswell underModel 2 but fails to yield a satisfactory
estimation outcome for dwhen α is far away fromunity.

The ML methods work well in general. However,
interestingly and new to the literature, we found that
when the true DGP is either Model 1 or Model 2, the
log-likelihood surfaces of the two ML methods have
two modes. One mode corresponds toModel 1, and the
other corresponds to Model 2. Although the mode
around the true parameter values is generally higher
than the other mode, the other way around is possible.
That is why the ML methods cannot separate Model 1
and Model 2. Thus, not surprisingly, research papers
employing the two parametric MLmethods have found
both long memory and roughness in log volatilities.
Suppose one finds Model 1 (Model 2) by the ML meth-
ods in empirical applications. It is very likely that the
truemodel isModel 1 (Model 2), but there is also a non-
negligible probability that the true DGP is Model 2
(Model 1).

5.4. Discussions: Model 1 Vs. Model 2
Model 1 can be formulated as a fractional processwith a
local to zeroAR coefficient such that

Model 1 : yt �− c
T
yt−1 + σ 1− L( )−d̃εt

with constant c and d̃ > 0: (20)

Model 2 can be understood as a local to unity AR(1)
modelwith fractionally integrated errors. That is,

Model 2 : yt � 1− c
T

( )
yt−1 + σ 1− L( )−dεt

with c ≥ 0 and d ∈ −0:5, 0( ), (21)

which can be rewritten as

Δyt � − c
T
yt−1 + σ 1− L( )−dεt: (22)

When c� 0, Model 1 and Model 2 become AR1FI(0, d̃)
and AR1FI(1,d), respectively. When d̃ � d+ 1, these two
models are observationally equivalent. Hence, Model 1
andModel 2 can be viewed as local alternatives of these

Table 6. Means and Standard Errors (in Parentheses) of d̂ and α̂ of Each Cluster and All Replications and the PFI

(d,α) � (0:4, 0) (d,α) � (0:4, 0:3) (d,α) � (−0:4, 0:99) (d,α) � (−0:4, 0:996)
Whittle [0.29 (0.28), 0.11 (0.31)] [0.33 (0.17), 0.36 (0.17)] [−0.38 (0.13), 0.97 (0.12)] [−0.38 (0.12), 0.97 (0.11)]
Whittle (correct) [0.39 (0.04), 0.01 (0.05)] [0.38 (0.06), 0.32 (0.07)] [−0.40 (0.03), 0.98 (0.01)] [−0.39 (0.03), 0.99 (0.01)]
Whittle (false) [−0.50 (0.00), 0.97 (0.01)] [−0.29 (0.06), 0.94 (0.04)] [0.47 (0.03), 0.15 (0.03)] [0.49 (0.02), 0.14 (0.03)]
Whittle: PFI 0.110 0.062 0.022 0.018
MPL [0.29 (0.28), 0.11 (0.31)] [0.35 (0.17), 0.35 (0.17)] [−0.38 (0.13), 0.97 (0.12)] [−0.38 (0.12), 0.98 (0.11)]
MPL (correct) [0.39 (0.04), 0.00 (0.05)] [0.39 (0.06), 0.31 (0.07)] [−0.40 (0.03), 0.99 (0.01)] [−0.40 (0.03), 0.99 (0.01)]
MPL (false) [−0.50 (0.00), 0.98 (0.01)] [−0.29 (0.07), 0.94 (0.04)] [0.47 (0.03), 0.15 (0.03)] [0.49 (0.02), 0.14 (0.03)]
MPL: PFI 0.110 0.061 0.022 0.018

Note. The sample size T � 1,024.

Figure 5. (Color online) The Kernel Densities (Solid Lines) of d̂ and α̂ for MPL andWhittle When d � 0:4,α � 0

Notes. The two segments of the dotted line around each mode form the 95% highest density interval. (a) MPL: d. (b) MPL: α. (c) Whittle: d.
(d) Whittle: α.
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two observationally equivalent models, respectively,
with the same local deviation quantity (i.e., − c

T yt−1).
That is why Model 1 and Model 2 can generate similar
sample paths, and it is difficult to distinguish them in
finite sampleswhen the local deviation (c) is small.

Although Model 1 and Model 2 deviate from the two
observationally equivalent models by the same quantity,
they have different asymptotic properties, unless c�0.
Multiplying both sides ofModel 1 by 1− L( ) leads to

Δyt � − c
T
Δyt−1 + σ 1− L( )−dεt:

As T→∞, the first term on the right-hand side is
dominated by the second term. The process is asymp-
totically equivalent to AR1FI(1,d)—a model employed
by LWE(diff). From theorem 2 of Davydov (1970), as
T→∞,

δdΓ 1+ d( )
Td+0:5σ

yTr� ⇒ BH r( ), (23)

where BH r( ) is the fBm with Hurst parameter H � d
+0:5 ∈ (0, 0:5) and r ∈ [0, 1]. The fBm process is used in
Gatheral et al. (2018) tomodel and forecast log RVwhere
H�0.14 is assumed.

For Model 2, when c > 0, from Tanaka (2013), as
T→∞,

δdΓ 1+ d( )
Td+0:5σ

yTr� ⇒ JHc r( ), (24)

where δd �
���������������
2 d+0:5( )Γ 1−d( )
Γ 1+d( )Γ 1−2d( )

√
and JHc r( ) :� exp cr( )∫ r

0
exp −cs( )

dBH s( ) is a fOUprocess. Equation (21) can be rewritten as

yt � − c
T

1− L( )−1yt−1 + σ 1− L( )−d̃εt: (25)

The first term on the right-hand side of (25) represents
the difference between Model 2 with α < 1 and the
LWE(diff) model (α�1) and has the following limiting:

−δdΓ 1+ d( )
Td+0:5σ

c
T

1− L( )−1yt−1 ⇒ JHc r( ) −BH r( ):
Because − c

T 1− L( )−1yt−1 �Op Td+0:5( )
, which is of the

same order of magnitude as the second quantity in
(22), one cannot ignore this term even asymptotically

whenever c≠ 0. As shown in the forecasting exercise in
the application section, it matters more for long horizon
forecasting.

6. Empirical Applications to RV
In this section, we investigate the dynamics of log RVs
for the Standard and Poor’s (S&P) 500 index exchange
traded fund (ETF) and the nine industry ETFs over the
past decade. The sample period starts from January 5,
2010 and ends onMay 25, 2021. The QML realized vola-
tility data are obtained from the Risk Lab. Assets under
consideration are listed in Table 7, along with the num-
ber of observations and summary statistics of log RV
(QMLE) of each data series.

6.1. Estimation Results
The AR1FI(α,d) model is fitted to each (demeaned) log
RV series using the two semiparametric and two para-
metric methods. The bandwidth m � T0:65� for LWE
and m � T0:85� for LWE(diff). For the Whittle method,
we use the same grid searchingmethod as in the simula-
tion studies. For MPL, we use the estimation results of
theWhittlemethod as the initial value.

The estimated parameters are reported in Table 8.
The two ML methods provide almost identical results
for all assets. The estimated autoregressive coefficients
are close to unity, and the estimated fractional parame-
ters are close to those of LWE(diff). These estimates
point toModel 2 and are consistent with the findings of
Gatheral et al. (2018) and Wang et al. (2021), where the
fBm and fOU processes are fitted to log RV. They are
also consistent with those of Liu et al. (2020), Bolko et al.
(2022), and Fukasawa et al. (2022), where log spot vola-
tility is treated as latent but assumed to follow an AR(1)
processwith fractionally integrated errors or fBm.

On the contrary, LWE suggests that the memory
parameter is between 0.54 and 0.70, implying that all the
log RV series have a long memory. The autoregressive
coefficient is always close to zero, suggesting Model 1.
The estimated fractional parameters from LWE(diff) are
between –0.41 and –0.36. The difference between the
two estimates of d by LWE and LWE(diff) is almost one,

Table 7. Summary Statistics of the Log Realized Volatility (QMLE) of Various Financial Assets

Name (Ticker) Observations Mean Standard deviation Skewness Kurtosis

S&P 500 ETF (SPY) 2,757 −2.40 0.50 0.66 4.04
Material Sector ETF (XLB) 2,723 −2.06 0.44 0.64 4.14
Energy Sector ETF (XLE) 2,724 −1.81 0.44 0.78 3.92
Energy Sector ETF (XLE) 2,724 −2.04 0.43 0.95 5.31
Financial Sector ETF (XLF) 2,724 −2.18 0.45 0.75 4.32
Healthcare Sector ETF (XLV) 2,723 −2.18 0.46 0.78 4.65
Industrial Sector ETF (XLI) 2,723 −2.42 0.41 1.28 7.31
Material Sector ETF (XLB) 2,723 −2.09 0.37 1.04 6.82
Technology Sector ETF (XLK) 2,723 −2.25 0.41 0.98 5.27
Utilities Sector ETF (XLU) 2,722 −2.22 0.46 0.73 4.01
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as expected. The results from LWE(diff) are close to
those of theMLmethods.

The seemingly contradictory results between LWE
and other methods are consistent with our simulation
results. Suppose the true DGP is Model 2 as the ML
methods suggested. According to our simulations, LWE
will lead to the false conclusion of Model 1. LWE(diff)
performs well under this setting and hence, leads to
similar outcomes as the parametric methods. Suppose
the estimation results of the ML methods are incorrect,
and the true DGP is Model 1. Our simulations suggest
that LWE performs well in this case, and employing
LWE(diff) will lead to a false conclusion ofModel 2.

Based on the simulation studies, the twoMLmethods
are relatively more reliable than LWE. As such, it is
more likely that the log RVs of the ETFs are generated
fromModel 2 than fromModel 1. However, there is still
a nonnegligible probability of false identification as the
log-likelihood surfaces have two modes with similar
values. As an illustration, we show in Figure 6 contour
plots of the log-likelihood surfaces of MPL and Whittle
for the log RV of SPY. Again, we remove log-likelihood
values that are far from the peak to enable better visibil-
ity of the modes. Evidently, there are two modes in the
likelihood surface. One is aroundModel 1, and the other
one is around Model 2. The color around Model 2 is

brighter, implying higher likelihood values in the region
and hence, the estimation outcome.

6.2. Model Forecasting
The one-step-ahead linear prediction of AR1FI(α,d) can
bewritten as

ŷt+1 � φt,1yt +φt,2yt−1+⋯ +φt,ty1 with t > 1: (26)

We employ the popular Durbin–Levinson algorithm for
the computation of the forecasting coefficients φt,j with
j � 1, 2, : : : , t. Specifically, under the assumption that
yt
{ }

is a zero mean stationary process with autocovar-
iance function γy :( ) such that γy 0( ) > 0 and γy k( ) → 0 as
k→∞, φ1,1 � γy 1( )=γy 0( ), v0 � γy 0( ),

vt � vt−1 1−φ2
t,t

[ ]
for t � 1, 2, : : : ,

φt,t � γy t( ) −∑t−1
j�1

φt−1,jγy t− j
( )[ ]

v−1t−1,

φt,1

⋮

φt,t−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �

φt−1,1

⋮

φt−1,t−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ −φt,t

φt−1,t−1

⋮

φt−1,1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦:

Table 8. Model Estimation Results

Name (Ticker)

MPL Whittle LWE
LWE(diff)

d̂ α̂ d̂ α̂ d̂ α̂ d̂

S&P 500 ETF (SPY) −0.382 0.995 −0.382 0.995 0.602 −0.006 −0.356
Material Sector ETF (XLB) −0.446 0.999 −0.445 0.998 0.643 −0.105 −0.413
Energy Sector ETF (XLE) −0.387 0.998 −0.385 0.997 0.698 −0.093 −0.373
Financial Sector ETF (XLF) −0.427 0.998 −0.427 0.997 0.607 −0.053 −0.396
Industrial Sector ETF (XLI) −0.422 0.998 −0.423 0.997 0.611 −0.056 −0.390
Technology Sector ETF (XLK) −0.440 0.998 −0.439 0.997 0.540 0.004 −0.412
Consumer staples Sector ETF (XLP) −0.468 0.997 −0.467 0.996 0.582 −0.110 −0.410
Utilities Sector ETF (XLU) −0.470 0.998 −0.469 0.997 0.632 −0.162 −0.415
Healthcare Sector ETF (XLV) −0.426 0.995 −0.426 0.994 0.601 −0.061 −0.397
Consumer discretionary Sector ETF (XLY) −0.434 0.998 −0.434 0.997 0.607 −0.070 −0.400

Figure 6. Contour Plots of the Log-Likelihood Surfaces of MPL andWhittle for SPY

Notes. (a) MPL. (b) Whittle.
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See Brockwell andDavis (1987, chapter 5). The two-step-
ahead recursive forecasting is computed recursively as

ŷt+2 � φt+1,1ŷt+1 + φt+1,2yt + ⋯ +φt+1,t+1y1,

and the k-step-ahead forecast can be obtained in a simi-
lar fashion.

The computation of γy(t− j) (and hence, φt,j) of
AR1FI(α,d) requires three model parameters: d,α,σ2.
The σ2 parameter is, however, not estimated directly by
the fourmethods. Here, we estimate it by

σ̂2 � 1
T

∑
t
e2t with et � 1− L( )d̂ yt − α̂1yt−1

( )
:

We conduct the forecasting exercise on the log RV
(QML) of the 10 financial assets. The out-of-sample fore-
casting period starts from January 5, 2018. The model
parameters are estimated from a rolling window with a
size of eight years. The forecasting horizon ranges from
1 to 50 periods.

6.2.1. Forecasting Evaluation. The second step is to
evaluate the forecasting accuracy. We consider two loss
functions: mean squared forecast error (MSFE) andmean
absolute forecast error (MAFE). They are defined as

MSFEk � 1
T − T0 + 1( )

∑T
t�T0+1

ŷt+k − yt+k
( )2,

MAFEk � 1
T − T0 + 1( )

∑T
t�T0+1

ŷt+k − yt+k
∣∣ ∣∣,

where T0 is the total number of observations in the train-
ing sample.

To assess whether the competing models are statisti-
cally different, we employ the model confidence set
(MCS) approach proposed by Hansen et al. (2011). The
approach aims to provide a model confidence set that
contains the best models with probability greater than
or equal to a prespecified level, say 5%. The MCS is
expected to be large when the data do not contain suffi-
cient information to tell the models apart. It also pro-
vides “p-value” for each individualmodel.

Let the set of competing models be M0 with objects
indexed by i � 1, : : : ,M. We have M�4 in our setting.
The loss function, denoted by Li,t, can either be the

squared error ŷ(i)t+k − yt+k
( )2

or be the absolute error∣∣ŷ(i)t+k − yt+k
∣∣, where ŷ(i)t+k is the k-step-ahead forecast from

model i. The relative performance is measured by di,j,t �
Li,t − Lj,t for all i, j ∈M0. The MCS procedure applies
tests of

H0,M : E(dij,t) � 0 for all i, j ∈M ⊂M0,

against the alternative

HA,M : E(dij,t)≠ 0 for some i, j ∈M:

The procedure is based on a model equivalence test for
the null H0,M for any M ⊂M0 and an elimination rule
that identifies the object to be removed fromM if H0,M

is rejected. The algorithm is implemented as follows.
The initialmodel set isM �M0:

Step 1. Test H0,M using a model equivalence test at
level α.

Step 2. If H0,M is “accepted,” set M̂1−α �M; other-
wise, use an elimination rule to remove objects from
M, and repeat Steps 1 and 2.

The set M̂1−α is referred to as the model confidence
set. Let Mi be the model set tested in the ith iteration,
PH0,Mi

be the p-value associated with the null hypothesis
H0,Mi , and eMi be the element to be eliminated from set
Mi in the event that H0,Mi is rejected. The MCS p-value
formodel eMi is defined by

p̂eMi
�max

j≤i PH0,Mj
,

whereM1 ⊃M2: : : ⊃Mi.
For themodel equivalence test,we employed theTmax,M

statistic with a bootstrapped implementation as recom-
mended by Hansen et al. (2011). The block length of the
bootstraps is set to be 20. SeeHansen et al. (2011) for details
of the test statistic and its associated elimination rule.

6.2.2. Forecasting Results. We compare the out-of-
sample performance of the four estimation methods in
forecasting the log RVs. The general conclusions for all
of the data series are the same. That is, the Whittle
method provides the best out-of-sample forecasting
results (especially in the long run), followed byMPL.

For ease of presentation, we take the S&P 500 ETF
(SPY) and thematerial industry ETF (XLB) as two exam-
ples.We employ a rollingwindow algorithm for the out-
of-sample forecast, where the model is reestimated for
each subsample. Figure 7 displays the rolling window
estimate of d and α from SPY and XLB. Figure 7, (a) and
(b) shows estimation results from all four methods, and
Figure 7, (c) and (d) displays only those from LWE(diff),
Whittle, and MPL for SPY. Consistent with the whole-
sample analysis, results from LWE(diff), Whittle, and
MPL are close to each other, with the estimated d fluctu-
ating around –0.4 and the estimated α being either one
or very close to one. However, the LWE method sug-
gests that α is close to zero and d is greater than 0.5. Fur-
thermore, from Figure 7 (c) and (d), we can see that the
Whittle estimates of d seem to be between those of MPL
and LWE(diff) for most of the rolling windows, whereas
the Whittle estimates of α are consistently the lowest
among the threemethods.

The rollingwindow estimates of d and α fromXLB are
displayed in Figure 7, (e) and (f). For most of the sample
periods, the estimated results from the two parametric
methods are consistent with their whole-sample estimates
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(Model 2). However, interestingly, in the second half of
2018, the parameter estimates switch from Model 2 to
Model 1. This result is consistent with our argument that
there is a nonnegligible probability that the ML methods
point toModel 1. This partially explains the diverse empir-
ical findings that we have in the current literature.
Although it appears to be a sample-sensitive outcome, the
fundamental cause of the problem is the bimodality of the
log likelihoodof the twoMLmethods, as discussed earlier.

From Figure 7, there seems to be a small structural
break in the model parameters in March 2020 at the
onset of coronavirus disease 2019, although the changes
are not dramatic. To avoid its impact on the forecasting
evaluation, we compute the MSFEs and MAFEs from
January 5, 2018 to February 29, 2020. The MSFEs and
MAFEs of the four estimation methods for forecasting

horizons from 1 to 50 days are presented in Figure 8.
Figure 8, (a) and (c) (Figure 8, (b) and (d)) is based on
MSFE (MAFE). Evidently, when the forecasting horizon
is short, there are no substantial differences among the
four estimation methods. The gaps among the lines
increase substantially as the forecasting horizon extends to
50. The gaps are more visible for SPY than XLB. Over the
longer horizons, for SPY, the loss function of the Whittle
method is consistently the smallest, followed by MPL. For
XLB, the loss function of the two ML methods follows
closely of each other across all horizons. The performances
of LWE and LWE(diff) are similar to each other and not as
goodas those of theparametricmethods.

To investigate the statistical significance of those
gaps, we conduct the MCS test. The MCS p-values are
displayed in Figure 9. For SPY, the Whittle method

Figure 7. (Color online) The RollingWindow Estimates of the Model Parameters

Notes. (a) SPY: d̂. (b) SPY: α̂. (c) SPY: d̂ (excluding LWE). (d) SPY: α̂ (excluding LWE). (e) XLB: d̂. (f) XLB: α̂.
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always has the p-value of one, suggesting that it is the
best model of the four competing ones. With a signifi-
cance level of 10%, we cannot reject all models being in
the ‘best model set’ at the short forecasting horizon (up
to five periods). Nevertheless, the Whittle method is the
only survival model for horizons beyond five with the
squared error loss function. With the absolute errors, at
the 10% level, both MPL and Whittle survive the test,
andwe do not have sufficient information to distinguish
between these two methods. For XLB, at the 10%, all
four methods survive from one period ahead to a very
long horizon forecast (45 periods ahead). The p-values
of theWhittle method have almost consistently been the
highest. For the remaining forecasting horizons, both
MPL andWhittle have p-value close to one, whereas the
p-values of the two semiparametric methods are below
10%. The overall conclusion is that the Whittle method
yields the most accurate one-step-ahead forecasts, fol-
lowed by MPL. This superiority of the Whittle estima-
tion method in forecasting is expected. One can see
from Figure 7 that, compared with the MPL estimated
coefficients, the Whittle estimated coefficients are more
responsive to short-term changes in the data.

7. Conclusion
In this paper, we first examine the finite sample pro-
perties of four alternative methods in estimating the
AR1FI(α,d) model, including the two parametric ML

(MPL and Whittle) methods and the two semiparamet-
ric (LWE and LWE(diff)) methods. Special attention is
paid to the part of the parameter space where d is close
to –0.5 and α is close to unity (Model 2) and where d is
close to 0.5 and α is close to zero (Model 1). These
choices of parameter settings are motivated by the
empirical findings in the RV literature. Via simulations,
we find that all four methods have finite sample prob-
lems, although the problem associated with the ML
methods is less severe. Specifically, LWE and LWE(diff)
are significantly biased when the autoregressive coeffi-
cient α deviates far from zero and unity, respectively.
Moreover, when the DGP is Model 2, LWE always
points toModel 1. When the DGP isModel 1, LWE(diff)
always points to Model 2. The two ML methods gener-
ally performwell. However, there exists a nonnegligible
probability that the ML methods mix up Model 1 and
Model 2. This problem of the ML methods has never
been discovered in the literature. The source of the
problem is that the AR1FI(0,d) model is observationally
equivalent to the AR1FI(1,d− 1) model, leading to a
weak identification problem. These simulation findings
explain the contradicting empirical evidence docu-
mented in the literature.

We apply the four estimation methods to the log RVs
of 10 financial assets. The two ML methods and LWE-
(diff) always suggest Model 2, whereas LWE always
suggests Model 1. Based on what we learn from the

Figure 8. (Color online) Mean Squared Forecast Error andMean Absolute Forecast Error

Notes. (a) SPY: MSFE. (b) SPY:MAFE. (c) XLB:MSFE. (d) XLB: MAFE.
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simulation studies, we conclude that the true DGP is
more likely to beModel 2 thanModel 1. Unfortunately,
because of the aforementioned finite sample issue of the
ML methods, we cannot draw definitive conclusions
regarding the DGP. Despite the uncertainty, we find
that the estimated model from the Whittle method can
generate the most accurate out-of-sample forecasts for
the log RV series, especially at long horizons.
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Appendix A. Tapering
One pitfall of the periodogram I(λj) is that there is leakage
effect. In finite samples, when there are high peaks in the
spectrum, the nonparametric estimator I(λj) might signifi-
cantly overestimate the spectrum at other frequencies and
fail to discover spectrums with low peaks.

A.1. Whittle Estimator with Tapering
Dahlhaus (1988) proposes using tapering adapted from non-
parametric spectral density estimation (Tukey 1967) for the
Whittle estimator. A tapered series is define as

yTt � htyt,

where ht is the data taper satisfying certain time series
properties (Dahlhaus 1988). The tapered periodogram is

IT(λj) � 1
2π

∑T−1
t�0 h2t

∑T
t�0

htyt exp (−itλj)
∣∣∣∣∣

∣∣∣∣∣
2

:

Replacing I(λj) in the Whittle estimator (19) by IT(λj)
yields the tapered Whittle estimator. Dahlhaus (1988)
show that the tapered Whittle estimator is

��
T

√
consistent

and asymptotically normal.
There are many tapers satisfying the conditions outlined

in Dahlhaus (1988). One example is the Tukey–Hanning
taper specified as

hρ x( ) �
1
2
1 − cos 2πx=ρ

( )[ ]
x ∈ 0,ρ=2

[ )
1 x ∈ ρ=2, 1=2

[ ]
hρ 1 − x( ) x ∈ 1=2, 1( ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
and ht � hρ t=T( ). For practical implementation, one could
set ρ � T−κ=3 with κ ∈ [0, 1=2). Here, we set κ � 1=4.

A.2. Local Whittle Estimator with Tapering
One popular tapering method in the local Whittle content
is proposed by Velasco (1999). For each positive integer p,
there is a Kolmogorov taper, which is of order p in the
sense of Velasco (1999). A taper with order p, if applied to
the raw data, yields a tapered periodogram that is invari-
ant to polynomial trends of order p – 1, provided that the
periodogram is evaluated on the grid λip with i � 1,2, : : : ,
m=p�. The objective function of the tapered LW estimator

Figure 9. (Color online) TheMCS p-Values

Notes. (a) SPY: squared error. (b) SPY: absolute error. (c) XLB: squared error. (d) XLB: absolute error.
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becomes

(Ĉp, d̂p) � arg max
C,d

p
m

∑m=p�

i�1
−logC+ 2d logλip − 1

C
λ2d
ip I

T(λip)
[ ]

,

(A.1)

where

d̂p � argmax −log Ĉp d( ) + 2d
p
m

∑m=p�

i�1
logλip

{ }
,

Ĉp d( ) � p
m

∑m=p�

i�1
λ2d
ip IT(λip):

The discrete sums include only frequencies λip with
i � 1, 2, : : : , m=p�.

The tapered local Whittle estimator is asymptotic nor-
mal with a variance of pΦ=(4m), where

Φ � lim
T→∞

∑T
t�1

h2t

( )−2 ∑n−p
k�0,p, 2p, : : :

∑n
t�1

h2t cos tλk( )
{ }2

:

Suppose we employ the full cosine bell taper (Tukey
1967)

ht � 0:5 1 − cos
2πt
T

( )[ ]
and regard this taper as of order p� 3; the tapered local Whit-
tle estimator is asymptotic normal with variance pmΦ=4 with
Φ�1, when µ�0 and d < 1.5. However, if we use all the Four-
ier frequencies from λ2 to λm (i.e., p�1), thenΦ � 35=18. In the
simulation studies, we use the cosine bell taper with p�3.
Although the tapered local Whittle methods are invariant to
trends and asymptotically normal, they lead to inflated
asymptotic variance of the estimator.

Appendix B. Robustness Check: Alternative
Estimators of Volatility

Taking the S&P 500 market index ETF as an example, we
investigate the estimation robustness with respect to different
measures of volatility. In addition to the QML estimator, we
consider the popular realized volatility estimator as defined
in (1) and the jump-robust volatility estimator bipower varia-
tion of Barndorff-Nielsen and Shephard (2004). The data are

Figure B.1. (Color online) Volatility Dynamics of the S&P 500Market ETF

Notes. (a) The logarithmic of RV and BV. (b) The logarithmic of QML.
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downloaded from Refinitive Tick History at the one-second
frequency and sampled every five minutes. The five-minute
data are cleaned following the standard practice (Brownlees
and Gallo 2006, Barndorff-Nielsen et al. 2009). Figure B.1 dis-
plays the estimated log volatilities over the sample period.

Estimation results from the three data series are presented
in Table B.1. As for QML, the LWEs of d for the logarithmic
RV and BV are higher than 0.5. The two parametric methods
lead to similar estimation results. For both data series, the
estimated d is negative and around –0.475, which is smaller
than that from log RV (QML). For all data series, the esti-
mated autoregressive coefficients are all very close to unity,
with the one from log RV (QML) being the smallest. The
LWE(diff) method leads to similar estimation results. As
expected, the estimated fractional parameters are slightly
higher than those from the parametric methods. In sum-
mary, the parametric methods point to Model 2 for all three
volatility series.

Endnotes
1 Long memory is typically defined within the class of stationary
models and refers to the case of d ∈ (0, 1=2). Our definition of long
memory here is broader. It refers to the case of d > 0 as in Phillips
and Shimotsu (2004).
2 In fact, AR1FI(0,d) is observationally equivalent to AR1FI(1,d− 1).
3 Similar models have been considered in other papers. For exam-
ple, Magdalinos (2012) proposes a mildly explosive autoregressive
process with long memory errors (i.e., d ∈ (0, 0:5)). Yu (2021) consid-
ers a latent local to unity model with fractionally integrated errors.
4 Unreported simulations show that results remain the same when
using other popular semiparametric methods (such as LPE and the
exact local Whittle method of Shimotsu and Phillips 2006) or when
tapering (Dahlhaus 1988, Velasco 1999) is applied. The tapering
technique employed is described in the appendix.
5 See Smith et al. (1997), Nielsen and Frederiksen (2005), and Nadar-
ajah et al. (2021).
6 Other noise-robust volatility estimators include the traditional RV
obtained from returns sampled at the five-minute frequency, the
preaveraging method of Jacod et al. (2009), and the flat-top realized
kernel estimator of Varneskov (2017).
7 See https://dachxiu.chicagobooth.edu/#risklab.
8 Despite its popularity in modeling the log RV, there are two limi-
tations in the AR1FI(α,d) model. First, it fails to take into account of
estimation errors when the log RV is regarded as an estimator of
the log quadratic variation. The estimation error necessitates an MA
component; see Meddahi (2003) and Yu (2021). Second, it does not
allow for jumps in the log volatility dynamic.
9 The instantaneous variance of ut is E u2t

( ) � Γ(1− 2d)= Γ(1− d)( )2.
10 Shimotsu and Phillips (2006) propose an exact localWhittle (ELW)
estimation method, which can be applied to both stationary and

nonstationary variables. Unlike the conventional local Whittle esti-
mator, which approximates Iu(λj) by λ2d

j Iy(λj), the exact localWhittle
method is based on the relationship that Iu(λj) � IΔdy(λj), where
IΔdy(λj) is the periodogram of Δdy � 1− L( )dyt. Shimotsu (2010) pro-
poses a two-stage approach, which uses a tapered local Whittle esti-
mator (Velasco 1999) in the first stage and a modified ELW objective
function in the second stage. The two-stage ELWmethod is designed
to improve the performance of ELWwhen the mean (initial value) of
the process is unknown. Unreported simulations show that both the
ELW and the two-stage ELW perform similar to the LWE method
under ourmodel setting.
11 For example, when α� 0:93, d�0.4, and k�1, 500, F d+ k, 1;(
1− d+ k;α)� −1:2143 × 1019.
12 Unreported simulations confirm that the estimation is more accu-
rate than those presented here when d < 0.45.
13 Coursol and Dacunha-Castelle (1982) study the approximation
error logLN − logLW .
14 The fractionally integrated process in (4) is simulated with the
fracdiff function provided by Katsumi Shimotsu.
15 We set the sample size to be the power of two to ensure the accu-
racy of Fourier transformation. Moreover, the finite sample proper-
ties reported here remain qualitatively unchanged when T is
increased to 2,408 and 4,096.
16 There is no need to estimate α using LWE(diff) as it assumes
α� 1.
17 Tapering has been shown to be capable of removing determinis-
tic time trends (e.g., Žurbenko 1979, Robinson 1986, Dahlhaus 1988,
Hurvich and Ray 1995, Velasco 1999, Hurvich and Chen 2000). The
tapering methods are detailed in the appendix.
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