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ASYMPTOTIC THEORY FOR
ESTIMATING DRIFT PARAMETERS IN
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This article develops an asymptotic theory for estimators of two parameters in the
drift function in the fractional Vasicek model when a continuous record of obser-
vations is available. The fractional Vasicek model with long-range dependence is
assumed to be driven by a fractional Brownian motion with the Hurst parameter
greater than or equal to one half. It is shown that, when the Hurst parameter is
known, the asymptotic theory for the persistence parameter depends critically on its
sign, corresponding asymptotically to the stationary case, the explosive case, and
the null recurrent case. In all three cases, the least squares method is considered,
and strong consistency and the asymptotic distribution are obtained. When the per-
sistence parameter is positive, the estimation method of Hu and Nualart (2010) is
also considered.

1. INTRODUCTION

The Vasicek model of Vasicek (1977) has found a wide range of applications in
many fields, including but not limited to economics, finance, biology, physics,
chemistry, medicine, and environmental studies. An intrinsic property implied by
the standard Vasicek model is short-range dependence in the stochastic compo-
nent of the model because the autocovariance decays at a geometric rate. This
property is at odds with abundant empirical evidence that indicates long-range
dependence or long memory in time series data (see, e.g., Lo, 1991; Comte and
Renault, 1996; Granger and Hyung, 2004). As a result, stochastic models with
long-range dependence have been used to describe the movement of time series
data in hydrology, geophysics, climatology, telecommunications, economics, and
finance.
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In continuous time, the fractional Brownian motion (fBm), with the Hurst pa-
rameter greater than one half, is an important stochastic process to characterize
long-range dependence (see, e.g., Mandelbrot and Van Ness, 1968). An fBM can
produce burstiness, self-similarity, and stationary increments in the sample path.
Excellent surveys on fractional Brownian motions can be found in Biagini, Hu,
Øksendal, and Zhang (2008) and Mishura (2008).

If the Brownian motion in the Vasicek model is replaced with an fBM, we get
the following fractional Vasicek model (fVm)

d Xt = κ (μ− Xt)dt +σd B H
t , (1.1)

where σ is a positive constant, μ,κ ∈R, and B H
t is an fBM (which will be defined

formally below) with the Hurst parameter H ≥ 1/2. Long-range dependence in
Xt is generated by B H

t .
In Model (1.1), κ (μ− Xt) is the drift function and there are two unknown pa-

rameters in it, μ and κ . Parameter κ determines the persistence in Xt . Depending
on the sign of κ , the model can capture stationary, explosive, and null recurrent
behavior. The fVm was first used to describe the dynamics in volatility by Comte
and Renault (1998). Other applications of the fVm can be found in Comte, Coutin,
and Renault (2012), Chronopoulou and Viens (2012a, 2012b), Corlay, Lebovits,
and Véhel (2014), Bayer, Friz, and Gatheral (2016) and references therein. De-
spite many applications of the fVm in practice, estimation and asymptotic theory
for the fVm have received little attention in the literature. The main purpose of the
present article is to propose estimators for μ and κ and to develop an asymptotic
theory for these estimators based on a continuous record of observations over an
increasing time span (i.e., the period of [0,T ] with T → ∞) when the Hurst pa-
rameter H is known and H ∈ [1/2,1). This range of values for H is empirically
relevant for much economic and financial data; see, for example, Cheung (1993),
Baillie (1996).

A very important special case of fVm is the so-called fractional Ornstein–
Uhlenbeck (fOU) process given by

d Xt = −κ Xt dt +σd B H
t , X0 = 0. (1.2)

The key difference between (1.1) and (1.2) is that μ is assumed to be zero and
known in (1.2) while μ is unknown in (1.1). A smaller difference between (1.1)
and (1.2) is that X0 = 0 in (1.2) while X0 may not be zero in (1.1). The order of
the initial condition will be assumed when we develop the asymptotic theory.

In fact, the fOU process is closely related to the following discrete-time model

yt =
(

1 − κ

T

)
yt−1 + ut , (1 − L)dut = εt , y0 = 0, (t = 1, . . . ,T ), (1.3)

where L is the lag operator, d = H −1/2 is the fractional differencing parameter,
and εt ∼ i.i.d.(0,σ 2). When H = 1/2, d = 0, ut = εt , and yt follows a standard
AR(1) model with an i.i.d. error term. When 1/2 < H < 1, 0 < d < 1/2, and ut

is a stationary long memory process given by
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200 WEILIN XIAO AND JUN YU

ut = (1 − L)−d εt = (1 − L)−(H−1/2) εt =
∞∑

j=0

�( j + d)

�(d)�( j + 1)
εt− j ,

where �(x) is the gamma function. Davydov (1970) and Sowell (1990) related
the process in (1.3) to that in (1.2) by showing the following functional central
limit theorem,

δH�(H + 1/2)

σ T H
y[T s] ⇒ Xs ,∀ 0 ≤ s ≤ 1 ,

where [z] denotes the smallest integer greater than or equal to z, δH =√
2H�(3/2−H)

�(H+1/2)�(2−2H) (see also Tanaka, 2013, 2015). If κ = 0, yt has a unit root;
if κ > 0, yt is asymptotically stationary; if κ < 0, yt has an explosive root.

Depending on the sign of κ , alternative estimation methods have been pro-
posed in the literature to estimate κ in the fOU model and the asymptotic theory
for these estimators has been obtained. When κ > 0, Kleptsyna and Le Breton
(2002), Tudor and Viens (2007), Tanaka (2014) studied the maximum likelihood
(ML) estimator; Hu and Nualart (2010) studied the least squares (LS) estima-
tor; Tanaka (2013) studied the minimum contrast (MC) estimator; Hu and Nu-
alart (2010) introduced and studied an estimator based on the ergodic property
of Xt . When κ < 0, two estimators have been studied, namely, the ML estimator
(Tanaka, 2015) and the LS estimator (Belfadli, Es-Sebaiy, and Ouknine, 2011; El
Machkouri, Es-Sebaiy, and Ouknine, 2016). When κ = 0, the ML method and the
MC method were considered in Kleptsyna and Le Breton (2002), Tanaka (2013).
Prakasa Rao (2010) is a textbook treatment of alternative methods and the asymp-
totic theory for estimating parameters in the fOU model.

In almost all empirically relevant cases, the parameter, μ, in the drift function
of model (1.1) is unknown. Thus, it is important to estimate both κ and μ. This is
the reason why we consider the problem of estimating both κ and μ in the fVm.
As in the fOU model, asymptotic theory for κ critically depends on the sign of κ ,
namely whether κ > 0, κ < 0 or κ = 0. When κ > 0, two estimators are considered,
i.e., the LS estimators and the estimators of Hu and Nualart (2010). The estimators
of Hu and Nualart (2010) do not contain any stochastic integral and hence are
easier to calculate. Our results suggest that, unless H = 1/2, the estimators of
Hu and Nualart (2010) are asymptotically more efficient than the LS estimators.
The relative asymptotic efficiency increases with H when H ∈ [1/2,3/4) and
also when H ∈ (3/4,1). When κ < 0 or κ = 0, the LS estimators are considered.
Strong consistency and asymptotic distributions are established for both κ and
μ. The proof is based on the Malliavin calculus, the Itô–Skorohod integral and
the Young integral for fractional Brownian motions. In particular, we use the Itô–
Skorohod integral for the stationary case and the Young integral for the explosive
case. To the best of our knowledge, this is the first article in the literature where
an fVm is estimated and an asymptotic theory is developed.

A drawback of the model considered here is that H is assumed to be known a
priori. In practice, H is always unknown unless a Brownian motion is used. It is
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possible to estimate H with a continuous record of observations by the general-
ized quadratic variation of Gradinaru and Nourdin (2006). Section 4 will provide
more details about this estimator of H . However, the study of asymptotic proper-
ties of this estimator is beyond the scope of the present article.

A related drawback of our approach is that a continuous record of observations
is required. In economics and finance, this assumption is too strong. However, as
high-frequency data are now widely available, it is possible to approximate a con-
tinuous record of observations by discretely sampled high-frequency data and to
approximate the fVm by the discrete-time model (1.3). The underlying assump-
tion for these approximations to work well is to allow the sampling interval in
discretely sampled data to go to zero. The asymptotic theory for H under the long-
span asymptotic scheme is expected to correspond to that of d under the long-span
and in-fill asymptotic scheme. It is important to point out that alternative estima-
tion methods, such as log-periodogram regression and local Whittle estimation,
have been suggested in the discrete-time literature to estimate d . The long-span
asymptotic theory has been developed for d; see for example, Geweke and Porter-
Hudak (1983), Robinson (1995a, 1995b), Shimotsu and Phillips (2005).

The third drawback of the model considered here is that the asymptotic theory
developed here is only applicable for H ∈ [1/2,1). Some empirical studies based
on economic and financial time series have found the estimated d to be smaller
than 0 or larger than 1 (see, for example, Baillie, 1996; Baillie, Bollerslev, and
Mikkelsen, 1996), which implies that H /∈ [1/2,1). While the asymptotic theory
for κ and μ can be extended to a wide range values of H by using the exact local
Whittle method of Shimotsu and Phillips (2005), such an extension is complicated
and will be reported in later work.

The rest of the article is organized as follows. Section 2 contains some ba-
sic facts about fractional Brownian motions and introduces the LS method and
the method of Hu and Nualart (2010) for estimating the two parameters in
the drift function of the fVm. In Section 3, we establish consistency and the
asymptotic distributions for κ and μ. Section 4 contains some concluding re-
marks and gives directions of further research. All the proofs are collected in the
Appendix.

We use the following notations throughout the article:
p→,

a.s.→,
L−→, ⇒,

d=, and ∼
denote convergence in probability, convergence almost surely, convergence in dis-
tribution, weak convergence, equivalence in distribution, and asymptotic equiva-
lence, respectively, as T → ∞.

2. THE ESTIMATION METHODS

Before introducing our estimation techniques, we first state some basic facts about
fractional Brownian motions. For more complete treatments on the subject, see
Nualart (2006), Biagini et al. (2008), Mishura (2008) and references therein.

An fBM with the Hurst parameter H ∈ (0,1), B H
t for t ∈ R, is a zero mean

Gaussian process with covariance
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E(B H
t B H

s ) = RH (s, t) = 1

2

(
|t|2H +|s|2H −|t − s|2H

)
. (2.1)

This covariance function implies that the fBm is self-similar with the self-
similarity parameter H , that is,

B H
λt

d= λH B H
t . (2.2)

For t > 0, Mandelbrot and Van Ness (1968) presented the following integral rep-
resentation for B H

t (see also in Davidson and De Jong, 2000):

B H
t = 1

cH

{∫ 0

−∞

[
(t − u)H−1/2 − (−u)H−1/2

]
dWu +

∫ t

0
(t − u)H−1/2dWu

}
,

(2.3)

where Wt is a standard Brownian motion, cH =[
1

2H + ∫∞
0

(
(1 + s)H−1/2 − s H−1/2

)2
ds
]1/2

. If H = 1/2, B H
t becomes the

standard Brownian motion Wt . If 0 < H < 1/2, B H
t is negatively corre-

lated. For 1/2 < H < 1, B H
t has long-range dependence in the sense that if

r(n) = E
(
B H

1 (B H
n+1 − B H

n )
)
, then

∑∞
n=1 r(n) = ∞. In this case, B H

t is a persis-
tent fBm, since the positive (negative) increments are likely to be followed by
positive (negative) increments. Given that long-range dependence is empirically
found in many financial time series, the fVm with H ∈ [1/2,1) is the focus of
the present article. To estimate κ and μ in the fVm, we assume that one observes
the whole trajectory of Xt for t ∈ [0,T ]. The asymptotic theory is developed by
assuming T → ∞, which corresponds to a long-span scheme.

Motivated by the work of Hu and Nualart (2010), Belfadli et al. (2011), El
Machkouri, Es-Sebaiy, and Ouknine (2016), we denote the LS estimators of κ
and μ to be the minimizers of the following (formal) quadratic function

L(κ,μ) =
∫ T

0

(
Ẋt −κ (μ− Xt)

)2
dt , (2.4)

where Ẋt denotes the differentiation of Xt with respect to t , although
∫ T

0 Ẋ2
t dt

does not exist. Consequently, we obtain the following analytical expressions for
the LS estimators of κ and μ (denoted by κ̂L S and μ̂L S , respectively),

κ̂L S = (XT − X0)
∫ T

0 Xt dt − T
∫ T

0 Xt d Xt

T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2
, (2.5)

μ̂L S = (XT − X0)
∫ T

0 X2
t dt − ∫ T

0 Xt d Xt
∫ T

0 Xt dt

(XT − X0)
∫ T

0 Xt dt − T
∫ T

0 Xt d Xt

. (2.6)

When H = 1/2, it is well-known that we can interpret the stochastic inte-
gral

∫ T
0 Xt d Xt as an Itô integral. When H ∈ (1/2,1), Xt is no longer a

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466618000051
Downloaded from https://www.cambridge.org/core. IP address: 202.161.44.1, on 29 Jan 2019 at 22:59:25, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466618000051
https://www.cambridge.org/core
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semimartingale. In this case, for κ̂L S and μ̂L S to consistently estimate κ and
μ, we have to interpret the stochastic integral

∫ T
0 Xt d Xt carefully. In fact, we

interpret it differently when the sign of κ is different. If κ > 0, we interpret
it as an Itô–Skorohod integral; if κ < 0, we interpret it as a Young integral;
if κ = 0, we can interpret it as either an Itô–Skorohod integral or a Young
integral. The asymptotic distributions of κ̂L S are different across these three
cases.

If κ > 0, we can consider alternative estimators of κ and μ (denoting them by
κ̂H N and μ̂H N , respectively). The estimators are motivated by Hu and Nualart
(2010) where the stationary and ergodic properties of a process were used to con-
struct a new estimator for κ in the fOU model. To fix ideas, the strong solution of
the fVm in (1.1) is given by

Xt = μ+ (X0 −μ)exp(−κ t)+σ

∫ t

−∞
e−κ(t−s)d B H

s , (2.7)

which leads to the following discrete-time representation

Xt = μ+ e−κ (Xt−1 −μ)+σ

∫ t

t−1
e−κ(t−s)d B H

s . (2.8)

When κ > 0, Xt is asymptotically stationary and ergodic. When κ = 0, Xt has a
unit root and is null recurrent. When κ < 0, Xt has an explosive root.

When κ > 0, by the ergodic theorem, 1
T

∫ T
0 Xt dt

a.s.→ μ. So an alternative esti-
mator of μ is the continuous-time sample mean

μ̂H N = 1

T

∫ T

0
Xt dt . (2.9)

Moreover, following Hu and Nualart (2010), we can show that when κ > 0,

1

T

∫ T

0
X2

t dt −
(

1

T

∫ T

0
Xt dt

)2
a.s.→ σ 2κ−2H H� (2H ).

Hence, an alternative estimator of κ is

κ̂H N =
⎛
⎜⎝T

∫ T
0 X2

t dt −
(∫ T

0 Xt dt
)2

T 2σ 2 H� (2H )

⎞
⎟⎠

− 1
2H

. (2.10)

Compared with the LS estimators in (2.5) and (2.6) which involve the stochastic
integral

∫ T
0 Xt d Xt , μ̂H N and κ̂H N in (2.9) and (2.10) do not contain any stochas-

tic integral with respect to fBm but only involve quadratic integral functionals.
Hence, they are conceptually easier to understand and numerically easier to com-
pute than the LS estimators.
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204 WEILIN XIAO AND JUN YU

3. ASYMPTOTIC THEORY FOR κ AND μ

In the case of a Brownian motion-driven or a Lévy process-driven Vasicek model,
it is known that the asymptotic theory for κ depends on the sign of κ (see, Wang
and Yu, 2016). In the case of the fVm, we show below that the asymptotic theory
for κ continues to depend on the sign of κ .

3.1. Asymptotic theory when κ > 0

In the context of the fVm in (1.1), we can represent the stochastic integral∫ T
0 Xt d Xt as

∫ T

0
Xt d Xt = κμ

∫ T

0
Xt dt −κ

∫ T

0
X2

t dt +σ

∫ T

0
Xt d B H

t .

When H = 1/2 , the stochastic integral
∫ T

0 Xt d B H
t , which can be interpreted as

an Itô integral, is approximated by forward Riemann sums. When H > 1/2, we in-
terpret

∫ T
0 Xt d B H

t as an Itô–Skorohod stochastic integral. In this case, following

Duncan, Hu, and Pasik-Duncan (2000),
∫ T

0 Xt d B H
t is approximated by Riemann

sums defined in terms of the Wick product, i.e.,

∫ T

0
Xt d B H

t = lim|π |→0

n−1∑
i=0

Xti �
(

B H
ti+1

− B H
ti

)
, (3.1)

where π : 0 = t0 < t1 < · · · < tn = T is a partition of [0,T ] with |π | =
max0≤i≤n−1 (ti+1 − ti ).

Unfortunately, this approximation is less useful for computing the stochastic
integral because the Wick product cannot be calculated just from the values of
Xti and B H

ti+1
− B H

ti . In other words, unless H = 1/2, there is no computable

representation of the term
∫ T

0 Xt d Xt given the observations Xt , t ∈ [0,T ].
Using the Itô–Skorohod integral for fBm and the Malliavin derivative for Xt ,

we can rewrite κ̂L S and μ̂L S as1

κ̂L S =
XT −X0

T

∫ T
0 Xt dt

T −
(

X2
T

2T − X2
0

2T − αH σ 2

T

∫ T
0

∫ t
0 s2H−2e−κsdsdt

)
∫ T

0 X2
t dt

T −
(∫ T

0 Xt dt
T

)2
, (3.2)

μ̂L S =
XT −X0

T

∫ T
0 X2

t dt
T −

∫ T
0 Xt dt

T

(
X2

T
2T − X2

0
2T − αH σ 2

T

∫ T
0

∫ t
0 s2H−2e−κsdsdt

)
XT −X0

T

∫ T
0 Xt dt

T −
(

X2
T

2T − X2
0

2T − αH σ 2

T

∫ T
0

∫ t
0 s2H−2e−κsdsdt

) ,(3.3)

where αH = H (2H − 1). Clearly, κ̂L S and μ̂L S in (3.2) and (3.3) are easier to
compute than those in (2.5) and (2.6).
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Before we prove consistency of κ̂L S and μ̂L S , we first obtain consistency of
κ̂H N and μ̂H N which follows directly by ergodicity.

THEOREM 3.1. Let H ∈ [1/2,1), X0/
√

T = oa.s.(1), and κ > 0 in (1.1). Then
we have κ̂H N

a.s.→ κ and μ̂H N
a.s.→ μ.

Remark 3.1. Almost sure convergence of κ̂H N in Theorem 3.1 extends that of
Hu and Nualart (2010) from the fOU model to the fVm.

Remark 3.2. Applying the well-known result 1
T

∫ T
0

∫ t
0 s2H−2e−κsdsdt →

κ1−2H�(2H − 1) to (3.2) and (3.3) and using Lemma 5.2 in Hu and Nualart

(2010), we can show that κ̂L S
a.s.→ κ and μ̂L S

a.s.→ μ for H ∈ [1/2,1).

To establish the asymptotic distributions for the two sets of estimators, we first
consider κ̂L S and μ̂L S , and then use the asymptotic distributions of κ̂L S and μ̂L S

to develop the asymptotic distributions of κ̂H N and μ̂H N .

THEOREM 3.2. Let X0/
√

T = op(1) and κ > 0 in (1.1). Then the following
convergence results hold true.

(i) For H ∈ [1/2,3/4), we have

√
T
(
κ̂L S −κ

) L−→ N (0,κCH ) , (3.4)

where CH = (4H − 1)
(

1 + �(3−4H)�(4H−1)
�(2H)�(2−2H)

)
.

(ii) For H = 3/4, we have

√
T√

log(T )

(
κ̂L S −κ

) L−→ N
(

0,
4κ

π

)
. (3.5)

(iii) For H ∈ (3/4,1), we have

T 2−2H (
κ̂L S −κ

) L−→ −κ2H−1

H�(2H )
R(H ) , (3.6)

where R(H ) is the Rosenblatt random variable whose characteristic func-
tion is given by

c(s) = exp

(
1

2

∞∑
k=2

(2i sσ(H ))k ak

k

)
, (3.7)

with i = √−1, σ(H ) = √
H (H − 1/2) and

ak =
∫ 1

0
· · ·

∫ 1

0
|x1 − x2|H−1 · · · |xk−1 − xk|H−1 |xk − x1|H−1 dx1 · · ·dxk .
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Remark 3.3. A straightforward calculation shows that

T 1−H (
μ̂L S −μ

)=
XT −X0

T H
1
T

∫ T
0 X2

t dt − 1
T

∫ T
0 Xt d Xt

1
T H

∫ T
0 Xt dt

XT −X0
T

1
T

∫ T
0 Xt dt − 1

T

∫ T
0 Xt d Xt

−
μ
(

XT −X0
T H

1
T

∫ T
0 Xt dt − 1

T H

∫ T
0 Xt d Xt

)
XT −X0

T
1
T

∫ T
0 Xt dt − 1

T

∫ T
0 Xt d Xt

.

For H ∈ [1/2,1) and X0/
√

T = op(1), we can easily obtain the following asymp-
totic distribution of μ̂L S ,

T 1−H (
μ̂L S −μ

) L−→ N
(

0,
σ 2

κ2

)
. (3.8)

THEOREM 3.3. Let H ∈ [1/2,1), X0/
√

T = op(1), and κ > 0 in (1.1). Then,
we have

T 1−H (
μ̂H N −μ

) L−→ N
(

0,
σ 2

κ2

)
. (3.9)

Moreover, let X0/
√

T = op(1), and κ > 0 in (1.1). Then the following conver-
gence results hold true.

(i) For H ∈ [1/2,3/4), we have

√
T
(
κ̂H N −κ

) L−→ N (0,κρH ) , (3.10)

where ρH = 4H−1
4H2

(
1 + �(3−4H)�(4H−1)

�(2H)�(2−2H)

)
= CH

4H2 .

(ii) For H = 3/4, we have

√
T√

log(T )

(
κ̂H N −κ

) L−→ N
(

0,
16κ

9π

)
. (3.11)

(iii) For H ∈ (3/4,1), we have

T 2−2H (
κ̂H N −κ

) L−→ −κ2H−1

H�(2H + 1)
R(H ) , (3.12)

where R(H ) is the Rosenblatt random variable defined in (3.7).

Remark 3.4. Comparing the two sets of asymptotic theory for κ , we can draw
a few conclusions. First, the rate of convergence of κ̂H N is the same as that of κ̂L S

which is
√

T and independent of H . Second, the two asymptotic variances depend
on H . When H = 1/2, the two estimators have the same asymptotic variance
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which is 2κ . In this case, the asymptotic distribution is identical to that in Feigin
(1976), i.e., N (0,2κ). When 1/2 < H < 3/4, 4H 2 > 1 and hence the asymptotic
variance of κ̂H N is smaller than that of κ̂L S , suggesting that the method of Hu and
Nualart (2010) can estimate κ more efficiently. Third, the asymptotic distribution
of κ̂L S and κ̂H N is the same as given in the fOU model; see p. 1034 and p. 1037
in Hu and Nualart (2010).

Remark 3.5. The two sets of asymptotic theory for μ are identical and the rate
of convergence is T 1−H . These two features differ from those for κ .

Remark 3.6. The asymptotic variance of κ̂H N and κ̂L S depends on H . Figure 1
plots ρH and CH as a function of H . Obviously, both ρH and CH monotonically
increase in H over the interval [1/2,3/4). They reach the minimum value of 2
when H = 1/2. As H → 3/4, both diverge to infinity. Hence, both ρH and CH

have a singularity at H = 3/4. Since ρH diverges faster than CH , the relative
asymptotic efficiency of κ̂H N to κ̂L S increases in H .

Remark 3.7. If we interpret the integral
∫ T

0 Xt d Xt in (2.5) as a Young integral,
then we can obtain

κ̂L S =
(XT −X0)

T

∫ T
0 Xt dt

T − 1
2

(
X2

T −X2
0

)
T

1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
, (3.13)

which converges to zero, following (A.9), (A.16) and Lemma 5.2 in Hu and Nu-
alart (2010). Hence, κ̂L S defined by (3.13) is inconsistent. For this reason, we

FIGURE 1. Plots of ρH and CH .
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have interpreted the stochastic integral
∫ T

0 Xt d Xt in (2.5) as an Itô–Skorohod
integral, which corresponds to the classical Itô integral when H = 1/2. For the
same reason,

∫ T
0 Xt d Xt in (2.6) should be interpreted as an Itô–Skorohod integral

as well.

Remark 3.8. For H = 3/4, it is interesting to find that both κ̂L S and
κ̂H N are still asymptotically normally distributed with rate of convergence of√

T /
√

log(T ). For H > 3/4, we established the noncentral limit theorem for both
κ̂L S and κ̂H N . In fact, we have identified the asymptotic distribution of κ̂L S and
κ̂H N as a Rosenblatt random variable. The central limit theorem (H ≤ 3/4) and
the noncentral limit theorem (H > 3/4) of κ̂L S and κ̂H N share the spirit of a result
in Breton and Nourdin (2008), where it was shown that the asymptotic distribution
of the empirical quadratic variations of fBm is normal if H ≤ 3/4 but non-normal
if H > 3/4.

Remark 3.9. Comparing (3.5) with (3.11), we see that the asymptotic vari-
ance of κ̂L S is 2.5 times as large as that of κ̂H N when H = 3/4, sug-
gesting κ̂L S is asymptotically much less efficient. Moreover, since �(2H +
1)/�(2H ) = 2H ∈ (1.5,2) when H ∈ (3/4,1), comparing (3.6) with (3.12)
we see that κ̂L S continues to be asymptotically less efficient than κ̂H N when
H ∈ (3/4,1).

Remark 3.10. Combining Remarks 3.4 and 3.9, we can conclude that κ̂H N is
asymptotically more efficient than κ̂L S when H ∈ (1/2,1). When H = 1/2, the
two estimators are asymptotically equivalent.

3.2. Asymptotic theory when κ < 0

When κ < 0, the model of (1.1) is explosive. In this case, the stochastic integral∫ T
0 Xt d Xt is interpreted as a Young integral (see Young, 1936). Indeed, using

the Young integral, we can obtain strong consistency of the LS estimators, κ̂L S

and μ̂L S . Moreover, it turns out that the pathwise approach is the preferred way
to simulate numerically LS estimators, κ̂L S and μ̂L S . As a consequence, using
the Young integral, we can easily obtain

∫ T
0 Xt d Xt = (

X2
T − X2

0

)
/2. The tech-

niques used here are related to those in recent articles by Belfadli et al. (2011), El
Machkouri et al. (2016).

Applying the Young integral to (2.5) and (2.6), we can rewrite κ̂L S and μ̂L S

as

κ̂L S = (XT − X0)
∫ T

0 Xt dt − T
2

(
X2

T − X2
0

)
T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2

=
XT
T eκT eκT

∫ T
0 Xt dt − X0

T eκT eκT
∫ T

0 Xt dt − 1
2 X2

T e2κT + 1
2 X2

0e2κT

e2κT
∫ T

0 X2
t dt − e2κT 1

T

(∫ T
0 Xt dt

)2
, (3.14)
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μ̂L S = (XT − X0)
∫ T

0 X2
t dt − X2

T −X2
0

2

∫ T
0 Xt dt

(XT − X0)
∫ T

0 Xt dt − T
X2

T −X2
0

2

=
eκT

T

∫ T
0 X2

t dt − XT +X0
2T eκT

∫ T
0 Xt dt

eκT

T

∫ T
0 Xt dt − XT +X0

2 eκT
. (3.15)

Before considering strong consistency of κ̂L S and μ̂L S , we first introduce a
lemma, which will be used to prove strong consistency.

LEMMA 3.1. Let H ∈ [ 1
2 ,1), X0 = Op (1) , and κ < 0 in (1.1). Then, as T →

∞, we have

eκT

T H

∫ T

0
Xt d B H

t
a.s.→ 0 .

THEOREM 3.4. Let H ∈ [ 1
2 ,1), X0 = Op (1) , and κ < 0 in (1.1). Then, as

T → ∞, κ̂L S
a.s.→ κ and μ̂L S

a.s.→ μ.

The asymptotic distributions of κ̂L S and μ̂L S are developed in the following
theorem.

THEOREM 3.5. Let H ∈ [1/2,1), X0 = Op (1) , and κ < 0 in (1.1). Then as
T → ∞,

e−κT

2κ

(
κ̂L S −κ

) L−→
σ

√
H�(2H)
|κ|H ν

X0 −μ+σ
√

H�(2H)
|κ|H ω

, (3.16)

where ν and ω are two independent standard normal variables. Moreover, as T →
∞,

T 1−H (
μ̂L S −μ

) L−→ N
(

0,
σ 2

κ2

)
. (3.17)

Remark 3.11. In (3.16), if we set X0 = μ, the limiting distribution of
e−κT

2κ

(
κ̂L S −κ

)
becomes ν/ω which is a standard Cauchy variate. This limiting

distribution is the same as that in the fOU model (see, e.g., Belfadli et al., 2011;
El Machkouri et al., 2016) and that in the Vasicek model driven by a standard
Brownian motion (see, e.g., Feigin, 1976). Moreover, the asymptotic theory in
(3.16) is similar to that in the explosive discrete-time and continuous-time mod-
els when discretely sampled data are available (see, e.g., White, 1958; Anderson,
1959; Phillips and Magdalinos, 2007; Wang and Yu, 2015, 2016).

Remark 3.12. In the context of the fOU model, Belfadli et al. (2011) showed
that the LS estimator of κ is consistent and derived the asymptotic Cauchy distri-
bution. Our result here not only extends their results on κ to a general model with

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466618000051
Downloaded from https://www.cambridge.org/core. IP address: 202.161.44.1, on 29 Jan 2019 at 22:59:25, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466618000051
https://www.cambridge.org/core


210 WEILIN XIAO AND JUN YU

an unknown μ and a general initial condition, but also includes the asymptotic
theory for μ. The asymptotic distribution of μ̂L S is normal with rate of conver-
gence of T 1−H and variance σ 2/κ2. This asymptotic distribution is the same as
that of μ̂L S and μ̂H N when κ > 0, as shown in (3.8) and (3.9).

3.3. Asymptotic theory when κ = 0

When κ = 0, the fVm is null recurrent. In this case, we have

Xt = X0 +σ B H
t ,

and the parameter μ vanishes. By a simple calculation, we have

κ̂L S = σ B H
T

∫ T
0

(
X0 +σ B H

t

)
dt − Tσ

∫ T
0

(
X0 +σ B H

t

)
d B H

t

T
∫ T

0

(
X0 +σ B H

t

)2
dt −

(∫ T
0

(
X0 +σ B H

t

)
dt
)2

(3.18)

= B H
T

∫ T
0 B H

t dt − T
∫ T

0 B H
t d B H

t

T
∫ T

0 (B H
t )2dt −

(∫ T
0 B H

t dt
)2 .

On the one hand, if we interpret
∫ T

0 B H
t d B H

t as the Itô–Skorohod integral, we
can rewrite (3.18) as

κ̂L S =
B H

T

∫ T
0 B H

t dt − T
2

((
B H

T

)2 − T 2H
)

T
∫ T

0 (B H
t )2dt −

(∫ T
0 B H

t dt
)2

. (3.19)

On the other hand, if we interpret
∫ T

0 B H
t d B H

t as a Young integral, we can also
rewrite (3.18) as

κ̂L S = B H
T

∫ T
0 B H

t dt − T
2

(
B H

T

)2

T
∫ T

0 (B H
t )2dt −

(∫ T
0 B H

t dt
)2

. (3.20)

Using the law of the iterated logarithm for fBm (see, for example, Taqqu, 1977)
and the scaling properties of fBm (see, for example, Nualart, 2006), we develop
the following strong consistency and asymptotic distribution for κ̂L S .

THEOREM 3.6. Let H ∈ [1/2,1), X0 = Op(1), and κ = 0 in (1.1). Then, as

T → ∞, κ̂L S
a.s.→ 0. Moreover,

T κ̂L S
d= −

∫ 1
0 B

H
u d B H

u∫ 1
0

(
B

H
u

)2
du

, (3.21)

where B
H
u = B H

u − ∫ 1
0 B H

t dt .

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0266466618000051
Downloaded from https://www.cambridge.org/core. IP address: 202.161.44.1, on 29 Jan 2019 at 22:59:25, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0266466618000051
https://www.cambridge.org/core


ASYMPTOTIC THEORY FOR FRACTIONAL VASICEK MODELS 211

Remark 3.13. Interestingly, for κ̂L S to consistently estimate κ , the stochastic
integral

∫ T
0 B H

t d B H
t can be interpreted as either an Itô–Skorohod integral or a

Young integral.

Remark 3.14. This limiting distribution is neither a normal variate nor a mix-
ture of normals. In addition, the distribution depends on H . If H = 1/2, the
limiting distribution becomes a Dickey–Fuller–Phillips type of distribution (see,
e.g., Phillips and Perron, 1988) which has been widely used for testing unit
roots in autoregression with an intercept included. Tanaka (2013) derived the
limiting distribution of the LS estimator of κ in the fOU model when κ = 0.
His limiting distribution is another Dickey–Fuller–Phillips type of distribution
(see, e.g., Phillips, 1987) and corresponds to that in autoregression without
intercept.

4. CONCLUDING REMARKS AND FUTURE DIRECTIONS

Models with long-range dependence are growing in popularity due to their em-
pirical success in practice. In the continuous-time setting, long-range dependence
can be modeled with the help of an fBM when the Hurst parameter is greater than
one half. Consequently, statistical inference for stochastic models driven by an
fBM is important. This article considers the Vasicek model driven by an fBM and
deals with the estimation problem of the two parameters in the drift function in
the fVm and their asymptotic theory when a continuous record of observations is
available.

As the time span goes to infinity, it is shown that the LS estimators of μ
and κ are strongly consistent regardless of the sign of the persistence parameter
κ . Moreover, the asymptotic distribution of the LS estimator of μ is asymptot-
ically normal regardless of the sign of κ . However, the asymptotic distribution
of the LS estimator of κ critically depends on the sign of κ . In particular, when
κ > 0 and H ∈ [1/2,3/4), we have shown that the asymptotic distribution of
the LS estimator of κ is normal with rate of convergence of

√
T . The asymp-

totic variance depends on H which monotonically increases in H . Moreover,
when κ > 0 and H = 3/4, we have shown that the asymptotic distribution of
the LS estimator of κ is also normal with rate of convergence of

√
T/ log(T ).

However, a noncentral limit theorem for the LS estimator of κ is established
for H ∈ (3/4,1). In this situation, we have established the asymptotic law as
a Rosenblatt random variable. When κ < 0, it is shown that the limiting distri-
bution is a Cauchy-type with rate of convergence of e−κT . If μ is the same as
the initial condition, it becomes the standard Cauchy distribution. When κ = 0,
the asymptotic distribution is neither normal nor a mixture of normals, but a
Dickey–Fuller–Phillips type of distribution. The rate of convergence is T . In
addition, we have considered an alternative estimation technique by exploit-
ing the ergodic property of fVm when κ > 0. Borrowing the idea of Hu and
Nualart (2010), we have studied the asymptotic properties of the ergodic type
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estimators. The asymptotic properties of these two alternative estimators are
compared.

This study also suggests several important directions for future research. First,
what are the asymptotic properties of the ML estimators for κ and μ? Given that
the model is fully parametrically specified, one may wish to estimate the fVm
using ML. Based on the fractional version of Girsanov’s theorem, one can obtain
the Radon–Nikodym derivative and the likelihood ratio function. Consequently,
the ML estimators can be obtained. The asymptotic properties of ML estimators
can be derived by using the Laplace transform and the properties of deterministic
fractional operators determined by the Hurst parameter.

Second, the present study assumes that a continuous record is available for pa-
rameter estimation. This assumption is too strong in almost all empirically rele-
vant cases. How to estimate parameters in an fVm from discrete-time observations
and how to obtain the asymptotic theory are open questions. In fact, we can ap-
proximate an fVm by the Euler approximation and appeal to an in-fill asymptotic
scheme. In this case, however, it is not clear how to get an explicit approximation
for the increment of an fBM. To overcome this obstacle, we may replace the in-
crement of an fBM by a disturbed random walk. Consequently, we can obtain the
corresponding LS estimators and consider their asymptotic properties under both
the long-span and the in-fill asymptotic schemes.

Third, the asymptotic theory developed in this article is valid for a narrow
range of values for H ∈ [1/2,1). This corresponds to d ∈ [0,1/2) in the discrete-
time model (1.3). Existing empirical studies have fitted the discrete-time model
(1 − L)d yt = ut with ut being a stationary and ergodic process to financial and
macroeconomic time series. Most studies obtained the estimated d in the range
of [0,1/2). However, some studies found the estimated d to be smaller than 0 or
larger than 1 and this implies that H /∈ [1/2,1). There is a clear need to extend
the asymptotic theory to a wider range of values for H . Such an extension will be
considered in a separate study.

Lastly, in this article H is assumed to be known. In practice, H is almost al-
ways unknown. How to estimate H with a continuous record of observations
is an open question. One possibility for estimating H is to use the generalized
quadratic variation introduced by Gradinaru and Nourdin (2006). For T > 0, β >
0, γ > 0 and β = γ , assume Xt is observed continuously over the interval [0,T +
max(β,γ )]. Motivated by Gradinaru and Nourdin (2006), we can estimate H
by

Ĥ = 1

2
log(β/γ ) log

(∫ T

0

(
Xt+γ − Xt

)2
dt/

∫ T

0

(
Xt+β − Xt

)2
dt

)
.

The asymptotic properties of this estimator will be reported in later work.

NOTE

1. The definition of the Malliavin derivative is given in A.3 of Appendix.
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APPENDIX

A.1. Proof of Theorem 3.1

We first consider strong consistency of μ̂H N . The solution of (1.1) is

Xt = (
1−e−κt )μ+ X0e−κt +σ

∫ t

0
e−κ(t−s)d B H

s . (A.1)

For t ≥ 0, we define

Yt = σ

∫ t

−∞
e−κ(t−s)d B H

s . (A.2)

Since κ > 0, (Yt , t ≥ 0) is Gaussian, stationary, and ergodic, using the ergodic theorem and
the fact E

[
Y0
] = 0, we obtain

1

T

∫ T

0
Yt dt

a.s.→ E(Y0) = 0 . (A.3)

Combining (A.1) and (A.2), we can rewrite Yt as,

Yt = Xt + (
e−κt −1

)
μ− X0e−κt +σ

∫ 0

−∞
e−κ(t−s)d B H

s . (A.4)

Hence,

1

T

∫ T

0
Yt dt = 1

T

∫ T

0

[
Xt +μ

(
e−κt −1

)− X0e−κt +e−κt

(
σ

∫ 0

−∞
eκsd B H

s

)]
dt

= 1

T

∫ T

0
Xt dt + μ

T

∫ T

0

(
e−κt −1

)
dt − X0

T

∫ T

0
e−κt dt (A.5)

+σ

T

∫ T

0
e−κt

(∫ 0

−∞
eκs d B H

s

)
dt .

For the second term in (A.5), it is obvious that

μ

T

∫ T

0

(
e−κt −1

)
dt → −μ.

Based on the assumption X0/
√

T = oa.s.(1), we obtain

X0

T

∫ T

0
e−κt dt

a.s.→ 0 .

Using an argument similar to that in Lemma 5.1 of Hu and Nualart (2010), we have

E

[∫ 0

−∞
eκs d B H

s

]2

= κ−2H H�(2H) . (A.6)

Hence,
∫ T

0 e−κ(T −s)d B H
s has the limiting (normal) distribution of

∫ 0
−∞ eκsd B H

s . More-
over, a standard calculation yields
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∫ T

0
e−κt dt → 1

κ
. (A.7)

It is now necessary to investigate the asymptotic behavior of the last term in (A.5).

Denote FT = σ√
T

∫ T
0 e−κt

(∫ 0
−∞ eκsd B H

s

)
dt . From (A.6) and (A.7), we see that

supT E

[∣∣∣F2
T

∣∣∣]< ∞ and supT E

[∣∣∣F4
T

∣∣∣]< ∞. For any fixed ε > 0, it follows from Cheby-

shev’s inequality that

P

(∣∣∣∣∣ σT
∫ T

0
e−κt

(∫ 0

−∞
eκs d B H

s

)
dt

∣∣∣∣∣> ε

)
= P

(
|FT | >

√
T ε

)
≤ 81

T 2ε4
E

[∣∣∣F2
T

∣∣∣]2
.

Then, the Borel–Cantelli lemma implies that

σ

T

∫ T

0
e−κt

(∫ 0

−∞
eκs d B H

s

)
dt

a.s.→ 0 . (A.8)

Plugging all these convergency results to (A.5), we obtain

μ̂H N = 1

T

∫ T

0
Xt dt

a.s.→ μ. (A.9)

To establish strong consistency of κ̂H N defined in (2.10), we need to consider strong
consistency of 1

T

∫ T
0 X2

t dt . From the expression of Yt in (A.4), we obtain

1

T

∫ T

0
Y 2

t dt = 1

T

∫ T

0

[
Xt +μ

(
e−κ t −1

)− X0e−κ t + e−κ t

(
σ

∫ 0

−∞
eκs d B H

s

)]2

dt (A.10)

= 1

T

∫ T

0

[
Xt +μ

(
e−κ t −1

)− X0e−κ t ]2 dt + 1

T

∫ T

0

[
e−κ t

(
σ

∫ 0

−∞
eκs d B H

s

)]2

dt

+ 2

T

∫ T

0

[
Xt +μ

(
e−κ t −1

)− X0e−κ t ][e−κ t

(
σ

∫ 0

−∞
eκsd B H

s

)]
dt

= 1

T

∫ T

0

[
μ
(
e−κ t −1

)− X0e−κ t ]2 dt + 2

T

∫ T

0
Xt

[
μ
(
e−κ t −1

)− X0e−κ t ]dt

+ 1

T

∫ T

0
X2

t dt + 1

T

∫ T

0

[
e−κ t

(
σ

∫ 0

−∞
eκsd B H

s

)]2

dt

+ 2

T

∫ T

0

[
Xt +μ

(
e−κ t −1

)− X0e−κ t ][e−κ t

(
σ

∫ 0

−∞
eκsd B H

s

)]
dt .

By (A.8) and Lemma 3.3 in Hu and Nualart (2010), it is not hard to see that

σ 2

T

∫ T

0

[∫ t

0
e−κ(t−s)d B H

s + e−κ t

(∫ 0

−∞
eκs d B H

s

)]2

dt − σ 2

T

∫ T

0

[∫ t

0
e−κ(t−s)d B H

s

]2
dt

a.s.→ 0 .

Combining the above result and (A.8), we deduce that

2

T

∫ T

0

[
σ

∫ t

0
e−κ(t−s)d B H

s

][
e−κt

(
σ

∫ 0

−∞
eκsd B H

s

)]
dt

a.s.→ 0 .
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Using (A.1) and the result above, we obtain

2

T

∫ T

0

[
Xt +μ

(
e−κt −1

)− X0e−κt ][e−κt

(
σ

∫ 0

−∞
eκs d B H

s

)]
dt

a.s.→ 0 . (A.11)

A standard calculation yields

2

T

∫ T

0
Xt

[
μ
(
e−κt −1

)− X0e−κt ]dt
a.s.→ −2μ2 , (A.12)

1

T

∫ T

0

[
μ
(
e−κt −1

)− X0e−κt ]2
dt

a.s.→ μ2 . (A.13)

By (A.10)–(A.13) and the ergodic theorem, we obtain

1

T

∫ T

0
X2

t dt
a.s.→ E

(
Y 2

0

)
+μ2 . (A.14)

Moreover, it is well-known that (see, e.g., Lemma 5.1 of Hu and Nualart, 2010)

E(Y 2
0 ) = αH σ 2

∫ ∞
0

∫ ∞
0

e−κ(s+u) |u − s|2H−2 duds = σ 2κ−2H H�(2H) . (A.15)

Combining (A.14) and (A.15), we have

1

T

∫ T

0
X2

t dt
a.s.→ σ 2κ−2H H�(2H)+μ2 . (A.16)

By (A.9), (A.16), and the arithmetic rule of convergence, we obtain strong convergence of

κ̂H N , i.e., κ̂H N
a.s.→ κ .

A.2. Proof of Theorem 3.2

First, we consider (3.4). Based on (2.5), (1.1), and (A.1), we can rewrite κ̂L S as

κ̂L S = (XT − X0)
∫ T

0 Xt dt −κμT
∫ T

0 Xt dt +κT
∫ T

0 X2
t dt −σ T

∫ T
0 Xt d B H

t

T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2

= κ +
(XT − X0)

∫ T
0 Xt dt −κμT

∫ T
0 Xt dt −σ T

∫ T
0 Xt d B H

t +κ
(∫ T

0 Xt dt
)2

T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2

= κ − σ T
∫ T

0 Xt d B H
t

T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2
+
(

XT − X0 −κμT +κ
∫ T

0 Xt dt
)∫ T

0 Xt dt

T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2

= κ −
σ T

∫ T
0

((
1−e−κt )μ+ X0e−κt +σ

∫ t
0 e−κ(t−s)d B H

s

)
d B H

t

T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2

+
(

XT − X0 +κ
∫ T

0

(
X0e−κt −μe−κt +σ

∫ t
0 e−κ(t−s)d B H

s

)
dt
)∫ T

0 Xt dt

T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2
.
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Thus, we have the following decomposition
√

T
(
κ̂L S −κ

)
(A.17)

= −
σ

(
μ

B H
T√
T

+ X0−μ√
T

∫ T
0 e−κt d B H

t + σ√
T

∫ T
0
∫ t

0 e−κ(t−s)d B H
s d B H

t

)
1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2

+

(
XT −X0√

T
+ κ(X0−μ)√

T

∫ T
0 e−κt dt − σ√

T
e−κT ∫ T

0 eκsd B H
s +σ

B H
T√
T

)
1
T

∫ T
0 Xt dt

1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2

:= I1 + I2 + I3 ,

where

I1 =
σ
(

μ−X0√
T

∫ T
0 e−κt d B H

t − σ√
T

∫ T
0
∫ t

0 e−κ(t−s)d B H
s d B H

t

)
1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
,

I2 =
(

XT −X0√
T

+ κ(X0−μ)√
T

∫ T
0 e−κt dt − σ√

T
e−κT ∫ T

0 eκsd B H
s

)
1
T

∫ T
0 Xt dt

1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
,

I3 =
(
−μσ + σ

T

∫ T
0 Xt dt

)
B H

T√
T

1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
.

We consider I1 first. Using (A.15), we have

E

⎡
⎣( μσ√

T

∫ T

0
e−κt d B H

t

)2
⎤
⎦ = μ2σ 2

T
αH

∫ T

0

∫ T

0
e−κ(s+u) |u − s|2H−2 duds → 0 .

This implies

μσ√
T

∫ T

0
e−κt d B H

t
p→ 0 . (A.18)

Since X0 = oa.s.(
√

T ), we have

X0σ√
T

∫ T

0
e−κt d B H

t
p→ 0 . (A.19)

Furthermore, from Theorem 3.4 of Hu and Nualart (2010), (A.9) and (A.16), we obtain

− σ 2√
T

∫ T
0
∫ t

0 e−κ(t−s)d B H
s d B H

t

1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
L−→ N (0,κCH ) , (A.20)
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where CH = (4H −1)
(

1+ �(3−4H)�(4H−1)
�(2H)�(2−2H)

)
. Combining (A.18), (A.19), and (A.20)

and applying Slutsky’s theorem, we have

I1
L−→ N (0,κCH ) . (A.21)

Next, we consider I2. From Lemma 5.2 and equation (3.8) in Hu and Nualart (2010), we
have

XT√
T

a.s.→ 0 ,
X0√

T

p→ 0 ,
σ√
T

e−κT

(∫ T

0
σ eκsd B H

s

)
a.s.→ 0 . (A.22)

A straightforward calculation shows that

κ (X0 −μ)√
T

∫ T

0
e−κt dt

p→ 0 . (A.23)

Combining (A.22), (A.23), (A.9), and (A.16), we have

I2
p→ 0 . (A.24)

Finally, we consider I3. Based on (A.1), we have(
−μσ + σ

T

∫ T

0
Xt dt

)
B H

T√
T

(A.25)

= σ

T

∫ T

0

(
(X0 −μ)e−κt +σ

∫ t

0
e−κ(t−s)d B H

s

)
dt

B H
T√
T

=
(

σ (X0 −μ)

T
3
2 −H

∫ T

0
e−κt dt − σ 2

κT
3
2 −H

e−κT
∫ T

0
eκsd B H

s + σ 2

κ

B H
T

T
3
2 −H

)
B H

T

T H
.

It is easy to see that

σ (X0 −μ)

T
3
2 −H

∫ T

0
e−κt dt

a.s.→ 0 . (A.26)

From Lemma 5.2 and equation (3.8) in Hu and Nualart (2010), we obtain

σ 2

κT
3
2 −H

e−κT
∫ T

0
eκsd B H

s
a.s.→ 0 . (A.27)

Since H ∈ [1/2,3/4), we have

E

⎡
⎣(σ 2

κ

B H
T

T
3
2 −H

)2
⎤
⎦ = σ 4

κ2
T 4H−3 ,

which implies

σ 2

κ

B H
T

T
3
2 −H

p→ 0 . (A.28)
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By (A.25)–(A.28), we obtain

I3
p→ 0 . (A.29)

By (A.17), (A.21), (A.24), (A.29), and Slutsky’s theorem, we obtain the desired result in
(3.4).

Next, we deal with (3.5). Using an argument similar to (A.17), we have

√
T√

log(T )

(
κ̂L S −κ

)
:= J1 + J2 + J3, (A.30)

where

J1 =
σ

(
μ−X0√
T log(T )

∫ T
0 e−κt d B H

t − σ√
T log(T )

∫ T
0
∫ t

0 e−κ(t−s)d B H
s d B H

t

)
1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
,

J2 =

(
XT −X0√
T log(T )

+ κ(X0−μ)√
T log(T )

∫ T
0 e−κt dt − σ√

T log(T )
e−κT ∫ T

0 eκsd B H
s

)
1
T

∫ T
0 Xt dt

1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
,

J3 =

(
−μσ + σ

T

∫ T
0 Xt dt

)
B H

T√
T log(T )

1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
.

When H = 3/4, from Theorem 5 of Hu, Nualart, and Zhou (2018), (A.9), and (A.16),
we obtain

− σ 2√
T log(T )

∫ T
0
∫ t

0 e−κ(t−s)d B H
s d B H

t

1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
L−→ N

(
0,

4κ

π

)
. (A.31)

Combining (A.18), (A.19), and (A.31) and applying Slutsky’s theorem, we have

J1
L−→ N

(
0,

4κ

π

)
. (A.32)

Using arguments similar to I2 and I3, we can easily obtain

J2
p→ 0 , (A.33)

J3
p→ 0 . (A.34)

By (A.30), (A.32), (A.33), (A.34), and Slutsky’s theorem, we obtain the desired result in
(3.5).

Finally, we are left with (3.6) for 3/4 < H < 1. By an argument similar to (A.17), we
get

T 2−2H (
κ̂L S −κ

)
:= K1 + K2 + K3, (A.35)
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where

K1 =
σ
(

μ−X0
T 2H−1

∫ T
0 e−κt d B H

t − σ
T 2H−1

∫ T
0
∫ t

0 e−κ(t−s)d B H
s d B H

t

)
1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
,

K2 =
(

XT −X0
T 2H−1 + κ(X0−μ)

T 2H−1

∫ T
0 e−κt dt − σ

T 2H−1 e−κT ∫ T
0 eκsd B H

s

)
1
T

∫ T
0 Xt dt

1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
,

K3 =
(
−μσ + σ

T

∫ T
0 Xt dt

)
B H

T
T 2H−1

1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
.

For H > 3/4, from Theorem 5 of Hu et al. (2018), (A.9), and (A.16), we get

− σ 2

T 2H−1

∫ T
0
∫ t

0 e−κ(t−s)d B H
s d B H

t

1
T

∫ T
0 X2

t dt −
(

1
T

∫ T
0 Xt dt

)2
L−→ 2R(H)

κ
, (A.36)

where R(H) is the Rosenblatt random variable defined in (3.7).
Using the fact 2H −1 > 1/2 for H > 3/4, Slutsky’s theorem and arguments similar to

(A.18) and (A.19), we have

K1
L−→ 2R(H)

κ
. (A.37)

Using the fact 2H −1 > 1/2 for H > 3/4 and applying arguments similar to I2 and I3, we
can easily obtain

K2
p→ 0 , (A.38)

K3
p→ 0 . (A.39)

By (A.35), (A.37), (A.38), (A.39), and Slutsky’s theorem, we obtain the desired result of
(3.6).

A.3. Proof of Theorem 3.3

We first consider the asymptotic distribution of μ̂H N . Using (A.1), we obtain

T 1−H

(
1

T

∫ T

0
Xt dt −μ

)

= T 1−H

[
1

T

∫ T

0

(
(X0 −μ)e−κt +σ

∫ t

0
e−κ(t−s)d B H

s

)
dt

]
(A.40)

= X0 −μ

T H

∫ T

0
e−κt dt + σ

T H

∫ T

0

∫ t

0
e−κ(t−s)d B H

s dt .

A simple calculation yields

X0 −μ

T H

∫ T

0
e−κt dt

a.s.→ 0 . (A.41)
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Moreover, a standard calculation together with Fubini’s stochastic theorem (see, e.g., Nu-
alart, 2006) yields

σ

T H

∫ T

0

∫ t

0
e−κ(t−s)d B H

s dt = σ

T H

∫ T

0
eκs

∫ T

s
e−κt dtd B H

s (A.42)

= − σ

κT H

∫ T

0
e−κ(T −s)d B H

s + σ B H
T

κT H
.

From equation (3.8) of Hu and Nualart (2010), we know that

σ

κT H

∫ T

0
e−κ(T −s)d B H

s
a.s.→ 0 . (A.43)

By (A.42), (A.43), and Slutsky’s theorem, we have

σ

T H

∫ T

0

∫ t

0
e−κ(t−s)d B H

s dt
L−→ N (0,

σ 2

κ2
) . (A.44)

Combining (A.40), (A.41), and (A.44) and by Slutsky’s theorem, we obtain

T 1−H

(
1

T

∫ T

0
Xt dt −μ

)
L−→ N (0,

σ 2

κ2
) . (A.45)

Note that

T 1−H (
μ̂H N −μ

) = T 1−H

(
1

T

∫ T

0
Xt dt −μ

)
. (A.46)

Using (2.9), (A.45), and (A.46), we obtain (3.9).
In what follows, we consider the asymptotic distribution of κ̂H N . First, we deal with

(3.10) for H ∈ [1/2,3/4). We need to use a technique known as Malliavin calculus which
we define now. For a time interval [0,T ], we denote by H the canonical Hilbert space
associated to the fBm B H . The construction and properties of H can be found in Nualart
(2006). We use the following notation for Wiener integrals with respect to B H :

B H (ϕ) =
∫ T

0
ϕ(s)d B H .

The Malliavin derivative D with respective to B H , which is an H-valued operator, is de-
fined first by setting that

DB H (ϕ) = ϕ ,

for any ϕ ∈ H. As a consequence, for a smooth and cylindrical random variable
F = f (x1, . . . , xn) = f (B H (ϕ1), . . . , B H (ϕn)), with any ϕ1, . . . ,ϕn ∈ H and any f ∈
C∞

b (Rn,R) (infinitely differentiable functions from R
n to R with bounded partial deriva-

tives), we define its Malliavin derivative as the H-valued random variable given by (see,
equation (1.29) of Nualart, 2006)

DF =
n∑

i=1

∂ f

∂xi
(B H (ϕ1), . . . , B H (ϕn))ϕi .
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Using (A.1) and applying the Malliavin calculus to Xt (see, equation (1.29) of Nualart,
2006), we have

Ds Xt = Ds

[(
1−e−κt )μ+ X0e−κt +σ

∫ t

0
e−κ(t−s)d B H

s

]
= σ e−κ(t−s)1[0,t ](s) ,

where 1[·] is the indicator function. Consequently, we obtain

∫ T

0
Xt d Xt = X2

T − X2
0

2
−αH σ 2

∫ T

0

∫ t

0
u2H−2e−κududt . (A.47)

Based on (2.5) and (2.10), we can rewrite κ̂H N as

κ̂H N =
(

T 2σ 2 H�(2H)

(XT − X0)
∫ T

0 Xt dt − T
∫ T

0 Xt d Xt

) 1
2H

×
⎛
⎜⎝ (XT − X0)

∫ T
0 Xt dt − T

∫ T
0 Xt d Xt

T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2

⎞
⎟⎠

1
2H

=
(

T 2σ 2 H�(2H)

(XT − X0)
∫ T

0 Xt dt − T
∫ T

0 Xt d Xt

) 1
2H

κ̂
1

2H
L S . (A.48)

Substituting (A.47) into (A.48), we have

κ̂H N =
⎛
⎝ T 2σ 2 H�(2H )

(XT − X0)
∫ T

0 Xt dt − T
(

1
2 X2

T − 1
2 X2

0 −αH σ 2
∫ T

0

∫ t
0 u2H−2e−κududt

)
⎞
⎠

1
2H

κ̂
1

2H
L S

=
(

σ 2 H�(2H )κ̂L S
XT
T

1
T

∫ T
0 Xt dt − X0

T
1
T

∫ T
0 Xt dt − 1

2T X2
T + 1

2T X2
0 +αH σ 2 1

T

∫ T
0

∫ t
0 u2H−2e−κududt

) 1
2H

.

Hence,
√

T
(
κ̂H N −κ

)
(A.49)

= √
T

(
κ̂H N −κ1− 1

2H κ̂
1

2H
L S +κ1− 1

2H κ̂
1

2H
L S −κ

)

= √
T

(
κ̂H N −κ1− 1

2H κ̂
1

2H
L S

)
+√

T κ1− 1
2H

(
κ̂

1
2H
L S −κ

1
2H

)

=
[(

σ 2 H� (2H )
XT
T

1
T

∫ T
0 Xt dt − X0

T
1
T

∫ T
0 Xt dt − 1

2T X2
T + 1

2T X0 +αH σ 2 1
T

∫ T
0

∫ t
0 u2H−2e−κu dudt

) 1
2H

−κ1− 1
2H

]√
T κ̂

1
2H
L S +√

Tκ1− 1
2H

(
κ̂

1
2H
L S −κ

1
2H

)
.

By Theorem 3.2 and the delta method, we get

√
T

(
κ̂

1
2H
L S −κ

1
2H

)
L−→ N

(
0,

(
1

2H
κ

1−2H
2H

)2
κCH

)
. (A.50)
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By (A.9), equation (4.3) and Lemma 5.2 of Hu and Nualart (2010), we can obtain

⎛
⎝ σ 2 H�(2H)(

XT
T − X0

T

)
1
T

∫ T
0 Xt dt − 1

2T X2
T + 1

2T X2
0 +αH σ 2 1

T

∫ T
0
∫ t

0 u2H−2e−κududt

⎞
⎠

1
2H

= κ1− 1
2H +o

(
1√
T

)
. (A.51)

By Slutsky’s theorem, Remark 3.2, (A.49), (A.50), and (A.51), we obtain the desired
asymptotic distribution in (3.10).

Next, we consider (3.11) in the case of H = 3/4. Applying arguments similar to those
in (A.49) and using (A.51), we have

√
T√

log(T )

(
κ̂H N −κ

) = o

(
1√
T

) √
T√

log(T )
κ̂

2
3
L S +

√
T√

log(T )
κ

1
3

(
κ̂

2
3
L S −κ

2
3

)
. (A.52)

For H = 3/4, using Theorem 3.2 and the delta method, we get

√
T√

log(T )

(
κ̂

2
3
L S −κ

2
3

)
L−→ N

(
0,

16

9π
κ

1
3

)
. (A.53)

By Slutsky’s theorem, (A.52), and (A.53), we obtain (3.11).
Finally, for H ∈ (3/4,1), similar arguments together with the delta method yield the

asymptotic law for κ̂H N in (3.12).

A.4. Proof of Lemma 3.1

Using (A.1), we obtain

eκT

T H

∫ T

0
Xt d B H

t

= eκT

T H

∫ T

0

[(
1−e−κt )μ+ X0e−κt +σ

∫ t

0
e−κ(t−s)d B H

s

]
d B H

t

= μeκT

T H
B H

T + X0 −μ

T H
eκT

∫ T

0
e−κt d B H

t + σ eκT

T H

∫ T

0

∫ t

0
e−κ(t−s)d B H

s d B H
t . (A.54)

First, it is easy to see that

μeκT

T H
B H

T
a.s.→ 0 . (A.55)

For H ∈ (1/2,1), by Lemma 6 of Belfadli et al. (2011), we have

X0 −μ

T H
eκT

∫ T

0
e−κt d B H

t
a.s.→ 0 . (A.56)

Let us mention that (A.56) also follows obviously when H = 1/2.
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Next, we consider the last term of (A.54). If H = 1/2, a simple calculation yields

E

[
σ eκT

T
1
4

∫ T

0

∫ t

0
e−κ(t−s)d Bsd Bt

]2

= σ 2e2κT

T
1
2

∫ T

0

∫ t

0
e−2κ(t−s)dsdt (A.57)

= σ 2

2κ
T

1
2 e2κT + σ 2

4κ2
√

T
− σ 2e2κT

4κ2
√

T
.

If H ∈ (1/2,1), by the isometry property of the double stochastic integral, we have

E

[
σ eκT

T
H
2

∫ T

0

∫ t

0
e−κ(t−s)d B H

s d B H
t

]2

= σ 2α2
H

IT

e−2κT T H
,

where

IT =
∫

[0,T ]4
e−κ|v−s|e−κ|u−r | |u −v|2H−2 |r − s|2H−2dudvdrds .

Taking the derivative of IT and e−2κT T H with respect to T , we have

d IT

d
(
e−2κT T H

) =
4
∫

[0,T ]3 e−κ(T −s)e−κ|u−r |(T −u)2H−2|r − s|2H−2dudrds

H T H−1e−2κT −2κT H e−2κT
.

By changing variables T − s = x1,T −r = x2,T −u = x3, we get

d IT

d
(
e−2κT T H

) =
4
∫

[0,T ]3 e−κx1 e−κ|x2−x3|x2H−2
3 |x1 − x2|2H−2dx1dx2dx3

H T H−1e−2κT −2κT H e−2κT
.

Indeed, we can decompose the above integral into integrals over six disjoint regions
{xτ (1) < xτ (2) < xτ (3)}, where τ runs over all permutations of indices {1,2,3}. In the case
x1 < x3 < x2, making the change of variables as x1 = a, x3 − x1 = b and x2 − x3 = c
(other cases can be handled in a similar way), we obtain

d IT

d
(
e−2κT T H

) =
4
∫

[0,T ]3 e−κae−κc (a +b)2H−2 (b +c)2H−2 dadbdc

H T H−1e−2κT −2κT H e−2κT
.

Thus,

d IT

d
(
e−2κT T H

) ≤
4
∫

[0,T ]3 e−κ(a+c)b4H−4dadbdb

H T H−1e−2κT −2κT H e−2κT
. (A.58)

Then, from (A.57)–(A.58), we obtain∥∥∥∥∥σ eκT

T H

∫ T

0

∫ t

0
e−κ(t−s)d B H

s d B H
t

∥∥∥∥∥
L2(�)

≤ CT − H
2 , (A.59)

with H ∈ [1/2,1) and C denotes a suitable positive constant. Consequently, we deduce
from (A.59) and Lemma 2.1 of Kloeden and Neuenkirch (2007) that

σ eκT

T H

∫ T

0

∫ t

0
e−κ(t−s)d B H

s d B H
t

a.s.→ 0 . (A.60)

Finally, the result in Lemma 3.1 follows by combining (A.54), (A.55), (A.56),
and (A.60).
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A.5. Proof of Theorem 3.4

We prove the convergence of κ̂L S first. For the sake of simple notations, we introduce the
two processes with T ≥ 0

ZT =
∫ T

0
eκs B H

s ds , (A.61)

ξT =
∫ T

0
eκsd B H

s . (A.62)

By the definition of the Young integral, B H
0 = 0. By the definition of ZT , we have

ξT = eκT B H
T −κ

∫ T

0
eκs B H

s ds = eκT B H
T −κ ZT . (A.63)

By Lemma 2.1 of El Machkouri et al. (2016), we obtain Z∞ = ∫∞
0 eκs B H

s ds which is
well-defined and

ZT
a.s.→ Z∞ , (A.64)

ξT
a.s.→ ξ∞ := −κ Z∞ . (A.65)

Using (A.61) and the Young integral, we can rewrite the solution of (1.1) as

Xt = X0e−κt + (1−e−κt )μ+e−κt σ

∫ t

0
eκs d B H

s (A.66)

= X0e−κt + (1−e−κt )μ+e−κt σξt

= X0e−κt + (1−e−κt )μ+e−κt σ

[
eκt B H

t −
∫ t

0
B H

s eκsκds

]

= X0e−κt + (1−e−κt )μ+σ B H
t −σ e−κt κ

∫ t

0
B H

s eκsds

= X0e−κt + (1−e−κt )μ+σ B H
t −σ e−κt κ Zt .

To prove strong consistency of κ̂L S , we will analyze separately the numerator and
the denominator of the estimator (3.14). First, we consider the term eκT ∫ T

0 Xt dt . Using
L’Hôspital’s rule, (A.64), (A.65), and (A.66), we obtain

eκT
∫ T

0
Xt dt = eκT

∫ T

0

[
X0e−κt + (

1−e−κt )μ+σ e−κt ξt
]

dt (A.67)

= − X0

κ

(
1−eκT

)
+eκT μT + μ

κ
eκT

(
e−κT −1

)
+σ

∫ T
0 e−κt ξt dt

e−κT

a.s.→ − X0

κ
+ μ

κ
+σ Z∞ .

Combining (A.64), (A.65), and (A.66), we deduce that

1

T
eκT XT = eκT

T

[
X0e−κT +

(
1−e−κT

)
μ+σ e−κT ξT

]
(A.68)

= 1

T

[
X0 +μeκT −μ+σξT

]
a.s.→ 0.
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By (A.64) and (A.65), we have

X2
T e2κT = e2κT

[
X0e−κT +

(
1− e−κT

)
μ+σe−κT ξT

]2
(A.69)

= e2κT
[(

X0e−κT
)2 +

(
1− e−κT

)2
μ2 +σ 2e−2κT ξ2

T +2X0e−κT σe−κT ξT

+2μ
(

1− e−κT
)
σe−κT ξT +2X0e−κT

(
1− e−κT

)
μ
]

= X2
0 +

(
eκT −1

)2
μ2 +σ 2ξ2

T +2X0σξT +2μσξT (eκT −1)+2μX0

(
eκT −1

)
a.s.→ X2

0 +μ2 +σ 2κ2 Z2∞ −2σ X0κ Z∞ +2μσκ Z∞ −2X0μ.

By (A.64) and (A.65) again, we obtain

e2κT
∫ T

0
X2

t dt = e2κT
∫ T

0

[
X0e−κ t + (

1− e−κ t )μ+σe−κ t ξt
]2

dt

= e2κT X0

∫ T

0
e−2κ t dt + e2κT

∫ T

0
μ2(1− e−κ t )2dt +σ 2e2κT

∫ T

0
e−2κ t ξ2

t dt

+2e2κT μX0

∫ T

0
e−κ t (1− e−κ t )dt +2e2κT X0σ

∫ T

0
e−2κ t ξt dt

+2e2κT μσ

∫ T

0

(
1− e−κ t )e−κ t ξt dt

= X0

2κ

(
e2κT −1

)
+μ2

[
e2κT T − 1

2κ
(1− e2κT )+ 2

κ
(eκT − e2κT )

]

+σ 2e2κT
∫ T

0
e−2κ t ξ2

t dt +2μX0

[
1

2κ
(1− e2κT )− 1

κ

(
eκT − e2κT

)]

+2σ X0

∫ T
0 e−2κ t ξt dt

e−2κT
+2μσ

(∫ T
0 e−κ t ξt dt

e−2κT
−
∫ T

0 e−2κ t ξt dt

e−2κT

)

a.s.→ − X0

2κ
− μ2

2κ
− σ 2

2
κ Z2∞ + μX0

κ
+ X0σ Z∞ −μσ Z∞ . (A.70)

A standard calculation together with (A.67) yields

e2κT

T

(∫ T

0
Xt dt

)2

= 1

T

(
eκT

∫ T

0
Xt dt

)2
a.s.→ 0 . (A.71)

Combining (A.67), (A.68), (A.69), (A.70), (A.71), and (3.14), we obtain strong consistency
of κ̂L S .

It remains to show strong consistency of μ̂L S . From (1.1) and the fact that B H
0 = 0, we

can rewrite Xt as

Xt = X0 +μκ t −κ

∫ t

0
Xsds +σ B H

t . (A.72)

By (1.1), (3.15), (A.72), and the Young integral, we can rewrite μ̂L S as
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μ̂L S = (XT − X0)
∫ T

0 X2
t dt −∫ T

0 Xt d Xt
X0+μκT +σ B H

T −XT
κ

(XT − X0)
∫ T

0 Xt dt − T
∫ T

0 Xt d Xt
(A.73)

=
(XT − X0)

∫ T
0 X2

t dt −μT
∫ T

0 Xt d Xt − X0+σ B H
T −XT

κ

∫ T
0 Xt

[
κ (μ− Xt )dt +σd B H

t

]
(XT − X0)

∫ T
0 Xt dt − T

∫ T
0 Xt d Xt

= μ+
XT −X0

κ σ
∫ T

0 Xt d B H
t − σ B H

T
κ

∫ T
0 Xt d Xt

(XT − X0)
∫ T

0 Xt dt − T
∫ T

0 Xt d Xt

= μ+ eκT XT −X0
κ

σ
T eκT ∫ T

0 Xt d B H
t − σ B H

T
κT e2κT X2

T −X2
0

2

eκT XT −X0
T eκT

∫ T
0 Xt dt − e2κT X2

T −X2
0

2

.

Finally, using (A.67), (A.68), (A.69), Lemma 3.1, and (A.73), we obtain strong consistency
for μ̂L S .

A.6. Proof of Theorem 3.5

Using (1.1), (A.72), and the Young integral, we can rewrite κ̂L S as

κ̂L S =
(XT − X0)

∫ T
0 Xt dt − T

∫ T
0 Xt

[
κ (μ− Xt )dt +σd B H

t

]
T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2
(A.74)

= (XT − X0 −κμT )
∫ T

0 Xt dt +κT
∫ T

0 X2
t dt −σ T

∫ T
0 Xt d B H

t

T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2

= κ + σ B H
T

∫ T
0 Xt dt −σ T

∫ T
0 Xt d B H

t

T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2
.

Hence,

e−κT (κ̂L S −κ) = σ B H
T e−κT ∫ T

0 Xt dt −σ T e−κT ∫ T
0 Xt d B H

t

T
∫ T

0 X2
t dt −

(∫ T
0 Xt dt

)2
(A.75)

=
σ B H

T
T

eκT
∫ T

0 Xt dt

e2κT
∫ T

0 X2
t dt

− σeκT
∫ T

0 Xt d B H
t

e2κT
∫ T

0 X2
t dt

1− 1
T

(
eκT

∫ T
0 Xt dt

)2

e2κT
∫ T

0 X2
t dt

.

A standard calculation yields

−σeκT ∫ T
0 Xt d B H

t

e2κT
∫ T

0 X2
t dt

= −σ
eκT ∫ T

0

[
μ+ (X0 −μ)e−κ t +σ

∫ t
0 e−κ(t−s)d B H

s

]
d B H

t

e2κT
∫ T

0 X2
t dt

(A.76)

= − σ

e2κT
∫ T

0 X2
t dt

[
μeκT B H

T −σeκT
∫ T

0

∫ s

0
e−κ(t−s)d B H

t d B H
s

+eκT
∫ T

0
e−κ t d B H

t

[
(X0 −μ)+σ

∫ T

0
eκs d B H

s

]]
.
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By Lemmas 6 and 3 of Belfadli et al. (2011), we have

eκT
∫ T

0
e−κs d B H

s
L−→ N

(
0,

H�(2H)

|κ|2H

)
, (A.77)

∫ T

0
eκsd B H

s
L−→ N

(
0,

H�(2H)

|κ|2H

)
. (A.78)

Moreover, it is easy to check

μeκT B H
T

a.s.→ 0 . (A.79)

Obviously, both eκt and eκs are nonrandom Hölder continuous functions. According to
Lemma 7 of Belfadli et al. (2011) and the relationship between the divergence integral and
pathwise integral (see, e.g., equation (2.4) in Belfadli et al., 2011), we can deduce that

σ eκT
∫ T

0

∫ t

0
e−κsd B H

s eκt d B H
t

p→ 0 . (A.80)

By (A.70), (A.76)–(A.80), and Slutsky’s theorem, we have

−σ eκT ∫ T
0 Xt d B H

t

e2κT
∫ T

0 X2
t dt

L−→
2κσ

√
H�(2H)
|κ|H ν

X0 −μ+σ
√

H�(2H)
|κ|H ω

, (A.81)

with ν and ω being two independent standard normal random variables. Combining (A.67),
(A.70), (A.75), and (A.81), we obtain (3.16).

Let us now obtain the asymptotic distribution of μ̂L S . From (A.73), we can rewrite μ̂L S
as

μ̂L S = (XT − X0)
∫ T

0 X2
t dt −∫ T

0 Xt d Xt
X0+μκT +σ B H

T −XT
κ

(XT − X0)
∫ T

0 Xt dt − T
∫ T

0 Xt d Xt

=
(XT − X0)

∫ T
0 X2

t dt −μT
∫ T

0 Xt d Xt − X0+σ B H
T −XT

κ

∫ T
0 Xt

[
κ (μ− Xt )dt +σd B H

t

]
(XT − X0)

∫ T
0 Xt dt − T

∫ T
0 Xt d Xt

= μ+
XT −X0

κ σ
∫ T

0 Xt d B H
t − σ B H

T
κ

∫ T
0 Xt d Xt

(XT − X0)
∫ T

0 Xt dt − T
∫ T

0 Xt d Xt

= μ+
XT −X0

κ σ
∫ T

0 Xt d B H
t − σ B H

T
κ

X2
T −X2

0
2

(XT − X0)
∫ T

0 Xt dt − T
X2

T −X2
0

2

.

As a consequence, we have

T 1−H (
μ̂L S −μ

) =
2σ

κT H XT

∫ T
0 Xt d B H

t − 2X0σ

κT H X2
T

∫ T
0 Xt d B H

t − σ B H
T

κT H + σ B H
T

κT H
X2

0

X2
T

2
T XT

∫ T
0 Xt dt − 2X0

T X2
T

∫ T
0 Xt dt −1+ X0

X2
T

=
2σ

κeκT XT

eκT

T H

∫ T
0 Xt d B H

t − 2X0σ

κ X2
T e2κT

e2κT

T H

∫ T
0 Xt d B H

t − σ B H
T

κT H + σ
κ

e2κT X2
0

e2κT X2
T

B H
T

T H

2
T eκT XT

eκT
∫ T

0 Xt dt − 2X0
T e2κT X2

T
e2κT

∫ T
0 Xt dt −1+ e2κT X2

0
e2κT X2

T

.

By (A.67)–(A.69), Lemma 3.1, and the above equation, we can obtain the desired result in
(3.17).
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A.7. Proof of Theorem 3.6

We first prove strong convergence of κ̂L S , which can be rewritten as (3.19) and (3.20), re-
spectively. Using the isometry property of the double stochastic integral (see, e.g., equation
(5.6) of Nualart, 2006), we have

E

⎡
⎣(∫ 1

0
B H

u du

)2
⎤
⎦ = E

⎡
⎣(∫ 1

0

∫ 1

0
1[0,1] (s)d B H

s du

)2
⎤
⎦

= E

⎡
⎣(∫ 1

0

∫ 1

0
1[0,1] (s)dud B H

s

)2
⎤
⎦

= E

⎡
⎣(∫ 1

0
(1−u)d B H

s

)2
⎤
⎦

= αH

∫ 1

0

∫ 1

0
(1−u) (1− s) |s −u|2H−2dsdu

< ∞ . (A.82)

From (A.82), we can see that
∫ 1

0 B H
u du is a Gaussian process with mean zero and bounded

variance. Consequently, we have∫ 1

0
B H

u du = Op(1) . (A.83)

Moreover, a standard calculation together with Isserlis’ Theorem (see Isserlis, 1918) yields

E

[∫ 1

0

(
B H

u

)2
du

]
= 1

2H +1
, (A.84)

E

⎡
⎣(∫ 1

0

(
B H

u

)2
du

)2
⎤
⎦ =

∫ 1

0

∫ 1

0

[
E

(
B H

u

)2
E

(
B H

s

)2 +2E
(

B H
u B H

s

)
E

(
B H

u B H
s

)]
dsdt

=
∫ 1

0

∫ 1

0
s2H t2H dsdt +

∫ 1

0

∫ 1

0

(
|t|2H +|s|2H −|t − s|2H

)2
dsdt

< ∞ . (A.85)

From (A.84) and (A.85), we can easily obtain∫ 1

0

(
B H

u

)2
du = Op(1) . (A.86)

By the law of the iterated logarithm for fBm (see, e.g., Corollary A.1 in Taqqu, 1977), for
any ε > 0, we can have

B H
T

T H+ε

a.s.→ 0 . (A.87)

Using (A.83), (A.86), and (A.87), we obtain

B H
T

∫ T
0 B H

t dt

T
∫ T

0 (B H
t )2dt

a.s.→ 0 . (A.88)
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Using a similar argument, we have

(
B H

T

)2

2
∫ T

0 (B H
t )2dt

a.s.→ 0 , (A.89)

T 2H

2
∫ T

0 (B H
t )2dt

a.s.→ 0 . (A.90)

Now, using (3.19), (A.88), (A.89), and (A.90), we obtain

κ̂L S =
B H

T

∫ T
0 B H

t dt

T
∫ T

0 (B H
t )2dt

−
(
B H

T

)2

2
∫ T

0 (B H
t )2dt

+ T 2H

2
∫ T

0 (B H
t )2dt

1−
(∫ T

0 B H
t dt

)2

T
∫ T

0 (B H
t )2dt

a.s.→ 0 . (A.91)

Similarly, using (3.20), (A.88), (A.89), and (A.90), we have

κ̂L S =
B H

T

∫ T
0 B H

t dt

T
∫ T

0 (B H
t )2dt

−
(
B H

T

)2

2
∫ T

0 (B H
t )2dt

1−
(∫ T

0 B H
t dt

)2

T
∫ T

0 (B H
t )2dt

a.s.→ 0 . (A.92)

By (A.91) and (A.92), we complete the proof of strong consistency of κ̂L S .
Finally, we need to prove (3.21). By the scaling properties of fBm of (2.2) (see also in

Nualart, 2006), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B H
T

d= T H B H
1

B H
T

∫ T
0 B H

t dt
d= T 2H+1 B H

1

∫ 1
0 B H

u du

T
∫ T

0 B H
t d B H

t
d= T 2H+1 ∫ 1

0 B H
u d B H

u

T
∫ T

0 (B H
t )2dt

d= T 2H+2 ∫ 1
0 (B H

u )2du(∫ T
0 B H

t dt
)2 d= T 2H+2

(∫ 1
0 B H

u du
)2

. (A.93)

Combining (3.18) and (A.93), we obtain the desired asymptotic distribution.
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