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This supplement provides proofs of Lemma 3.1, Theorem 3.1 and Theorem 3.2 in
Xiao and Yu (2019).

1 Proof of Lemma 3.1

For t > 0, we define
t
Y, = a/ e t=9qBH (1)

Cheridito et al. (2003) showed that Y; is Gaussian, stationary, and ergodic when x > 0.
The integral with respect to fBm exists as a path-wise Riemann-Stieltjes integral, and
can be calculated using integration by parts (see Prop. A.1 in Cheridito et al. (2003)).
To avoid integration with respect to fBm for 0 < H < 1/2, using integration by parts
and (1), we write the solution of fVm as

0
Xi=Y,+(1—e™)p+ Xoe™™ + U/{e_”t/ e Bl ds. (2)
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Using (2), we have

1 (T 1 (T u [T X, [T
— X, dt = — Y,dt + = 1—e ™) dt + = Rt
T/O ' T/O ! +T/0 (1—e™) dt + T/O ¢

T 0
—i—ﬁ/ e”t/ e B dsdt . (3)
T 0 —o0

For the first term in (3), using the ergodic theorem and the fact E[Yy] = 0, we

obtain

I as
—/ Yidt “3 E (V) = 0. (4)
T Jo



For the second term in (3), it is obvious that

T
%/0 (1—e")dt — p. (5)
Using the fact that X = oa_s.(\/T), we have

X T a.s
?0 /O et 43 0. (6)

Moreover, a straightforward calculation shows that
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o2k (T T 0 0
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= Tz (1 — e*”T)Q /<;72H72HF(2H). (7)

From (7), we can deduce that

T 0
ﬁ/ e_“t/ e B dsdt
T 0 —o0

where C' denotes a suitable positive constant. Consequently, from (8) and Lemma 2.1
of Kloeden and Neuenkirch (2007), we obtain

<CT ™, (8)
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Substituting (4), (5), (6) and (9) into (3), we obtain the first claim in Lemma 3.1.
Next, using (2), we obtain
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Using the ergodic theorem, we obtain

1 T
7 /0 Y2dt “3 E (Y7) -

Integrating by parts together with similar arguments as in (7) yields

0 2
E(Yy) = E (0 / e’“dBf)
0
= lim E 02( "Bl —k / “BHds)
T——o0 T
T T
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T
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Combining (11) and (12), we obtain
LT as
— / Y2dt % o*k 2 HT(2H) .
T Jo
A straightforward calculation shows that

T
%/ [u (e_”t — 1) — Xoe_”ﬂ2 dt 43 u? .
0

Using similar arguments as in (7), we obtain
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Moreover, by the Cauchy-Schwarz inequality and the same arguments as in (12),
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T Jo
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Substituting (13)-(18) into (10), we can obtain the second claim in Lemma 3.1.
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Now, using the fact dX; = k (u — X;) dt + odB}!, we can write

1/t K T k [T o [T
— | XdX,=— [ X,dt—— X2dt + — X,dBY . 1
T/o 1A Xy T/o ¢ T/o ; +T/0 ta b, (9)

Using the relationship between the divergence integral and the Stratonovich integral
(see Proposition 5.2.4 in Nualart (2006)), we have

o T o T o T
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0
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X2 wkp [T k[T, o "
= L =/ X — | X2t —-E— 1— B
5T T/o tdt—l—T ; cdt T/o ( ) podB,

T ¢
—E {%/ {Xoe_”t +o (BtH - /@/ Bfe‘"‘“‘”ds)] o dBtH] ,
0 0

where fOT X; o dB}! denotes the Stratonovich integral.
From Eq. (3.7) of Hu et al. (2018), we can see that

T t
lim E F / [a (BtH — K / Bfe*’v(tS)ds)} o dBﬂ = ?Hr'2HT(2H).  (21)
T—oo T 0 0

A straightforward calculation shows that

T
lim E {%/ [(1—e™) p+ Xoe™] o dBfI} =0. (22)
0

T—o00

Using Lemma 18 of Hu et al. (2018), we can see that, for any € > 0,
XT a.s.
— 0. 23
i (23)

Substituting the first claim in Lemma 3.1, the second claim in Lemma 3.1, (21)-(23)
into (20), we have

g T a.s
= / X, dB “% 0. (24)
T 0

Finally, combining the first claim in Lemma 3.1, the second claim in Lemma 3.1, (19)
and (24), we obtain the third claim in Lemma 3.1.

2 Proof of Theorem 3.1

First, we can write kg as

Xe=Xo L (4 X,dt — L [T X,dX
"%LS — T t Tf(] t2 t‘ (25)

b1t (3¢ )
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By Lemma 3.1, (23), (25) and the arithmetic rule of convergence, we obtain the almost
sure convergence of irg, i.e., irg — k. Now, we can rewrite fizg as

XrXo 1 (T X241 — L [T XthtT Iy Xudt

T

firs =
XTTXO L [T Xdt — L [T XdX,

(26)

Similarly, using Lemma 3.1, (23) and (26), we obtain the strong consistency of fisg,
ie., irg = p. This proves the first part of the theorem.

To prove the second part, let us first consider the asymptotic law of K, g. Based on
(2) and integration by parts, we can write

VT (kps— k) =1 + L+ I, (27)

where
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By the law of the iterated logarithm for fBm (see e.g. Corollary Al in Taqqu
(1977)), we have
- X a.s.
g 20 ( 0) e_”“TBﬁ = 0.
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Using similar arguments as those in (7), we have

ouK
vT

Similarly, using the assumption Xo/v/T = 0p(1), we obtain

T
B e=rtat 5 0.

o Xok
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Moreover, from Theorem 5 of Hu et al. (2018), we can obtain

T
Biertar 5 0.
0
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Combining all these convergency results, Lemma 3.1 and applying Slutsky’s theorem
I 5 N (0, r62) . (28)

Using (23) and by the law of the iterated logarithm for fBm, we obtain

X7 as Xo p K (Xo — ) /T vt P O uoas
=%y, LBy, 2B emtgr B, —BH . 29
VT VT VT 0 VT ¢ (29)

. oo — — —
Furthermore, since [~ e **2*"~1dz = x *"'T'(2H), we have
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The result above implies

T emnT / " Bemsas g (30)
VT o '

Combining Lemma 3.1, (29) and (30), we have
L2%0. (31)

Finally, using Lemma 3.1 again and by the law of the iterated logarithm for fBm (see
e.g. Corollary Al in Taqqu (1977)), we have

Iz %0, (32)

By (27), (28), (31), (32) and Slutsky’s theorem, we obtain the asymptotic law of k.
Next, using (2), we have

1 T 1 T t
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Xo— — kit / / -
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A straightforward calculation shows that

Xo— T kit a.s.
. /0 et 30, (34)
oBI . o?
Moreover, from Lemma 18 of Hu et al. (2018), we can see that
A RC
— I dBI 0. 36
kTH J, c (36)

On the other hand, a straightforward calculation shows that

Xp2Xo L (U X2dt— L [T X dX, 7 [ Xodt
TliH(,&LS_/U: TH TfO ¢ tTHfo t _T17H,u. (37)

XTTXO L[ Xdt — % [T XdX,

Combining (23), Lemma 3.1, (33)-(37) and Slutsky’s theorem, we obtain the asymptotic
law of jiyg.

3 Proof of Theorem 3.2

Consistency of fgny and figy can be easily obtained by Lemma 3.1. Moreover, the
asymptotic law of figy can be obtained by using Slutsky’s theorem and (33)-(36).
Hence, we only consider the asymptotic law of kg here.

Using the expressions of £xy and Arg, we have

1 1
ﬁ(f%HN—FL) = ﬁ(/%HN—FL ll%g—i-/il*iHl%g—li)

L o?HT (2H 2”
= VTR || — : ( ) - — ki
=X L (0 X,dt - L [T X,dX,

VT2 ( 2’§ —Iiﬁ> : (38)
By Theorem 3.1 and the delta method, we get
VT (f{g - fgﬁ> LN (0, K%—lazN) . (39)

Using Lemma 3.1, (23), (38), (39) and Slutsky’s theorem, we obtain the asymptotic
law of Ag N .
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