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• Establish asymptotic theory for the LS estimator of the persistency parameter in fVm when the Hurst parameter is less than 1/2.
• Establish asymptotic theory for the LS estimator of the drift parameter in fVm when the Hurst parameter is less than 1/2.
• Establish asymptotic theory for the ergodic-type estimator of the persistency parameter in the stationary fVm when the Hurst parameter is less than

1/2.
• Establish asymptotic theory for the ergodic-type estimator of the drift parameter in the stationary fVm when the Hurst parameter is less than 1/2.
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a b s t r a c t

This paper extends the asymptotic theory for the fractional Vasicek model developed in Xiao and Yu
(2018) from the case where H ∈ (1/2, 1) to where H ∈ (0, 1/2). It is found that the asymptotic theory
of the persistence parameter (κ) critically depends on the sign of κ . Moreover, if κ > 0, the asymptotic
distribution for the estimator of κ is different when H ∈ (0, 1/2) from that when H ∈ (1/2, 1).

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The fractional Vasicek model (fVm), which is a Vasicek model
driven by a fractional Brownian motion (fBm), has found a consid-
erable amount of applications in economics and finance; see Comte
and Renault (1998), Comte et al. (2012), Chronopoulou and Viens
(2012a), Chronopoulou and Viens (2012b), Bayer et al. (2016) and
references therein. The model is given by

dXt = κ (µ − Xt) dt + σdBH
t , (1.1)
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where σ is a positive constant, µ, κ ∈ R, H is the Hurst parameter,
and BH

t is an fBm. In a recent study, based on a continuous record
of Xt over a time period of [0, T ], Xiao and Yu (2018) developed the
long-span asymptotic theory for alternative estimators of κ and
µ when H and σ are known and H takes a value in the range of
(1/2, 1).

While H ∈ (1/2, 1) is empirically relevant for some economic
time series, recent findings suggest that some time series is better
modelled by an fVmwithH ∈ (0, 1/2). For example, Gatheral et al.
(2018) showed that the logarithm of realized variance behaves
more like an fVm with H near 0.1 than that with H bigger than
0.5, regardless of timescale sampled. Hence, it is important to study
Model (1.1) with H ∈ (0, 1/2).

The present paper extends the asymptotic results of Xiao and
Yu (2018) from the case where H ∈ (1/2, 1) to the case where
H ∈ (0, 1/2). It is found that the asymptotic theory critically
depends on the sign of κ , as in Xiao and Yu (2018). However, if
κ > 0 the asymptotic theory for κ is different when H ∈ (0, 1/2)
from that when H ∈ (1/2, 1).
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The rest of the paper is organized as follows. Section 2 intro-
duces the model and discusses the least squares (LS) estimators
and the ergodic-type estimators of κ and µ. Section 3 establishes
strong consistency and asymptotic distributions for the LS estima-
tors of κ and µ and those of the ergodic-type estimators of κ and
µ when κ > 0. The proofs of the main results are given an online
supplement.

We use the following notations throughout the paper. Let
p

→,
a.s.
→,

L
−→ and

a
∼ denote convergence in probability, convergence

almost surely, convergence in distribution, and asymptotic equiv-
alence, respectively, as T → ∞. Let d

= denote equivalence in
distribution.

2. The model and estimation methods

Before introducing the model, we first state some basic facts
about the fBm (see Taqqu (1977), Cheridito et al. (2003) and Nu-
alart (2006) for more details). An fBm BH

= {BH
t , t ∈ R} with the

Hurst parameter H ∈ (0, 1) is a zero mean Gaussian process, de-
fined on a complete probability space (Ω,F,P), with the following
covariance function

E(BH
t B

H
s ) =

1
2

(
|t|2H + |s|2H − |t − s|2H

)
. (2.1)

This covariance function implies that the fBm is self-similar with
the self-similarity parameter H , that is, BH

λt
d
= λHBH

t . A direct
consequence of (2.1) is that BH

n − BH
n−1 is a discrete-time Gaussian

process with a covariance function

r(n) = E
[(
BH
k+n − BH

k+n−1

) (
BH
k − BH

k−1

)]
=

1
2

[
(n + 1)2H + (n − 1)2H − 2n2H] a

∼ H(2H − 1)n2H−2 .

By the convexity of g(n) = n2H , the increments, BH
k+n − BH

k+n−1
and BH

k − BH
k−1, are positively correlated if 1/2 < H < 1.

However, the increments are negatively correlated if 0 < H < 1/2,
generating the feature of roughness in the sample path. Thus, BH

is persistent when 1/2 < H < 1 and antipersistent when 0 <

H < 1/2, If H = 1/2, BH
t becomes a standard Brownian motion

Wt . Moreover, if H ∈ (1/2, 1),
∑

∞

n=1 r(n) = ∞, suggesting that the
process exhibits long-range dependence. However, if H ∈ (0, 1/2),∑

∞

n=1 r(n) < ∞.While Gatheral et al. (2018) showed the empirical
relevance of the fVm with H near 0.1, it did not estimate any
parameter in fVm nor provide any asymptotic theory for making
statistical inference.

The model concerned in the present paper is given by (1.1). It is
worth to emphasize that, with a continuous record, both σ 2 and H
can be recovered. For example, for any ϵ ̸= ξ ,

H = lim
ϵ↓0,ξ↓0

1
2
log
(

ϵ

ξ

)
log

(∫ T
0

(
Xt+ξ − Xt

)2 dt∫ T
0 (Xt+ϵ − Xt)

2 dt

)
,

σ 2
=

limϵ↓0
∫ T
0 (Xt+ϵ − Xt)

2 dt
ϵ2HT

.

Consequently, for further statistical analysis, we assume that both
σ and H are known. Xiao and Yu (2018) developed the long-span
asymptotic theory for κ and µ when H ∈ (1/2, 1). The goal of the
present paper is to extend the results in Xiao and Yu (2018) to the
case where H ∈ (0, 1/2). This extension is important in light of
the empirical results in Gatheral et al. (2018). Following Xiao and
Yu (2018), we assume the whole trajectory of Xt for t ∈ [0, T ] is
available. The asymptotic theory is developed by requiring T →

∞.

The LS estimators of κ and µ are,

κ̂LS =
(XT − X0)

∫ T
0 Xtdt − T

∫ T
0 XtdXt

T
∫ T
0 X2

t dt −

(∫ T
0 Xtdt

)2 , (2.2)

µ̂LS =
(XT − X0)

∫ T
0 X2

t dt −
∫ T
0 XtdXt

∫ T
0 Xtdt

(XT − X0)
∫ T
0 Xtdt − T

∫ T
0 XtdXt

. (2.3)

When H ∈ (0, 1/2), Xt is no longer a semimartingale. In this
case, for κ̂LS and µ̂LS to consistently estimate κ and µ, we have
to interpret the stochastic integral

∫ T
0 XtdXt carefully. In fact, we

interpret it differently when the sign of κ is different. If κ > 0,
following the idea ofHu et al. (2018),we interpret it as a divergence
integral; if κ < 0, borrowing an idea from El Machkouri et al.
(2016), we interpret it as a Young integral; if κ = 0, we can
interpret it as either a divergence integral or a Young integral. The
asymptotic distribution of κ̂LS is different across these three cases.

When κ > 0, onemay use the ergodic-type estimator of Hu and
Nualart (2010) to estimate κ and µ, which is given by

κ̂HN =

⎛⎜⎝T
∫ T
0 X2

t dt −

(∫ T
0 Xtdt

)2
T 2σ 2HΓ (2H)

⎞⎟⎠
−

1
2H

, (2.4)

µ̂HN =
1
T

∫ T

0
Xtdt . (2.5)

Comparedwith (2.2) and (2.3)which involve the stochastic integral∫ T
0 XtdXt , the ergodic-type estimators in (2.4) and (2.5) do not

contain any stochastic integral.

3. Asymptotic theory

Let us first consider the case when κ > 0. Using Lemma 2.1
of Kloeden and Neuenkirch (2007), we have the following results.

Lemma 3.1. Let H ∈ (0, 1/2), X0/
√
T = oa.s.(1), κ > 0 in Model

(1.1). As T → ∞,

1
T

∫ T

0
Xtdt

a.s.
→ µ , (3.1)

1
T

∫ T

0
X2
t dt

a.s.
→ σ 2κ−2HHΓ (2H) + µ2 , (3.2)

1
T

∫ T

0
XtdXt

a.s.
→ −σ 2κ1−2HHΓ (2H) . (3.3)

Theorem 3.1. Let H ∈ (0, 1/2), X0/
√
T = oa.s.(1), κ > 0 in

Model (1.1). Then, as T → ∞, κ̂LS
a.s.
→ κ and µ̂LS

a.s.
→ µ. Moreover,

let H ∈ (0, 1/2), X0/
√
T = op(1), κ > 0 in Model (1.1). Then, as

T → ∞,
√
T
(
κ̂LS − κ

) L
−→ N

(
0, κδ2LS

)
, (3.4)

T 1−H (µ̂LS − µ
) L

−→ N
(
0,

σ 2

κ2

)
, (3.5)

where δ2LS = (4H − 1) +
2Γ (2−4H)Γ (4H)
Γ (2H)Γ (1−2H) .

Theorem 3.2. Let H ∈ (0, 1/2), X0/
√
T = oa.s.(1), κ > 0 in Model

(1.1). Then, as T → ∞, κ̂HN
a.s.
→ κ and µ̂HN

a.s.
→ µ. Moreover, let

H ∈ (0, 1/2), X0/
√
T = op(1), κ > 0 in Model (1.1). Then, as

T → ∞,
√
T
(
κ̂HN − κ

) L
−→ N

(
0, κδ2HN

)
, (3.6)
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T 1−H (µ̂HN − µ
) L

−→ N
(
0,

σ 2

κ2

)
, (3.7)

where δ2HN =
1

4H2

[
(4H − 1) +

2Γ (2−4H)Γ (4H)

Γ (2H)Γ (1−2H)

]
.

Remark 3.1. Theorems 3.1 and 3.2 extend Theorems 3.2 and 3.3
of Xiao and Yu (2018) and provide the full coverage of asymptotic
laws of the LS and the ergodic-type estimators for κ and µ in fVm
for H ∈ (0, 1).

Remark 3.2. The rate of convergence for κ̂HN and κ̂LS is the
same (i.e.

√
T ) and independent of H , but their asymptotic vari-

ances depend on H . Since limz→0 zΓ (z) = 1, limH→1/2 δ2LS =

limH→1/2 δ2HN = 2, suggesting that, when H → 1/2, κ̂LS and
κ̂HN have the same asymptotic variance of 2κ . In this case, the
asymptotic distribution is identical to that in Feigin (1976). When
0 < H < 1/2, 4H2 < 1 and the asymptotic variance of κ̂LS is
smaller than that of κ̂HN , suggesting κ̂LS is asymptotically more
efficient than κ̂HN . Fig. 1 plots δ2LS and δ2HN as a function of H . It
can be seen that as H increases, δ2LS monotonically increases while
δ2HN monotonically decreases. They both converge to 2 when H
approaches 1/2. The relative asymptotic efficiency increases as H
decreases. When H = 0.1 which is an empirically realistic value
for H according to Gatheral et al. (2018), the relative asymptotic
efficiency is 25, favouring κ̂LS . This difference is very significant.
The direction of relative asymptotic efficiency is different from that
in Xiao and Yu (2018) where κ̂LS is found to be asymptotically less
efficient than κ̂HN when H > 1/2.

Remark 3.3. Unlike κ , the asymptotic distribution for µ̂LS is identi-
cal to that of µ̂HN , which is also the same as those obtained in Xiao
and Yu (2018) when H > 1/2.

Remark 3.4. When 0 < H < 1/2, paths generated from an
fBm are irregular. In this case, the stochastic integration with
respect to fBm should be interpreted as a divergence integral
introduced by Cheridito and Nualart (2005). If we interpret the
integral

∫ T
0 XtdXt in (2.2) as a Young integral, then, as T → ∞,

κ̂LS =

XT−X0
T

∫ T
0 Xtdt
T −

1
2
X2
T −X2

0
T

1
T

∫ T
0 X2

t dt −

(
1
T

∫ T
0 Xtdt

)2 a.s.
→ 0 , (3.8)

by (3.1), (3.2) and Lemma 18 of Hu et al. (2018), implying that κ̂LS
will be inconsistent.

Now, we consider the case where κ < 0. Applying the Young
integral to (2.2) and (2.3), we can rewrite κ̂LS and µ̂LS as

κ̂LS =
(XT − X0)

∫ T
0 Xtdt −

T
2

(
X2
T − X2

0

)
T
∫ T
0 X2

t dt −

(∫ T
0 Xtdt

)2
=

XT
T eκT eκT

∫ T
0 Xtdt −

X0
T eκT eκT

∫ T
0 Xtdt −

1
2X

2
T e

2κT
+

1
2X

2
0 e

2κT

e2κT
∫ T
0 X2

t dt − e2κT 1
T

(∫ T
0 Xtdt

)2 ,

µ̂LS =
(XT − X0)

∫ T
0 X2

t dt −
X2
T −X2

0
2

∫ T
0 Xtdt

(XT − X0)
∫ T
0 Xtdt − T X2

T −X2
0

2

=

eκT
T

∫ T
0 X2

t dt −
XT+X0

2T eκT
∫ T
0 Xtdt

eκT
T

∫ T
0 Xtdt −

XT+X0
2 eκT

.

Using similar arguments as those in Xiao and Yu (2018), we can
obtain asymptotic properties of κ̂LS and µ̂LS . In particular, let H ∈

(0, 1/2), X0 = Op (1) and κ < 0 in Model (1.1). Then, as T → ∞,
κ̂LS

a.s.
→ κ , µ̂LS

a.s.
→ µ and

T 1−H (µ̂LS − µ
) L

−→ N
(
0,

σ 2

κ2

)
,

e−κT

2κ

(
κ̂LS − κ

) L
−→

σ
√
HΓ (2H)
|κ|H

ν

X0 − µ + σ
√
HΓ (2H)
|κ|H

ω
,

where ν andω are two independent standard normal variables. The
asymptotic law for κ̂LS is a Cauchy-type and is similar to that devel-
oped in the explosive discrete-time and continuous-time models
in Phillips and Magdalinos (2007), Magdalinos (2012), Wang and
Yu (2015), Wang and Yu (2016) and Arvanitis and Magdalinos
(2018) . It is the same as that in Xiao and Yu (2018) for the fVm
when H ∈ (1/2, 1).

Finally, we consider the case when κ = 0. In this case, µ

vanishes and the fVm reduces to an fBm without drift. In this case
Xt = X0 + σBH

t . Using the relationship between the divergence
integral and the Stratonovich integral and applying the divergence
integral to (2.2), we can rewrite the LS estimator of κ as

κ̂1,LS =

BH
T

∫ T
0 BH

t dt −
T
2

((
BH
T

)2
− T 2H

)
T
∫ T
0 (BH

t )2dt −

(∫ T
0 BH

t dt
)2 ,

where the equality
∫ T
0 BH

t dB
H
t =

∫ T
0 BH

t ◦ dBH
t − E

[∫ T
0 BH

t ◦ dBH
t

]
=

(BH
T )

2/2 − E
[
(BH

T )
2/2
]

= (BH
T )

2/2 − T 2H/2 is used. If we interpret∫ T
0 BH

t dB
H
t in (2.2) as a Young integral, then the LS estimator of κ

can be rewritten as

κ̂2,LS =
BH
T

∫ T
0 BH

t dt −
T
2

(
BH
T

)2
T
∫ T
0 (BH

t )2dt −

(∫ T
0 BH

t dt
)2 .

Let H ∈ (0, 1/2), X0 = Op(1), κ = 0 in (1.1). Then, as T → ∞,
using similar arguments as in Theorem 3.6 of Xiao and Yu (2018),
we have κ̂1,LS

a.s.
→ 0 and κ̂2,LS

a.s.
→ 0. Moreover, for any T and i = 1, 2,

T κ̂i,LS
d
= −

∫ 1
0 B

H
u dB

H
u∫ 1

0

(
B
H
u

)2
du

,

where B
H
u = BH

u −
∫ 1
0 BH

t dt . This is the Dickey–Fuller–Phillips type
of distribution of Phillips (1987) and the same as that in Xiao and
Yu (2018) for fVm when H ∈ (1/2, 1).

4. Concluding remarks

Based on a continuous record of observationswith an increasing
time span from an fVm with H < 1/2, this paper develops
asymptotic theory for the two parameters in the drift function,
κ and µ. When κ > 0, two type estimators are considered, the
LS estimators and the ergodic-type estimators. When κ = 0 or
< 0, the LS estimators are considered. It is shown that when
κ > 0, the two estimators of κ and µ are asymptotically normally
distributed. However, the LS estimator of κ is asymptotically more
efficient than that of the ergodic-type estimator of κ . The relative
efficiency is especially large when H takes a value close to zero.
When κ < 0, the LS estimator follows a Cauchy-type distribution
asymptotically. When κ = 0 , the LS estimator follows the Dickey–
Fuller–Phillips type of distribution.

It is assumed that a continuous record of an increasing time
span is available for the development of asymptotic theory. In prac-
tice, data is typically discretely sampled at, say (0, h, 2h, . . . ,Nh(:=
T )) where h is the sampling interval and T is the time span. When
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Fig. 1. Plots of δ2LS and δ2HN as functions of H .

high frequency data over a long span of time period is available,
one may consider using a double asymptotic scheme by assuming
h → 0 and T → ∞. The discretized model corresponding to (1.1)
is given by

yth = µ + exp(−κh)(y(t−1)h − µ) + ut , (1 − L)dut = εt ,

t = 1, . . . ,N,

where L is the lag operator, d = H − 1/2. As shown in Wang
and Yu (2016), under the double asymptotic scheme, exp(−κh) =

exp {−κ/kN} = 1 − κ/kN + O(k−2
N ) → 1 where kN := 1/h → ∞

as h → 0 and kN/N = 1/T → 0 as T → ∞. This implies
an autoregressive (AR) model with an AR root being moderately
deviated from unity and with a fractionally integrated error term
with d ∈ (−1/2, 0). This model is closely related to a model
considered in Magdalinos (2012) where it is assumed that d ∈

(0, 1/2). Developing double asymptotic theory based on discretely
sampled data will allow one to extend the results of Magdalinos
(2012) to the case where d ∈ (−1/2, 0). This analysis will be
reported in later work.
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Appendix A. Supplementary data

Supplementary material related to this article can be found
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