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1 Introduction

Deviance information criterion (DIC) of Spiegelhalter, et al (2002) is a popular method for

model selection in the Bayesian community. It has been used in a wide range of fields such as

biostatistics, ecology, and economics. According to Spiegelhalter et al. (2014), Spiegelhalter,

et al (2002) is the third most cited paper in international mathematical sciences between 1998

and 2008. Up to February 2018, it has received more than 5100 citations on the Web of

Knowledge and nearly 9000 citations on Google Scholar.

The growth in popularity in DIC among applied researchers is understandable from a few

aspects. First, DIC is a Bayesian version of the well-known Akaike Information Criterion

(AIC) of Akaike (1973) that is based on maximum likelihood (ML). As shown in Li et al

(2017), like AIC, DIC selects a model to minimize a plug-in predictive loss. This objective

may appeal to applied researchers. Second, unlike AIC which is based on the log-likelihood

function (or deviance) with the ML estimate (MLE) of parameters being plugged in, DIC is

based on the deviance with the posterior mean of parameters being plugged in. Li, et al (2017)

gives the details about the loss functions associated with AIC and DIC. The detach of DIC

with ML is important when candidate models are difficult to estimate by ML. In this case,

applied researchers may prefer Bayesian estimation methods over ML. In Bayesian statistics,

the recent development of Markov chain Monte Carlo (MCMC) methods has been a key step

in making it possible to estimate large hierarchical models. Large hierarchical models are

typically difficult to estimate by ML, making ML-based model comparison criteria hard to

implement. Third, DIC has a penalty term which can take account of prior information. This

is different from AIC where the penalty term only depends on the number of parameters in a

candidate model.

A typical hierarchical model used in economics and finance involves latent variables. Latent

variables have figured prominently in consumption decision, investment decision, labor force

participation, conduct of monetary policy, indices of economic activity, inflation dynamics

and other economic, business and financial activities and decisions. Not surprisingly, latent

variable models have been widely used in financial econometrics, macroeconometrics and

microeconometrics. For example, in financial econometrics it is often found that values of

stocks, bonds, options, futures, and derivatives are often determined by a small number of

factors. These factors, such as the level, the slope and the curvature in the term structure of

interest rates, are latent. In macroeconomics, a well-known recent example of latent variable

models is the dynamic factor model. On the basis of macroeconomic theory, the dynamic

factor model attempts to explain aggregate economic phenomena by taking into account the

fact that the economy is affected by some important factors. In microeconometrics, many

discrete choice models and panel data models involve unobserved variables in order to capture

observed heterogeneity across economic entities (Norets, 2009; Stern, 1997).
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For latent variable models, the most popular approach to implementing MCMC is to em-

ploy the data augmentation strategy of Tanner and Wong (1987). This strategy expands the

parameter space by treating latent variables as additional model parameters. Data augmenta-

tion greatly simplifies MCMC computation of posterior distributions and Bayesian estimation

because it changes the likelihood function from observed-data likelihood to conditional like-

lihood (i.e. the likelihood conditional on the latent variables) which often has a closed-form

expression. As DIC is based on the posterior mean of conditional likelihood, the closed-form

expression of conditional likelihood greatly facilitates calculation of DIC for latent variable

models. Not surprisingly, data augmentation has emerged as a standard method for imple-

menting MCMC and for obtaining DIC for latent variable models. For example, it is the

default choice if one uses WinBUGS (a popular Bayesian software). As acknowledged in

Spiegelhalter, et al (2014), this default way of calculating DIC for latent variable models “is

only to make the technique computationally feasible”.

The first contribution of the present paper is that we show that the default way of cal-

culating DIC for comparing latent variable models is asymptotically unjustifiable. The lack

of justification arises because both the standard Bayesian large sample theory (such as the

Bernstein–von Mises theorem) and the standard ML large sample theory (such as consistency

and asymptotic normality) do not hold when latent variables are treated as parameters. As a

result, the asymptotic theory developed in Li, et al (2017) is no longer applicable. In fact, the

posterior distribution of latent variables may not be normally distributed as the sample size

goes to infinity. The posterior means of latent variables may not be close to the MLE even

asymptotically. Furthermore, as a practical problem, by expanding the parameter space, the

data augmentation technique greatly increases the penalty term, making DIC very sensitive

to apparently innocuous transformations and distributional representations of a candidate

model.

Without using data augmentation, however, the (observed-data) likelihood function of

many latent variable models does not have a closed-form expression. This is the exact reason

why ML and hence AIC are difficult to use. Not surprisingly, DIC based on observed-data

likelihood is also difficult to compute. As the second contribution of this paper, we introduce

two new model selection criteria, which we call integrated DIC (IDIC), to make Bayesian

comparison of latent variable models. Both of them are based on observed-data likelihood and

the latent variables are not treated as parameters. One of them is constructed by using a plug-

in predictive distribution while the other is by using the full Bayesian predictive distribution.

Under some regularity conditions, the large sample properties of IDIC are studied. It is shown

that the two versions of IDIC are asymptotically unbiased estimators of their respective risks

which are the expected Kullback–Leibler divergence between the data generating process

(DGP) and the respective predictive distributions. Hence, the two versions of IDIC select a

model that asymptotically minimizes the respective risk.
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The problem in DIC based on conditional likelihood has been pointed out in the litera-

ture. For example, Millar (2009) documented strong evidence of poor performance of DIC in

negative binomial and Poisson-lognormal models using simulated data. He found that DIC

almost always prefers the Poisson-gamma model instead of the Poisson-lognormal model, even

when data are simulated from a Poisson-lognormal model. Millar and McKechnie (2014) doc-

umented strong evidence of poor performance of DIC in state-space models using simulated

data. They further proposed a one-step-ahead DIC, where prediction is conditional on the

state at the previous time point. Chan and Grant (2016a) showed that, in the context of

stochastic volatility models, DIC tends to favor overfitted models using simulated data. They

also showed that DIC based on observed-data likelihood performs well using simulated data.

To compute DIC based on observed-data likelihood, they introduced an important-sampling-

based algorithm. For three classes of latent variable models Chan and Grant (2016b) devel-

oped fast algorithms based on sparse matrix algorithms to compute observed-data-likelihood

based DIC. However, none of these studies have provided any theoretical reason to show why

conditional-likelihood based DIC is not justified and why the proposed solutions are asymp-

totically justified.

The paper is organized as follows. Section 2 reviews DIC for model comparison. In Section

3, we discuss several versions of DIC that exist in the literature for comparing latent variable

models. We also explain why one of them is widely used and why this version of DIC is not

theoretically justified. In Section 4, we introduce two versions of IDIC for comparing latent

variable models. Large sample properties of IDIC are studied. Several general algorithms

are introduced to compute IDIC in this section. Section 5 illustrates the method using three

popular models in economics and finance, namely asset pricing models, dynamic factor models,

stochastic volatility models. Section 6 concludes the paper. The Appendix collects the proof

of the theoretical results in the paper.

2 DIC for Bayesian Model Comparison

Arguably the most important development in the Bayesian model comparison literature in

recent years is DIC of Spiegelhalter, et al (2002). Compared with Bayes factors (BFs) which

compare models through their “posterior probabilities” and try to search for the “true”

model”, DIC tries to find a better model for making prediction.

DIC enjoys several desirable features. First, DIC is easy to calculate when the likelihood

function is available in closed-form and the posterior distributions of the models are obtained

by MCMC. Second, it is applicable to a wide range of statistical models. Third, unlike BFs, it

is not subject to the notorious Jeffreys-Lindley’s paradox and can be used when noninformative

or improper priors are used.

Consider a candidate parametric model, M , denoted by p(y|M,θ) which is used to fit the
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data y : = (y1, y2, · · · , yn)′, where θ is the parameter with P dimensions and θ ∈ Θ ⊆ RP .

We will write p(y|M,θ) as p(y|θ) when there is no confusion. DIC of Spiegelhalter, et al

(2002) is given by

DIC = D(θ̄) + 2PD, (1)

where D(θ) = −2 ln p(y|θ), θ̄ is the posterior mean of θ, and PD , which is known as “effective

number of parameters”, is given by:

PD = −2

∫
[ln p(y|θ)− ln p(y|θ̄)]p(θ|y)dθ. (2)

DIC and AIC share a very important common feature, that is, they try to find a model that

asymptotically minimizes the expected Kullback–Leibler divergence between the DGP and a

predictive distribution; see Li, et al (2017). However, DIC and AIC have some important

differences. First and foremost, AIC is based on the MLE while DIC is based on the posterior

mean. The penalty term in DIC is determined by PD whose value may depend on the prior.

The penalty term in AIC depends on the number of parameters and hence it is invariant to

the choice of priors.

As acknowledged in Spiegelhalter, et al (2002, 2014), the decision-theoretic justification

of DIC is not rigorous in the literature. Very recently, under some mild regularity conditions,

Li, et al (2017) provided a rigorous decision-theoretic justification to DIC when the standard

Bayesian large sample theory and the standard ML large sample theory are valid. In this

section, we first give a simple review of this justification for DIC.

Let yrep = (y1,rep, · · · , yn,rep) be the independent replicate data of n observations gener-

ated by the same mechanism that gives rise to the observed data y and g(y) is the DGP.

The quantity that measures the quality of the candidate model in terms of its ability to make

predictions is given by the KL divergence between g (yrep) and p(yrep|y)

KL [g (yrep) , p (yrep|y)] = Eyrep

[
ln

g (yrep)

p (yrep|y)

]
=

∫ [
ln

g (yrep)

p (yrep|y)

]
g (yrep) dyrep

=

∫
g (yrep) g (yrep) dyrep −

∫
p (yrep|y) g (yrep) dyrep, (3)

where p (yrep|y) is a predictive distribution. Note that the first term is the same across all

candidate models which is denoted by C. Thus, we get

KL [g (yrep) , p (yrep|y)] = C −
∫
p (yrep|y) g (yrep) dyrep.

If one chooses p (yrep|y) in (3) to be the plug-in distribution p
(
yrep|θ̂ML(y)

)
, where

θ̂ML(y) is the MLE of θ based on y, then it is well-known that (see, for example, Burnham
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and Anderson (2002))

Ey

{
2×KL

[
g (yrep) , p

(
yrep|θ̂ML(y)

)]}
= 2C + EyEyrep

[
−2 ln p

(
yrep|θ̂ML(y)

)]
= 2C + Ey

(
−2 ln p

(
y|θ̂ML(y)

)
+ 2P

)
+ o(1) = 2C + Ey (AIC) + o(1),

where the expectation Ey and Eyrep are related to g (y) and g (yrep), respectively. Hence,

AIC is an asymptotically unbiased estimator of the expected KL divergence minus a constant,

that is, Ey

{
2×KL

[
g (yrep) , p

(
yrep|θ̂ML(y)

)]}
− 2C.

If one chooses p (yrep|y) in (3) to be the plug-in distribution p
(
yrep|θ̄(y)

)
, where θ̄(y) is

the posterior mean of θ based on y, Li, et al (2017) showed that

Ey

{
2×KL

[
g (yrep) , p

(
yrep|θ̄(y)

)]}
= 2C + EyEyrep

[
−2 ln p

(
yrep|θ̄(y)

)]
= 2C + Ey

(
−2 ln p

(
y|θ̄(y)

)
+ 2PD

)
+ o(1) = 2C + Ey (DIC) + o(1). (4)

Hence, DIC is an asymptotically unbiased estimator of the expected KL divergence minus a

constant, that is, Ey

{
2×KL

[
g (yrep) , p

(
yrep|θ̄(y)

)]}
− 2C.

The smaller AIC/DIC, the better predictive performance of the candidate model. When

the prior information is dominated by likelihood, Li, et al (2017) also showed that DIC and

AIC are asymptotically equivalent, i.e.,

DIC = AIC + op(1), PD = P + op(1).

This explains why DIC has been explained as a Bayesian version of AIC in the literature.

As pointed out by Spiegelhalter, et al (2014), the plug-in predictive distribution for DIC

is not a proper predictive distribution and not invariant to reparametrization. Based on

the Bayesian predictive distribution, Li, et al. (2017) proposed the following version of DIC

(named DICBP ) for Bayesian model comparison,

DICBP = D(θ̄) + (1 + ln 2)PD, (5)

When choosing p (yrep|y) in (3) to be the full Bayesian predictive distribution pBP (yrep|y) =∫
p(yrep|θ)p(θ|y)dθ, Li, et al. (2017) showed that

Ey

{
2×KL

[
g (yrep) , p

BP (yrep|y)
]}

= 2C + EyEyrep

[
−2 ln pBP (yrep|y)

]
= 2C + Ey

(
DICBP

)
+ o(1), (6)

Hence, DICBP is an asymptotically unbiased estimator of the expected KL divergence which

measures the quality of the candidate model in terms of its ability to make the full Bayesian

prediction, minus a constant. Hence, the smaller DICBP , the better predictive performance of

the candidate model using the Bayesian predictive distribution. Since pBP (yrep|y) is invariant

to reparametrization, DICBP is also invariant to reparametrization.
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When deriving the asymptotic theory given in (4) and (6), Li, et al (2017) had to impose a

set of regularity conditions. Essentially these conditions ensure the following key asymptotic

properties. First, the Bernstein-von Mises theorem holds. That is, the posterior distribution

converges to a normal distribution with the MLE as its mean and the inverse of the second

derivative of the negative log-likelihood function evaluated at the MLE as its covariance.

Second, the standard large sample theory for ML holds, including consistency, asymptotic

normality with the covariance being the inverse of the second derivative of the negative log-

likelihood function evaluated at the true parameter value. Third, the difference between

the posterior mean and the MLE is Op(n
−1). Fourth, the difference between the posterior

covariance and the asymptotic covariance of MLE is Op(n
−2).

3 DIC for Latent Variable Models

3.1 MCMC and data augmentation

Let y = (y1, y2, · · · , yn)′ denote observed data and z = (z1, z2, · · · , zn)′ be latent variables.1

Let a latent variable model be indexed by the a set of P parameters, θ = (θ1, . . . , θP )′ ∈ Θ ⊆
RP . Let p(y|θ) be the likelihood function of the observed data (denoted the observed-data

likelihood), and p(y, z|θ) be the complete-data likelihood function. The relationship between

the two functions is:

p(y|θ) =

∫
p(y, z|θ)dz. (7)

Typically the integral in (7) does not have a closed-form solution. Consequently, the ML

method is difficult to use as it requires calculations of p(y|θ) for each value of θ during

numerical optimizations.

If posterior analysis is conducted based on the observed-data likelihood, p(y|θ), one would

end up with the same problem as in ML since p(y|θ) does not have a closed-form expression.

An alternative way to conduct posterior analysis is to treat z as parameters. Consequently, the

new likelihood function becomes p(y|z,θ) (i.e. conditional likelihood) which is often available

in closed-form. In the Bayesian literature, this parameter expansion technique is known as

data augmentation. The closed-form expression in the new likelihood function facilitates

MCMC sampling from the joint posterior distribution p(θ, z|y).

After a sufficiently long period for a burn-in phase, the simulated random samples can

be regarded as random observations from the joint distribution. The statistical analysis

can be established from these simulated posterior random observations. As a by-product to

the Bayesian analysis, one also obtains Markov chains for the latent variables z and hence

1Although we assume that the number of latent variables is the same as that of the observed data points,
such an assumption may be relaxed. A more general assumption is that the number of latent variables grows
proportionally with that of the observed data points. In this more general case, the theory discussed below
continues to hold.
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posterior analysis can be made about z. For further details on Bayesian analysis of latent

variable models via MCMC, including algorithms, examples and references, see Geweke, et al

(2011). From the above discussion, it can be seen that data augmentation is the key technique

for the Bayesian analysis of latent variable models which is a powerful alternative to ML.

3.2 DIC for latent variable models

As described in Section 3.1, in a latent variable model, there are three types of variables, the

observed data y, the latent variables z, and the parameters θ. In the frequentist framework,

the likelihood function, p(y|θ) =
∫
p(y, z|θ)dz, is clearly defined. In this case, only θ, not

z, is treated as parameters. In the Bayesian framework, however, depending on whether the

latent variables z are treated as parameters or not, three likelihood functions may be used,

p(y|θ), p(y, z|θ), and p(y|z,θ) which correspond to observed-data likelihood, complete-data

likelihood and conditional likelihood.

With these three likelihood functions, Celeux et al (2006) considered and compared eight

versions of DIC. Based on p(y|θ), the first three versions are

DIC1 = −4Eθ|y [ln p(y|θ))] + 2 ln p
(
y|θ̄(y)

)
,

DIC2 = −4Eθ|y [ln p(y|θ)] + 2 ln p
(
y|θ̂(y)

)
,

DIC3 = −4Eθ|y [ln p(y|θ)] + 2 ln
{
Eθ|y [p(y|θ)]

}
,

where θ̂(y) is the posterior mode. It is easy to show that DIC1 is the same as DIC given in

(1). Based on p(y, z|θ), next three versions are

DIC4 = −4Eθ,z|y[ln p(y, z|θ)] + 2Ez|y ln p
(
y, z|θ̄ (y, z)

)
,

DIC5 = −4Eθ,z|y [ln p(y, z|θ)] + 2 ln p
(
y, ẑJE(y)|θ̂JE(y)

)
,

DIC6 = −4Eθ,z|y [ln p(y, z|θ)] + 2E
z|y,θ̂(y)

[
ln p

(
y, z|θ̂(y)

)]
,

where in DIC4, θ̄ (y, z) is the posterior mean estimator of θ based on p(y, z|θ); in DIC5,

ẑJE(y) and θ̂JE(y) are the joint estimator, such as the posterior mean or the posterior mode

of (z,θ). Based on p(y|z,θ), the last two versions are

DIC7 = −4Eθ,z|y [ln p(y|z,θ)] + 2 ln p
(
y|ẑJE(y), θ̂JE(y)

)
,

DIC8 = −4Eθ,z|y [ln p(y|z,θ)] + 2Ez|y

[
ln p

(
y|z, θ̂(y, z)

)]
,

where in DIC8, θ̂(y, z) is an estimator of θ based on p(y, z|θ), such as posterior mean or the

posterior mode.

To determine which likelihood is used for constructing DIC, Spiegelhalter, et al (2002)

and Celeux et al (2006) both used a notion called “focus”. If only θ is the parameters in
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focus, the observed-data likelihood p(y|θ) is used to construct DIC. This choice of focus leads

to DIC1 and DIC2. If both z and θ are in “focus”, the conditional likelihood p(y|z,θ) is

used for constructing DIC. This choice of “focus” leads to DIC7 and DIC8. Clearly, the

other three choices, namely DIC4, DIC5 and DIC6, are logically incoherent as far as the

“focus” is concerned. This is because the latent variables z are treated as both variables and

parameters. Similarly, DIC8 is logically incoherent because parameters in “focus” are (z,θ)

in the first term, but become z in the second term. As pointed out by Plummer (2006), DIC3

does not have a “focus” corresponding to it and it is not clear which likelihood is used to

construct DIC3. Therefore, only DIC1, DIC2, and DIC7 are logically coherent. Furthermore,

Celeux et al (2006) compared DIC1 with DIC2 and found the evidence that DIC2 is better

than DIC1 in the sense that the posterior mode, but not the posterior mean, ensures positivity

of PD. However, under the set of regularity conditions listed below, we can show that DIC1

and DIC2 are asymptotically equivalent. In practice, the posterior mode is more difficult to

compute than the posterior mean. Hence, from a computational viewpoint, it is easier to

obtain DIC1 than DIC2, making DIC1 more popular in practice.

Given the discussion above, not surprisingly, DIC1 is monitored and reported in WinBUGS

when there is no latent variable. To compute DIC1, it is generally required that observed-

data likelihood p(y|θ) be available in closed-form because Eθ|y [ln p(y|θ))] may be arbitrarily

well approximated by 1
J

∑J
j=1 ln p

(
y|θ(j)

)
for a large J and 1

J

∑J
j=1 ln p

(
y|θ(j)

)
is easy to

compute. The observed likelihood function is often available in closed-form when there is no

latent variable.

Unfortunately, for many latent variable models, such as state-space models, the observed-

data likelihood p(y|θ) is not available in closed-form. In this case, DIC1 is difficult to compute

because it needs to evaluate the observed-data likelihood for J times. Given that J is usually

large, computing 1
J

∑J
j=1 ln p

(
y|θ(j)

)
without an analytical expression for ln p(y|θ)) is time

consuming. In DIC7, the latent variables are regarded as parameters and ln p(y|z,θ) often

has an analytical expression. Hence, it is easy to compute 1
J

∑J
j=1 ln p

(
y|z(j),θ(j)

)
. That is

why, when there are latent variables, data augmentation is used to obtain Markov chains for

both z and θ. Based on the MCMC output for z and θ and by choosing the deviance based

on p(y|z,θ), DIC7 can be easily computed. Following the suggestion of Spiegelhalter, et al

(2002), DIC7 is monitored and reported in WinBUGS for latent variable models. Clearly the

use of DIC7 is for computational convenience, as explained in Spiegelhalter, et al (2002). The

corresponding “focus” contains both z and θ due to data augmentation.

However, from a theoretical viewpoint, DIC7 has a few problems. Firstly, with data aug-

mentation, the dimension of the parameter space is much bigger, increasing from P to n+P .

Since the dimension of the parameter space grows proportionally with the number of data

points, the new likelihood function p(y|z,θ) is not regular and it leads to the well-known

incidental parameter problem in econometrics where information about these incidental pa-
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rameters stops accumulating after a finite number of observations, often one, have been taken;

see for example Neyman and Scott (1948) and Lancaster (2000). A consequence of the in-

cidental parameter problem is that the ML estimator is inconsistent. For example, the ML

estimator of z is inconsistent as its variance does not go to zero as n → ∞. Similarly, the

Bayesian large sample theory becomes invalid; see Page 89-90 of Gelman, et al (2013). Ob-

viously, the failure of the standard asymptotic theory invalidates the asymptotic justification

of DIC7. In fact, it also invalidates the asymptotic justification of AIC if AIC is constructed

from conditional likelihood.

To illustrate this problem, let yi|αi, σ2 ∼ N(αi, σ
2), αi ∼ N(0, 1) for i = 1, ..., n. Clearly

yi|σ2 ∼ N(0, σ2 + 1) and thus the MLE of σ2 is σ̂2 = 1
n

∑n
i=1 y

2
i − 1. It is straightforward to

show σ̂2 is
√
n-consistent and asymptotically normally distributed. However, if {αi}ni=1 are

treated as parameters, they are incidental in the sense of Neyman and Scott (1948). The MLE

of αi is α̂i = yi ∼ N(αi, σ
2) which is correctly centered at αi but inconsistent as the variance

of MLE does not go to zero as n grows. If σ2 = 1 and is assumed to be known, then P = n

and the posterior distribution is αi|yi ∼ N (0.5yi, 0.5). The posterior mean (which is also the

posterior mode) is αi = 0.5yi which is not centered at the MLE. The posterior variance is 0.5

which does not go to zero as n grows. Clearly, both the standard ML large sample theory

and the Bayesian large sample theory fail to hold. These results are not surprising as only

one observation (yi) contains information about αi.

Let α = (α1, α2, · · · , αn)′ and α̃(y) be an estimator of α. By evaluating (3) we have

KL [g (yrep) , p (yrep|α̃(y))] = Eyrep

[
ln

g (yrep)

p (yrep|α̃ (y)))

]
= C −

∫
ln p (yrep|α̃(y)) g(yrep)dyrep

= C +

[
n

2
ln(2πσ2) +

n
(
σ2 + 1

)
2σ2

+

n∑
i=1

α̃2
i (y)

2σ2

]
. (8)

When σ2 = 1, by plugging the MLE of αi (i.e. α̂i = yi) into (8), multiplying both sides by 2

and taking expectation with respect to y, we have

Ey (2×KL [g (yrep) , p (yrep|α̂1, . . . , α̂n)]− 2C) = n ln(2π) + 2n+
n∑
i=1

E
(
y2
i

)
= n ln(2π) + 4n.

However,

Ey(AIC) = Ey (−2 ln p (y|α̂1, . . . , α̂n)) + 2n = n ln(2π) + 2n.

Similarly, by plugging the posterior mean of αi (i.e. αi = 0.5yi) into (8), multiplying both
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sides by 2 and taking expectation with respect to y, we have

Ey (2×KL [g (yrep) , p (yrep|α1, . . . , αn)]− 2C) = n ln(2π) + 2n+
n∑
i=1

E
(
y2
i

)
4

= n ln(2π) + 2.5n.

However,

PD = −2

∫
[ln p(y|α)− ln p (y|α1, . . . , αn)] p(α|y)dα

= −2

∫
[ln p(y|α)] p(α|y)dα+ 2 ln p (y|α1, . . . , αn)

=

n∑
i=1

∫
(yi − αi)2p(αi|yi)dαi −

∑n
i=1 y

2
i

2

=

n∑
i=1

[
1

2
+
y2
i

4

]
−
∑n

i=1 y
2
i

2
=
n

2
−
∑n

i=1 y
2
i

4
,

Ey (DIC) = Ey (−2 ln p (y|α1, . . . , αn) + 2PD)

= Ey

(
n ln(2π) +

∑n
i=1 y

2
i

2
+ 2PD

)
= n ln(2π) + n.

Thus,

Ey (2×KL [g (yrep) , p (yrep|α̂1, . . . , α̂n)]− 2C) = Ey(AIC) + 2n, (9)

Ey (2×KL [g (yrep) , p (yrep|α1, . . . , αn)]− 2C) = Ey(DIC) + 1.5n, (10)

Ey(PD) = 0 6= n+ o(1), (11)

Ey(AIC−DIC) = n 6= op(1). (12)

According to (9), AIC is a biased estimator of the corresponding expected KL divergence minus

a constant asymptotically. According to (10), DIC is a biased estimator of the corresponding

expected KL divergence minus a constant asymptotically. According to (11), on average the

effective number of parameter (PD) is zero. According to (12), on average AIC differs from

DIC by n. All these observations are at odds with the theory discussed earlier.

Secondly, sometimes a statistical model without latent variable can be represented by

another model with latent variables. A leading example in the Bayesian literature is the

Student t distribution which can be rewritten as a normal-inverse-gamma distribution where

the variance is assumed to follow an inverse-gamma distribution and hence is treated as a

latent variable. These two equivalent representations, even under the same priors, often lead

to very different DIC values. The reason for this sharp discrepancy is that in the model

without latent variables, DIC1 is used while in the model with latent variables, DIC7 is used.
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This problem arises in Section 8.2 of Spiegelhalter, et al (2002) and in Model 8 of Berg, et al

(2004).

Thirdly, due to data augmentation, the dimension of the parameter space becomes much

larger and hence DIC7 is expected to be sensitive to transformations of latent variables. To

illustrate this problem, we consider a simple transformation of latent variables in the well-

known Clark model (Clark, 1973) which is given by,

Model 1 : yt ∼ N(µ, exp(ht)), ht ∼ N(0, σ2), t = 1, · · · , n. (13)

An equivalent representation of the model is

Model 2 : yt ∼ N(µ, σ2
t ), σ

2
t ∼ LN(0, σ2), t = 1, · · · , n, (14)

where LN denotes the log-normal distribution. In both models there are latent variables. In

Model 2 the latent variable is the volatility σ2
t while the latent variable is the log-volatility

ht = lnσ2
t in Model 1. Hence, following the usual practice in the literature, DIC7 is the

relevant version. Since the two models are identical, we expect the two models give the

same DIC7 value. To calculate DIC7, we simulate 1000 observations from the model with

µ = 0, σ2 = 0.5. Vague priors are selected for the two parameters, namely, µ ∼ N(0, 100),

σ−2 ∼ Γ(0.001, 0.001). We run Gibbs sampler to make 240,000 simulated draws from the

posterior distributions. The first 40,000 are discarded as burn-in samples. The remaining

observations with every 10th observation are collected as effective observations for statistical

inference. With data augmentation, the latent variables, ht and σ2
t are regarded as parameters,

and we find that PD = 89.806 and DIC7 = 2884.37 for Model 1 but PD = 59.366 and

DIC7 = 2852.85 for Model 2. The difference is very large. Given that we have the identical

models and priors, and use the same dataset, the vast difference suggests that DIC7 and the

corresponding PD are very sensitive to transformations of latent variables.

To summarize the problems with DIC in the context of latent variable models, while DIC7

is easier to calculate and has been used widely in practice but suffers from several theoretical

problems, While DIC1 has rigorously theoretical justification, it is very hard to compute from

MCMC output since p(y|θ) is not available in closed-form.

There are several recent studies that document the problem with DIC7. In the con-

text of negative binomial and Poisson-lognormal models, Millar (2009) found strong evidence

of poor performance of DIC7 using simulated data. For example, he simulated data from

a Poisson-lognormal model but found that DIC7 almost always prefers the Poisson-gamma

model instead of the Poisson-lognormal model. Millar and McKechnie (2014) documented

the same problem of DIC7 in state-space models using simulated data. To deal with the

problem, they suggested a one-step-ahead DIC, where prediction is conditional on the state

at the previous time point. Chan and Grant (2016a) showed that, in the context of stochastic

volatility models, DIC7 tends to favor overfitted models in a Monte Carlo study. To deal with
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the problem, they suggested using DIC1. To compute DIC1, they introduced an important-

sampling-based algorithm. In the context of three classes of latent variable models (namely

factor models, linear Gaussian state-space models and semiparametric regression models),

Chan and Grant (2016b) developed fast algorithms based on sparse matrix algorithms to

compute DIC1. The proposed algorithms require repeated evaluations of observed-data likeli-

hood. For models where observed-data likelihood cannot be quickly evaluated, such as general

nonlinear random-Gaussian models, it is difficult to calculate DIC1.

4 Integrated DIC for Latent Variable Models

Based on the discussion above, DIC7 lacks of theoretical justification and DIC1 is difficult to

compute for latent variable models. There is a great need to introduce a model selection cri-

terion which has theoretical justification, and is generally applicable to general latent variable

models and feasible to compute. In this section, we propose two versions of DIC (denoted as

integrated-likelihood DIC or IDIC) based on two different predictive distributions.

4.1 IDIC based on plug-in predictive distribution

When p (yrep|y) in (3) is chosen to be the plug-in distribution p
(
yrep|θ̄(y)

)
, where θ̄(y) is

the posterior mean of θ on the data y (when there is no confusion, we simple write θ̄(y) as

θ̄), we propose the following IDIC,

IDIC = D(θ̄) + 2tr
{
I(θ̄)V (θ̄)

}
= D(θ̄) + 2P ID, (15)

where D(θ) = D(θ) = −2 ln p(y|θ),

P ID = tr
{
I(θ̄)V (θ̄)

}
, (16)

and

I(θ) = −∂
2 ln p(y|θ)

∂θ∂θ′
, V (θ̄) = E

[(
θ − θ̄

) (
θ − θ̄

)′ |y] .
Clearly, the leading term in IDIC is the same as that in DIC1. However, the penalty term in

DIC1 is 2PD while it is 2P ID in IDIC.

To theoretically justify IDIC, we will develop the large sample properties of IDIC under

some regularity conditions, that is, in the same spirit as how DIC1 has been justified by Li, et al

(2017). In particular, we will show that IDIC can approximate AIC and P ID can approximate

P , the number of parameters. The order for approximation errors is given. Consequently,

IDIC provides asymptotically unbiased estimation to the KL divergence based on the plug-in

predictive distribution.

Let y be a collection of random variables defined on a probability space {Ω,F , ℘θ}, where

℘θ is a probability measure that depends on parameter θ ∈ Θ, which is a compact subset
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of RP . Let yt := (y0, y1, . . . , yt) for any 0 ≤ t ≤ n and lt
(
yt,θ

)
= ln p(yt|θ) − ln p(yt−1|θ)

be the conditional log-likelihood for the tth observation for any 1 ≤ t ≤ n. When there is

no confusion, we suppress lt
(
yt,θ

)
as lt (θ) so that the log-likelihood function ln p(y|θ) is∑n

t=1 lt (θ).2 And define l
(j)
t (θ) to be the jth derivative of lt (θ) and l

(j)
t (θ) = lt (θ) when

j = 0. We introduce the following functions

s(yt,θ) :=
∂ ln p(yt|θ)

∂θ
=

t∑
i=1

l
(1)
i (θ) , H(yt,θ) :=

∂2 ln p(yt|θ)

∂θ∂θ′
=

t∑
i=1

l
(2)
i (θ) ,

st(θ) := l
(1)
t (θ) = s(yt,θ)− s(yt−1,θ), Ht(θ) := l

(2)
t (θ) = H(yt,θ)−H(yt−1,θ),

Bn (θ) := V ar

[
1√
n

n∑
t=1

l
(1)
t (θ)

]
, H̄n(θ) :=

1

n

n∑
t=1

Ht(θ),

J̄n(θ) :=
1

n

n∑
t=1

[st(θ)− s̄n(θ)] [st(θ)− s̄n(θ)]′ , s̄n(θ) =
1

n

n∑
t=1

st(θ),

Hn(θ) :=

∫
H̄n(θ)g (y) dy, Jn(θ) =

∫
J̄n(θ)g (y) dy,

In this paper, as in Li, et al (2017), we impose the following regularity conditions.

Assumption 1: Θ ⊂ RP is compact.

Assumption 2: {yt}∞t=1 satisfies the strong mixing condition with the mixing coefficient

α (m) = O
(
m
−2r
r−2
−ε
)

for some ε > 0 and r > 2.

Assumption 3: For all t, lt (θ) satisfies the standard measurability and continuity condi-

tion, and the eight-times differentiability condition on F t−∞×Θ where F t−∞ = σ (yt, yt−1, · · · ).
Assumption 4: For j = 0, 1, 2, for any θ,θ′ ∈ Θ,

∥∥∥l(j)t (θ)− l(j)t
(
θ′
)∥∥∥ ≤ cjt

(
yt
) ∥∥θ − θ′∥∥

in probability, where cjt
(
yt
)

is a positive random variable with suptE
∥∥∥cjt (yt)∥∥∥ < ∞ and

1
n

∑n
t=1

(
cjt
(
yt
)
− E

(
cjt
(
yt
))) p→ 0.

Assumption 5: For j = 0, 1, . . . , 8, there exists a function Mt(y
t) such that for all θ ∈ Θ,

l
(j)
t (θ) exists, supθ∈Θ

∥∥∥l(j)t (θ)
∥∥∥ 6Mt(y

t), and suptE
∥∥Mt(y

t)
∥∥r+δ ≤M <∞ for some δ > 0,

where r is the same as that in Assumption 2.

Assumption 6:
{
l
(j)
t (θ)

}
is L2-near epoch dependent with respect to {yt} of size −1

for 0 6 j 6 1 and −1
2 for j = 2 uniformly on Θ.

Assumption 7: Let θpn be the pseudo-true value that minimizes the KL loss between the

DGP and the candidate model

θpn = arg min
θ∈Θ

1

n

∫
ln

g(y)

p(y|θ)
g(y)dy,

where {θpn} is the sequence of minimizers interior to Θ uniformly in n. For all ε > 0,

lim
n→∞

sup sup
Θ\N(θ

p
n,ε)

1

n

n∑
t=1

{E [lt (θ)]− E [lt (θpn)]} < 0, (17)

2In the definition of log-likelihood, we ignore the initial condition ln p(y0). For weakly dependent data, the
impact of the initial condition is asymptotically negligible.
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where N (θpn, ε) is the open ball of radius ε around θpn.

Assumption 8: The sequence {Hn (θpn)} is negative definite and the sequence {Bn (θpn)}
is positive definite, both uniformly in n.

Assumption 9: Hn (θpn) + Bn (θpn) = o (1).

Assumption 10: The prior density p(θ) is eight-times continuously differentiable, p(θpn)

> 0 and
∫
‖θ‖2 p(θ)dθ <∞.

Lemma 4.1 below gives a high order approximation to the posterior mean and the posterior

variance based on a high order Laplace expansion. To apply the Laplace expansion, we need

to fix more notations. For convenience of exposition, we let H
(j)
n (θ) = 1

n

∑n
t=1 l

(j)
t (θ) for

j = 3, 4, 5. Let π (θ) = ln p (θ), p(j) (θ), π(j) (θ) be the jth order derivatives of p (θ), π (θ)

for j = 1, 2, and p̂, π̂, p̂(j) and π̂(j) be the values of functions p (θ), π (θ), p(j) (θ) and π(j) (θ)

evaluated at θ̂ML(y). When there is no confusion, we simply write θ̂ML(y) as θ̂.

Lemma 4.1 Let V ar(θ|y) = E
[
(θ − θ̄)(θ − θ̄)′|y

]
be the posterior variance of θ. Under

Assumptions 1-10, it can be shown that

θ̄ = θ̂ +
1

n
B1

1 +
1

n2

(
B1

2 −B1
3

)
+Op

(
1

n3

)
,

vec [V ar(θ|y)] = − 1

n
vec

(
H̄−1
n

(
θ̂
))

+
1

n2
(F1 + F2) +Op

(
1

n3

)
,

where

B1
1 = H̄−1

n

p̂(1)

p̂
− 1

2
H̄−1
n H̄(3)′

n vec
(
H̄−1
n

)
,

B1
2 = −1

8
H̄−1
n H̄(5)′

n vec
[
H̄−1
n ⊗ vec

(
H̄−1
n

)]
+

35

48

[
H̄−1
n ⊗ vec

(
H̄−1
n

)]′
H̄(4)
n H̄−1

n H̄(3)′
n vec

(
H̄−1
n

)
−35

48
H̄−1
n H̄(3)′

n vec
(
H̄−1
n

) [
vec

(
H̄−1
n

)′
H̄(3)
n H̄−1

n H̄(3)′
n vec

(
H̄−1
n

)]
−5

8
H̄−1
n

p̂(1)

p̂
tr
[(

H̄−1
n ⊗ vec

(
H̄−1
n

))
H̄(4)′
n

]
+

35

24
H̄−1
n

p̂(1)

p̂

[
vec

(
H̄−1
n

)′
H̄(3)
n H̄−1

n H̄(3)′
n vec

(
H̄−1
n

)]
−5

4
H̄−1
n H̄(3)′

n vec
(
H̄−1
n

)
tr

[
H̄−1
n

p̂(2)

p̂

]
+

1

2
H̄−1
n

p̂(3)

p̂

′

vec
(
H̄−1
n

)
,

B1
3 = B1

1 ×B1
4 ,
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B1
4 =

1

2
tr

[
H̄−1
n

p̂(2)

p̂

]
− 1

2
vec

(
H̄−1
n

)′
H̄(3)
n H̄−1

n

p̂(1)

p̂

+
5

24

[
vec

(
H̄−1
n

)′
H̄(3)
n H̄−1

n H̄(3)′
n vec

(
H̄−1
n

)]
+

1

8
tr
[[

H̄−1
n ⊗ vec

(
H̄−1
n

)]
H̄(4)′
n

]
,

F1 = − 7

16
vec

(
H̄−1
n

)
tr
[(

H̄−1
n ⊗ vec

(
H̄−1
n

)′)
H̄(4)
n

]
+

25

48
vec

(
H̄−1
n

) [
vec

(
H̄−1
n

)′
H̄(3)
n H̄−1

n H̄(3)′
n vec

(
H̄−1
n

)]
,

F2 = −5

2
vec

[
H̄−1
n H̄(3)′

n vec
(
H̄−1
n

) p̂(1)

p̂

′

H̄−1
n

]
+

1

4
vec

(
H̄−1
n

)
tr

[
H̄−1
n

p̂(2)

p̂

]

+
1

2
vec

(
H̄−1
n

)
vec

(
H̄−1
n

)′
H̄(3)
n H̄−1

n

p̂(1)

p̂
,

vec denotes the column-wise vectorization of a matrix, and tr denotes the trace of a matrix.

Remark 4.1 Under the different regularity conditions, the Bernstein-von Mises theorem

shows that the posterior distribution converges to a normal distribution with the MLE as its

mean and the inverse of the second derivative of the negative log-likelihood function evaluated

at the MLE as its variance. Based on the Bernstein-von Mises theorem, when the parameter

is one-dimension, Ghosh and Ramamoorthi (2003) developed the similar results with Lemma

4.1 for the iid case. In particular, Ghosh and Ramamoorthi (2003) showed that

θ̄ − θ̂ = op(n
−1/2), V ar(θ|y) +

1

n
H̄−1
n

(
θ̂
)

= op(n
−1).

Our Lemma 4.1 extend the results of Ghosh and Ramamoorthi (2003) in three aspects: (1) to

the weakly dependent case; (2) to the multivariate-dimension case; (3) giving the exact order

of the first and second moments of the difference between the posterior distribution and the

asymptotic normal distribution. From Lemma 4.1, we can easily obtain that

θ̄ − θ̂ = Op(n
−1), V ar(θ|y) +

1

n
H̄−1
n

(
θ̂
)

= Op(n
−2).

Based on this lemma, we can obtain the exact order of the difference between IDIC and

AIC as follows.

Theorem 4.1 Under Assumptions 1-10, we have

P ID = P +
1

n
C1 +

1

n
C2 +Op

(
1

n2

)
,
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IDIC = AIC +
1

n
D1 +

1

n
D2 +Op

(
1

n2

)
,

where

C1 =
7P

16
C11 +

24− 25P

48
C12, C2 =

3− P
2

C21 −
P

4
C22 −

P

4
C23,

D1 =
7P

8
C11 +

18− 25P

24
C12, D2 = (4− P )C21 −

P

2
C22 −

2 + P

2
C23,

C11 = tr

[(
H̄n

(
θ̂
)−1
⊗ vec

(
H̄n

(
θ̂
)−1

)′)
H̄(4)
n

(
θ̂
)]
,

C12 = vec

(
H̄n

(
θ̂
)−1

)′
H̄(3)
n

(
θ̂
)

H̄n

(
θ̂
)−1

H̄(3)
n

(
θ̂
)′
vec

(
H̄n

(
θ̂
)−1

)
,

C21 = vec

(
H̄n

(
θ̂
)−1

)′
H̄(3)
n

(
θ̂
)

H̄n

(
θ̂
)−1

π(1)
(
θ̂
)
,

C22 = tr

[
H̄n

(
θ̂
)−1

π(2)
(
θ̂
)]

, C23 = π(1)
(
θ̂
)′

H̄n

(
θ̂
)−1

π(1)
(
θ̂
)
.

Corollary 4.2 Under Assumptions 1-10, we have

Ey

{
2×KL

[
g (yrep) , p

(
yrep|θ̄

)]}
= 2C + Ey

[
−2 ln p

(
y|θ̄
)

+ 2P ID
]

+ o(1)

= 2C + Ey (IDIC) + o(1).

Remark 4.2 In Equation (15) on Page 590, Spiegelhalter, et al. (2002) obtained the expres-

sion for P ID and claimed that P ID approximates the PD component in DIC1 and P in AIC.

Unfortunately, to the best of our knowledge, P ID has never been implemented in practice and

WinBUGS does not report P ID. Moreover, the conditions under which P ID ≈ PD ≈ P holds

true were not specified in Spiegelhalter, et al (2002). The order of the approximation error

was unknown. According to Theorem 4.1, the order of the difference between P and P ID and

that between AIC and IDIC are both Op(n
−1). Furthermore, combined with Lemma 3.3 in Li

et al (2017), it is easy to show that the order of approximation error between PD and P ID and

that between DIC1 and IDIC are also Op(n
−1).

Remark 4.3 Theorem 4.1 clearly shows that the order of difference between AIC and IDIC

is Op(n
−1). For this reason, both IDIC and DIC1 can be regarded as the Bayesian version of

AIC. When the prior is informative and the sample size n is finite, IDIC may give different

value from AIC. Like DIC1, an important contribution of IDIC is that it provides an approach

to measure the model complexity when the informative prior is available.
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Remark 4.4 Corollary 4.2 is the direct result of Theorem 4.1 and Theorem 3.1 of Li, et

al (2017). It gives the decision-theoretical justification of IDIC. As DIC1, IDIC is also an

asymptotically unbiased estimator of the expected KL divergence minus a constant, that is,

Ey

{
2×KL

[
g (yrep) , p

(
yrep|θ̄

)]}
−2C. Hence, as DIC1, IDIC selects a model that minimizes

the expected KL divergence between the DGP and the plug-in predictive distribution. The

smaller the value of IDIC, the better the predictive performance of the candidate latent variable

model.

Remark 4.5 From the discussion above, DIC1 and IDIC share the same asymptotic prop-

erties. However, as explained before, there is an important difference between DIC1 and

IDIC, that is, the penalty term takes a different expression. It is this difference that makes

IDIC easier to compute from MCMC output. To compute PD in DIC1, one has to evaluate
1
J

∑J
j=1 ln p

(
y|θ(j)

)
and hence calculate p

(
y|θ(j)

)
for J times. For latent variable models,

since p
(
y|θ(j)

)
is not available in closed-form, the computational cost is high. However, to

compute P ID in IDIC, one needs to evaluate the second derivative of observed-data likelihood

only once, which is computationally much less expensive. In Section 4.3, we will introduce

some efficient algorithms to evaluate D(θ̄) and I(θ̄).

Remark 4.6 In the context of latent variable models, while DIC7 is trivial to calculate but

cannot be theoretically justified, DIC1 is theoretically justified but hard to compute. IDIC

solves this dilemma because it is theoretically justified and computational inexpensive. The

corresponding deviance is based on the observed-data likelihood function and the latent vari-

ables are not treated as parameter. It is important to point out that IDIC is computed from

MCMC output. While IDIC does not treat latent variables as parameters, MCMC output may

be obtained based on the data augmentation technique without affecting the asymptotic justifi-

cation of IDIC. Return to the Clark model, with the same setting as before, we get P ID = 1.75

for Model 1 and P ID = 1.80 for Model 2. There is no significant difference between them.

Moreover, these two values are close to 2, that is the actual number of parameters in the

model. This is what we expect given that the vague priors are used. The small difference

between P ID and P arises due to the simulation error and the priors.

4.2 IDIC based on Bayesian predictive distribution

It is well-known that DIC is not invariant to reparametrization; see Spiegelhalter, et al (2014).

This problem motivated Li, et al (2017) to introduce DICBP based on the Bayesian predictive

distribution. Li, et al (2017) shows that DICBP is asymptotically unbiased for estimating

the expected loss function associated with the KL divergence between the true DGP and

the Bayesian predictive distribution minus a constant. For models without latent variables,
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DICBP of Li, et al takes the form

DICBP = D(θ̄) + (1 + ln 2)PD.

For latent variable models, just as DIC1, DICBP is difficult to compute. Hence, we propose

a version of IDIC based on the Bayesian predictive distribution (call it as IDICBP ) which is

defined as

IDICBP = D(θ̄) + (1 + ln 2)P ID = D(θ̄) + (1 + ln 2)tr
{
I(θ̄)V (θ̄)

}
. (18)

Theorem 4.3 Under Assumptions 1-10, it can be shown that

IDICBP = DICBP + op(1),

Ey

{
2×KL

[
g (yrep) , p

BP (yrep|y)
]}

= 2C + EyEyrep

[
−2 ln pBP (yrep|y)

]
= 2C + Ey

(
DICBP

)
+ o(1) = 2C + Ey

(
IDICBP

)
+ o(1).

Remark 4.7 Theorem 4.3 is the direct result of Theorem 4.1 and Theorem 4.1 of Li, et al

(2017). According to this corollary, IDICBP is an asymptotically unbiased estimator of the

expected KL divergence which measures the quality of the candidate model in terms of its

ability to make predictions using the Bayesian predictive distribution. Hence, the smaller the

value of IDICBP , the better predictive performance of the candidate model using the Bayesian

predictive distribution.

Remark 4.8 According to Li, et al (2017), the Bayesian prediction distribution pBP (yrep|y)

has smaller risk than the plug-in predictive distribution p
(
yrep|θ̄

)
asymptotically. From The-

orem 4.1 in Li, et al (2017) and Corollary 4.3, we can conclude that when n goes to infinity,

the risk for the model chosen by IDIC is equivalent to that by DIC1 and the risk of the model

chosen by IDICBP is equivalent to that by DICBP
1 . However, the model chose by IDICBP

yields a smaller risk than that by IDIC asymptotically. Thus, IDICBP perform better than

IDIC in choosing a model to make prediction. Furthermore, DICBP
1 and IDICBP perform

equivalently in choosing a model to make prediction. Clearly, IDIC and IDICBP are computa-

tionally tractable alternatives to DIC1 and DICBP
1 for comparing latent variable models after

MCMC output is available.

4.3 Computing IDIC and IDICBP for latent variable models

Since IDIC and IDICBP have nearly identical expressions with a small difference in the penalty

terms, knowing one of them implies that the other is automatically known. For this reason,

we focus on the computational issue of IDIC in this section. IDIC has two terms, ln p(y|θ̄)

and P ID. When ln p(y|θ) does not have an analytical expression, both ln p(y|θ̄) and P ID are

difficult to compute.

19



To calculate IDIC, one needs to calculate p(y|θ) and its derivatives with respect to θ

(but there is no need to optimize p(y|θ)). Since there is no analytical expression for p(y|θ)

for many latent variable models, in this section, we show how to use the EM algorithm, the

Kalman filter, and the particle filters to calculate p(y|θ) and its derivatives with respect to θ.

4.3.1 Computing IDIC by the EM algorithm

In this subsection we show how the EM algorithm may be used to evaluate p(y|θ̄), the second

derivative of the observed-data likelihood function, and hence IDIC for the latent variable

models. The EM algorithm is a powerful tool to deal with latent variable models. Instead of

maximizing the observed-data likelihood function, the EM algorithm maximizes the so-called

Q function given by

Q(θ|θ(r)) = E
θ(r){Lc(y,z|θ)|y, θ(r)}, (19)

where Lc(y,z|θ) := p(y, z|θ) is the complete-data likelihood function. The Qfunction is the

conditional expectation of Lc(y,z|θ) with respect to the conditional distribution p(z|y,θ(r))

where θ(r) is a current fit of the parameter. The EM algorithm consists of two steps: the

expectation (E) step and the maximization (M) step. The E-step evaluates Q(θ|θ(r)). The

M-step determines a θ(r) that maximizes Q(θ|θ(r)). Under some mild regularity conditions,

for large enough r, {θ(r)} obtained from the EM algorithm is the MLE, θ̂. For more details

about the EM algorithm, see Dempster et al. (1977).

Although the EM algorithm is a good approach to dealing with latent variable models, the

numerical optimization in the M-step is often unstable. Not surprisingly, the EM algorithm has

been less popular to estimate latent variables models compared with the MCMC techniques.

However, we will show that, without using the numerical optimization in the M-step, the

theoretical properties of the EM algorithm facilitate computation of IDIC for latent variable

models.

It is noted that for any θ and θ
∗
in Θ, letH(θ|θ∗) =

∫
ln p(z|y,θ)p(z|y,θ∗)dz, the so-called

H function in the EM algorithm. It was shown in that

ln p(y|θ) = Q
(
θ|θ∗

)
−H

(
θ|θ∗

)
.

Hence, ln p(y|θ̄) may be obtained as

ln p(y|θ̄) = Q(θ̄|θ̄)−H(θ̄|θ̄). (20)

It can be seen that even when Q(θ̄|θ̄) is not available in closed form, it is easy to evaluate

from MCMC output because

Q(θ̄|θ̄) =

∫
ln p(y, z|θ̄)p(z|y, θ̄)dz ≈ 1

M

M∑
m=1

ln p
(
y, z(m)|θ̄

)
,
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where {z(m)}Mm=1 are drawn from the posterior distribution p(z|y, θ̄).

For the second term in (20), if p(z|y, θ̄) is a standard distribution, H(θ̄|θ̄) can be easily

evaluated from MCMC output as

H(θ̄|θ̄) =

∫
ln p(z|y, θ̄)p(z|y, θ̄)dz ≈ 1

M

M∑
m=1

ln p
(
z(m)|y, θ̄

)
.

However, if p(z|y, θ̄) is not a standard distribution, an alternative approach has to be used,

depending on the specific model in consideration. We now consider two situations.

First, if the complete-data (yi, zi) are independent when i 6= j, and zi is low-dimensional,

say ≤ 5, then a nonparametric approach may be used to approximate p(z|y,θ). Note that

H(θ|θ) =

∫
ln p(z|y,θ)π(z|y,θ)dz =

n∑
i=1

∫
ln p(zi|yi,θ)π(zi|y,θ)dzi =

n∑
i=1

Hi(θ|θ).

Computation of Hi(θ|θ) requires an analytic approximation to p(zi|yi,θ) which can be con-

structed using a nonparametric method. In particular, MCMC allows one to draw some

effective samples from p (zi|yi,θ). Using these random samples, one can then use nonpara-

metric techniques such as the kernel-based methods to approximate p (zi|yi,θ). In a recent

study, Ibrahim et al. (2008) suggested using a truncated Hermite expansion to approximate

p(zi|yi,θ).

As a simple illustration, we apply this method to the Clark model. When the Gaus-

sian kernel method is used, we get ln p(y|θ̄) = −1448.97, IDIC= 2901.46 for Model 1

and ln p(y|θ̄) = −1449.41, IDIC= 2902.42 for Model 2. These two sets of numbers are

nearly identical. However, if the latent variable models are regarded as parameters, we get

DIC7 = 2884.37 for Model 1 and DIC7 = 2852.85 for Model 2. The highly distinctive dif-

ference between them suggests that DIC7 is not a reliable model selection criterion for the

model. Note that DIC1 is very difficult to compute in this case.

Second, for some latent variable models, the latent variables z follow a multivariate normal

distribution and the observed variables y are independent conditional on z. This class of

models is referred to as the Gaussian latent variable models in the literature. In economics

and finance, many latent variable models belong to this class of models, including dynamic

linear models, dynamic factor models, various forms of stochastic volatility models and credit

risk models. In these models, the observed-data likelihood is non-Gaussian but has a Gaussian

flavor in the sense that the posterior distribution, p(z|y,θ), may be expressed as,

p(z|y,θ) ∝ exp

(
−1

2
z′V (θ)z +

n∑
i=1

ln p (yi|zi,θ)

)
.

Rue et al. (2004) and Rue et al. (2009) showed that this type of posterior distribution can

be well approximated by a Gaussian distribution that matches the mode and the curvature
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at the mode. The resulting approximation is known as the Laplace approximation and can

be expressed as,

p(z|y,θ) ∝ exp

(
−1

2
z′(V (θ) + diag(c))z

)
,

where c comes from the second order term in the Taylor expansion of
∑n

i=1 ln p(yi|zi) at the

mode of p(z|y,θ). The Laplace approximation may be employed to compute H(θ̄|θ̄). After

p(y|θ̄) is obtained, it is easy to obtain D(θ̄). It is important to point out that the numerical

evaluation of p(y|θ̄) is needed only once, i.e., at the posterior mean.

To compute P ID, we have to calculate the second derivative of the observed-data likelihood

function in P ID. Under the mild regularity condition, Louis (1982) showed that this second

derivative may be expressed as:

I(θ) = −∂
2Lo(y|θ)

∂θ∂θ
′ = Ez|y,θ

{
−∂

2Lc(x|θ)

∂θ∂θ
′

}
− V arz|y,θ {S(x|θ)} (21)

= Ez|y,θ

{
−∂

2Lc(x|θ)

∂θ∂θ′
− S(x|θ)S(x|θ)

′
}

+ Ez|y,θ{S(x|θ)}Ez|y,θ{S(x|θ)}′,

where S(x|θ) = ∂Lc(x|θ)/∂θ and all the expectations are taken with respect to the conditional

distribution of z given y and θ.

If Q function has an analytical expression, Oakes (1999) showed that the second derivative

has an equivalent expression

I(θ) = −∂
2Lo(y|θ)

∂θ∂θ
′ =

{
−∂

2Q(θ|θ∗)
∂θ∂θ′

− ∂2Q(θ|θ∗)
∂θ∂θ∗

′

}
θ
∗

=θ

. (22)

If the analytical Q function not available, we may approximate the second derivatives by,

Ez|y,θ

{
−∂

2Lc(x|θ)

∂θ∂θ
′ − S(x|θ)S(x|θ)

′
}
,

≈ − 1

M

M∑
m=1

{
∂2Lc(y, z(m)|θ)

∂θ∂θ
′ + S(y, z(m)|θ)S(y, z(m)|θ)

′

}
,

Ez|y,θ{S(x|θ)} ≈ 1

M

M∑
m=1

S(y, z(m)|θ),

where {z(m),m = 1, 2, · · · ,M} are random observations drawn from p(z|y,θ).

Although EM algorithm is a very general approach to analyzing latent variable models,

it is very cumbersome to deal with dynamic latent variable models, such as, state space

models because we have to compute the derivatives recursively (Doucet and Shephard, 2012).

Alternatively, one can compute IDIC using the Kalman filter and particle filters.
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4.3.2 Computing IDIC by the Kalman filter

In economics, many time series models can be represented by a linear Gaussian state space

form. The Kalman filter is an efficient recursive method for computing the optimal linear

forecasts in such models. It also gives the exact likelihood function of the model. Here, we

only present the basic idea of the Kalman filter for analyzing liner state space models. One

may refer to Harvey (1989) for the detailed textbook treatment.

Consider a general linear state space model,

zt = Tzt−1 +Rεt,

yt = D + Czt + ξt,

where εt ∼ N (0, Q), ξt ∼ N (0, H), T is ns × ns, R is ns × ne, D is n × 1, C is n × ns, Q is

ne × ne, H is n× n. These six coefficient matrices are functions of a vector of parameters θ

which is nq × 1.

Let ys = (y1, y2, . . . , ys), z
s
t = E (zt|ys), Σs

t = E{(zt − zst ) (zt − zst )
′ |ys}. With the

initial conditions, z0
0 and Σ0

0, for t = 1, 2, . . . , n, the Kalman filter recursively implements the

following steps

zt−1
t = Tzt−1

t−1 ,

Σt−1
t = TΣt−1

t−1T
′ +RQR′,

and

ztt = zt−1
t +Kt

(
yt −D − Czt−1

t

)
,

Σt
t = [Ins −KtC] Σt−1

t ,

where

Kt = Σt−1
t C ′

[
CΣt−1

t C ′ +H
]−1

.

The observed-data log-likelihood is given by

ln p(y|θ) = −
n∑
t=1

[
n

2
ln 2π +

1

2
ln |Ft|+

1

2

(
yt −D − Czt−1

t

)′
F−1
t

(
yt −D − Czt−1

t

)]

= −
n∑
t=1

[
n

2
ln 2π +

1

2
ln |Ft|+

1

2
ω′tF

−1
t ωt

]
,

where Ft = CP t−1
t C ′ + H, ωt = yt − D − Czt−1

t . Clearly, ln p(y|θ) has to be calculated

recursively since Ft and zt−1
t are only available recursively. Similarly, st(θ) and ht(θ) has

to be computed recursively. To calculate st(θ) and ht(θ), we need to calculate the first and

second order derivatives of |Ft|, ω′tF−1
t ωt recursively. For details, one can refer to Iskrev (2008)

and Herbst (2010).

23



4.3.3 Computing IDIC by particle filters

In practice, the nonlinear non-Gaussian state space models have been widely used in empirical

works but they cannot be analyzed using the Kalman filter. Instead, one can use another class

of recursive filtering algorithms known as particle filters. We only present the basic idea of

particle filters here and refer the reader to recent review papers on particle filters by Doucet

and Johansen (2009) and Creal (2012) for greater details.

Let zt+1|zt ∼ f (zt+1|zt,θ) and yt|zt ∼ g (yt|zt,θ). Let the initial density of z be µ (z|θ).

The joint density of
(
zt,yt

)
is

p
(
zt,yt|θ

)
= µ (z1|θ)

t∏
k=2

f (zk|zk−1,θ)
t∏

k=1

g (yk|zk,θ) ,

and hence

p
(
yt|θ

)
=

∫
p
(
zt,yt|θ

)
dzt.

For nonlinear non-Gaussian state space models, neither p
(
zt|yt,θ

)
nor p

(
yt|θ

)
are available

in closed-form. The goal here is to calculate p
(
zt|yt,θ

)
, p
(
yt|θ

)
, and s(yt,θ) sequentially

for t = 1, . . . , n. The idea of the using particle filters is to approximate p
(
zt|yt,θ

)
dzt by its

empirical measure. An example of particle filters is the Sequential Important Sampling and

Resampling (SISR) algorithm which iterates the following step for i = 1, . . . , N ,

Step 1: At t = 1, z
(i)
1 ∼ µ (·) ,

w1

(
z1(i)

)
=
µ
(
z

(i)
1 |θ

)
g
(
y1|z(i)

1 ,θ
)

q1

(
z

(i)
1

) , W
(i)
1 =

w1

(
z1(i)

)∑N
i=1w1

(
z1(i)

) ,
z1(i) = z

(i)
1 . Resample

(
W

(i)
1 , z1(i)

)
to obtain new particles

(
1
N , z̃

1(i)
)
.

Step 2: At t ≥ 2, z
(i)
t ∼ qn

(
·|z̃t−1(i)

)
,

wt

(
zt(i)

)
=
f
(
z

(i)
t |z̃

(i)
t−1,θ

)
g
(
yt|z̃(i)

t ,θ
)

qt

(
z

(i)
t |z̃t−1(i)

) , W
(i)
t =

wt
(
zt(i)

)∑N
i=1wt

(
zt(i)

) ,
zt(i) =

(
z̃t−1(i), z

(i)
t

)
. Resample

(
W

(i)
t , zt(i)

)
to obtain new particles

(
1
N , z̃

t(i)
)
.

Step 3: Approximate the conditional distribution pθ
(
dzt|yt,θ

)
by its empirical measure

p̂
(
dzt|yt,θ

)
=

N∑
i=1

W
(i)
t δzt(i)

(
dzt
)

or p̃θ
(
dzt|yt,θ

)
=

1

N

N∑
i=1

δz̃t(i)
(
dzt
)

,

and

p̂
(
yt|yt−1,θ

)
=

1

N

N∑
i=1

wt

(
zt(i)

)
,
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where N is the number of particles and qt (·|·) is the proposal density.

With the empirical measure
{
p̂
(
dzt|yt,θ

)}
t=1:n

, we can approximate the integral

It =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt,

by

Ît =

∫
ϕt
(
zt
)
p̂
(
dzt|yt,θ

)
=

N∑
i=1

W
(i)
t ϕt

(
zt(i)

)
,

for t = 1, · · · , n, where ϕt
(
zt
)

is the target function. If one chooses ϕt
(
zt
)

= ∂ ln p
(
zt,yt|θ

)
/∂θ,

then it is easy to show that

s(yt,θ) =

∫
∂ ln p

(
zt,y

t|θ
)

∂θ
p
(
zt|yt,θ

)
dzt,

−H(yt,θ) = s(yt,θ)s(yt,θ)′ −
∂2p

(
yt|θ

)
/∂θ∂θ′

p (yt|θ)

where

∂2p
(
yt|θ

)
/∂θ∂θ′

p (yt|θ)
=

∫
∂ ln p

(
zt,y

t|θ
)

∂θ

∂ ln p
(
zt,y

t|θ
)

∂θ

′

p
(
zt|yt,θ

)
dzt

+

∫
∂2 ln p

(
zt,y

t|θ
)

∂θ∂θ′
p
(
zt|yt,θ

)
dzt,

by the Fisher and Louis identities that are based only on the marginal density p
(
zt|yt,θ

)
(Poyiadjis and Doucet, 2011). Therefore, s(yt,θ) and H(yt,θ) can be obtained recursively.

Based on different proposal density qt (·|·), different particle filtering algorithms have been

proposed in the literature, including the bootstrap particle filters of Gordon et al. (1993) and

the auxiliary particle filters of Pitt and Shephard (1999). In this paper, we use the auxiliary

particle filters to compute s(yt,θ), H(yt,θ). The details about how to compute s(yt,θ) and

H(yt,θ) using the particle filters can be found in Poyiadjis and Doucet (2011) and Doucet

and Shephard (2012).

5 Applications

We now illustrate the proposed method in three applications. The first example is asset

pricing models under the Student t distribution. The likelihood functions of these models not

only have analytical form, but also can be rewritten in a latent variable form. We choose this

example to compare the two alternative formulations of the same model, paying particular

attention to the impact the two equivalent formulations on DIC and IDIC. In the second
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example linear state space models are considered. In this case p(y|θ̄) is not available in

closed-form, but the Kalman filter provides a recursive algorithm to evaluate it. In the third

example, p(y|θ̄) is not available in closed-form and the Kalman filter is not applicable. Given

that DIC1 is too difficult to compute, we calculate IDIC using the proposed method.

5.1 Factor asset pricing models

Factor asset pricing models are important in modern finance. There models generally assume

that the return distribution is normal. Unfortunately, there has been overwhelming empir-

ical evidence against normality for asset returns, which have led researchers to investigate

asset pricing models with heavy-tailed distributions. Zhou (1993) and Kan and Zhou (2003)

suggested using the multivariate t distribution to replace the multivariate normal distribu-

tion. Moreover, based on the efficient market theory, the asset excess premium should not be

statistically different from zero. At last, the multivariate t distribution can be rewritten as

scale-mixture framework to become a latent variable model. Hence, we consider the following

six asset pricing models:

Model 1:Rt = β′F t + εt, εt ∼ N [0,Σ],

Model 2:Rt = α+ β′F t + εt, εt ∼ N [0,Σ],

Model 3:Rt = β′F t + εt, εt ∼ t[0,Σ, ν],

Model 4:Rt = β′F t + εt, εt ∼ N(0,Σ/ωt), ωt ∼ Γ
(ν

2
,
ν

2

)
,

Model 5:Rt = α+ β′F t + εt, εt ∼ t[0,Σ, ν],

Model 6:Rt = α+ β′F t + εt, εt ∼ N(0,Σ/ωt), ωt ∼ Γ
(ν

2
,
ν

2

)
,

where Rt is the excess return of portfolio at period t with N × 1 dimension, F t a K × 1

vector of factor portfolio excess returns, α a N × 1 vector of intercepts, β a N × K vector

of scaled covariances, εt the random error, t = 1, 2, · · · , n. For convenience, we restrict Σ to

be a diagonal matrix and ν to be a known constant as ν = 3. It is noted that Model 4 is

the scale-mixture distributional representation of Model 3, and Model 5 is the scale mixture

distributional representation of Model 6.

Monthly returns of 25 portfolios, constructed at the end of each June, are the intersections

of 5 portfolios formed on size (market equity, ME) and 5 portfolios formed on the ratio of book

equity to market equity (BE/ME). The Fama/French’s three factors, market excess return,

SMB (Small Minus Big), HML (High Minus Low) are used as the explanatory factors (Fama

and French, 1993). The sample period is from July 1926 to November 2017, so that N = 25,

n = 1097. The data are freely available from the data library of Kenneth French.3

Bayesian inference for factor asset pricing models has attracted a considerable amount of

attentions in the empirical asset pricing literature. Avramov and Zhou (2010) provided an

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Table 1: Model selection results for Fama-French three factor models

Model M1 M2 M3 M4 M5 M6

P 100 125 100 100 125 125

PD,1 100 125 100 100 125 125
DIC1 -132196 -132762 -143510 -143510 -144635 -144635
PD,7 NA NA NA 1090 NA 1115
DIC7 NA NA NA -145159 NA -146339
P ID 100 125 100 100 126 126

IDIC -132196 -132762 -143509 -143509 -144634 -144634
IDICBP -132227 -132800 -143540 -143540 -144672 -144672

excellent review of the literature on Bayesian portfolio analysis. To obtain MCMC output,

we need specify the prior distributions for parameters. Here, to represent the prior ignorance,

we assign some vague conjugate prior distributions,

αi ∼ N [0, 100], βij ∼ N [0, 100], φ−1
ii ∼ Γ[0.01, 0.01].

Here, we draw 100,000 random observations from the posterior distributions in each model

where the first 40,000 is used as the burn-in sample, and the next 60,000 iterations is col-

lected with every 3rd observation as effective observations. Hence, these are 20,000 effective

observations.

To compare these models, based on 20,000 effective observations, we calculate DIC1, the

corresponding PD,1, IDIC, the corresponding P ID, and IDICBP for each candidate model, and

DIC7 and the corresponding PD (denoted by PD,7) for Model 4 and Model 6 as there are

latent variables in these two models. The results are reported in Table 1. Several interesting

findings emerge from Table 1. First, DIC1 in Model 3 is very different from DIC7 in Model

4 although these two models are the same. The reason for the difference is that in Model 3

there is no latent variable whereas in Model 4 the scale-mixture representation of the Student

t distribution introduces latent variables, {ωt}. Due to the difference, the common practice

of DIC for Model 3 is DIC1 and for Model 4 is DIC7. The sharp difference between the two

DIC values for the identical model is clearly unsatisfactory. For the same reason, DIC1 in

Model 5 is very different from DIC7 in Model 6. Second, the asymptotic results developed in

Li, et al (2017) and in Theorem 4.1 above suggest that PD,1 and P ID should be close to the

actual number of the parameters, P , if the prior distribution is dominated by the likelihood

function. The results are confirmed by Table 1. Not surprisingly, PD,1 is almost identical to

P ID and DIC1 and IDIC are almost the same for each candidate model. Finally, DIC, IDIC,

and IDICBP all pick Model 6 (and Model 5) as the best model.
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5.2 High dimensional dynamic factor models

For many countries, there exists a rich array of macroeconomic time series and financial

time series. To reduce the dimensionality and to extract the information from the large

number of time series, factor analysis has been widely used in the empirical macroeconomic

literature and in the empirical finance literature. For example, by extending the static factor

models previously developed for cross-sectional data, Geweke (1977) proposed the dynamic

factor model for time series data. Many empirical studies, such as Sargent and Sims (1977),

Giannone, et al (2004), have reported evidence that a large fraction of variance of many

macroeconomic series can be explained by a small number of dynamic factors. Stock and

Watson (1999) and Stock and Watson (2002) showed that dynamic factors extracted from a

large number of predictors lead to improvement in predicting macroeconomic variables. Not

surprisingly, high dimensional dynamic factor models have become a popular tool under a

data rich environment for macroeconomists and policy makers. An excellent review on the

dynamic factor models is given by Stock and Watson (2011).

Following Bernanke, et al (2005) (BBE hereafter), we consider the following dynamic

factor model:

yt = FtL
′ + ε′t,

Ft = Ft−1Φ′ + ηt,

where yt is a 1×N vector of time series variables, Ft a 1×K vector of unobserved latent factors

which contains the information extracted from all the N time series variables, L an N ×K
factor loading matrix, Φ the K × K autoregressive parameter matrix of unobserved latent

factors. It is assumed that εt ∼ N (0,Σ) and ηt ∼ N (0, Q). For the purpose of identification,

Σ is assume to be diagonal and εt and ηt are assumed to be independent with each other.

Following BBE (2005), we set the first K×K block in the loading matrix L to be the identity

matrix.

In this dynamic factor model, the observed variable yt consists of a balanced panel of 120

US monthly macroeconomic time series. These series were transformed to induce stationarity

by BBE (2005). The description of the series and the transformation is provided in BBE

(2005). The sample period is from January 1959 to August 2001. Because the data are of

high dimension, the analysis of the dynamic factor models via a frequentist method is difficult;

see the discussion in Stock and Watson (2011). In the literature, the MCMC technique has

been popular for analyzing the dynamic factor models; see Otrok and Whiteman (1998), Kose,

et al (2003, 2008), BBE (2005).

Following BBE (2005), we specify the following prior distributions:

Σii ∼ Inverse− Γ (3, 0.001) , Li ∼ N
(
0,ΣiiM

−1
0

)
,

vec (Φ) |Q ∼ N (0, Q⊗ Ω0) , Q ∼ Inverse− Γ (Q0,K + 2) ,
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Table 2: Model selection results for dynamic factor models

Model M1 M2 M3

Number of Parameters 752 1385 2019
PD,7 354 971 1404
DIC7 -23288 -37851 -44568

Number of Parameters 241 363 486
P ID 88 203 316

IDIC -22418 -34842 -40383

IDICBP -22444 -34901 -40476

where M0 is a K×K identity matrix, Li the ith (i > K) column of L. The diagonal elements

of Q0 are set to be the residual variances of the corresponding AR(1) model,
{
σ̂2
i

}
. The

diagonal elements of Ω0 are constructed so that the prior variance of the parameter on the

jth variable in the ith equation is σ̂2
i /σ̂

2
j .

In this example, we aim to determine the number of factors in the dynamic factor models

using model selection criteria. In BBE (2005) model comparison is achieved by graphic meth-

ods. Our approach can be regarded as a formal statistical alternative to graphic methods.

It is well documented that the determination of number of factors in dynamic factor models

is important; see Stock and Watson (1999). As in the previous example, we use DIC7 and

IDIC to compare models with different number of factors, namely K = 1, 2 and 3, which are

denoted by M1, M2, M3, respectively. Using the Gibbs sampler, we sample 22,000 random

observations from the corresponding posterior distributions. We discard the first 2,000 obser-

vations and keep the following 20,000 as the effective samples from the posterior distribution

of the parameters.

Based on the 20,000 samples, we compute DIC7 and IDIC for all three models. The

Kalman filter algorithm is used to approximate the observed-data likelihood at the posterior

mean. Table 2 reports the simple count of the number of parameters (including the latent

variables), DIC7, the corresponding PD,7, the simple count of the number of parameters (P

which excludes the latent variables), IDIC, the corresponding P ID and IDICBP . DIC7, IDIC,

IDICBP all suggest that M3 is the best model, followed by Model 2 and then by Model 1.

Model 3 has a higher effective number of parameters than the other two models. However,

the gain in the fit to data is greater. The conclusion is that at least 3 factors are needed to

describe the joint movement of the 120 macroeconomic time series. Since very informative

priors have been used, P ID is smaller than the actual number of parameters for each candidate

model.
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5.3 Stochastic volatility models

Stochastic volatility (SV) models have been found very useful for pricing derivative securities.

In the discrete time log-normal SV models, the logarithmic volatility is the state variable

which is often assumed to follow an AR(1) model. The basic log-normal SV model is of the

form:

yt = exp(ht/2)ut, ut ∼ N(0, 1),

ht = µ+ φ(ht−1 − µ) + vt, vt ∼ N(0, τ2),

where t = 1, 2, · · · , n, yt is the continuously compounded return, ht the unobserved log-

volatility, h0 = µ, ut and vt are independent for all t. In this paper, we denote this model by

M1.

To carry out MCMC analysis of M1, following Meyer and Yu (2000), the prior distributions

are specified as follows:

µ ∼ N (0, 100) , φ ∼ Beta (1, 1) , 1/τ2 ∼ Γ (0.001, 0.001) .

An important and well documented empirical feature in many financial time series is the

leverage effect (Black, 1976). Following Yu (2005), we define the leverage effect SV model as:

yt = exp (ht/2)ut, ut ∼ N (0, 1)

ht+1 = µ+ φ (ht − µ) + vt+1, vt+1 ∼ N
(
0, τ2

)
with (

ut
vt+1

)
i.i.d∼ N

{(
0
0

)
,

(
1 ρ
ρ 1

)}
and h0 = µ. In this model, ρ captures the leverage effect if ρ < 0. In this case, there is

a negative relationship between the expected future volatility and the current return. We

denote this model as M2 and specify the prior distribution of ρ as:

ρ ∼ Unif (−1, 1) .

Our goal here is to compare the two models using DIC7 and IDIC. In both cases, p(y|θ) is

not available in closed-form. Since both specifications are nonlinear non-Gaussian state space

models, the Kalman filter is not applicable, making DIC1 is time consuming to compute. To

compute IDIC and IDICBP , we use a particle filtering algorithm to evaluate the observed-data

likelihood and its second derivative.

The dataset consists of 945 daily mean-corrected returns on Pound/Dollar exchange rates,

covering the period between 01/10/81 and 28/06/85. For MCMC, after a burn-in period of

10,000 iterations, we save every 20th value for the next 100,000 iterations to get 5,000 effective
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draws. The same dataset was used in Kim, Shephard and Chib (1998) and Meyer and Yu

(2000). The posterior mean and standard error of parameters in the two competing model

are reported in Table 3. Note that the in M2, the posterior mean of ρ is very close to zero,

relative to its posterior standard error.

Table 3: Posterior mean and standard error of parameters in M1 and M2

M1 M2

Parameter Mean SE Mean SE

µ -0.6733 0.3282 -0.6485 0.3377
φ 0.9733 0.0127 0.9802 0.0138
ρ NA NA -0.0575 0.1570
τ 0.1698 0.0378 0.1661 0.0391

Table 4 reports DIC7, PD,7, IDIC, P ID and IDICBP . The following findings can be obtained

from Table 3. First and foremost, IDIC and IDICBP suggest the same ranking of the com-

peting models, but DIC7 is different. In particular, by dropping the value by 43.3 comparing

to IDIC, DIC7 suggests that M2 is better that M1. According to DIC7, M1 and M2 perform

nearly the same judged by D(θ̄). However, M2 reduces the effective number of parameters

by 22.3 over M1. This reduction of the model complexity is the reason why DIC7 prefers M2.

This result is surprising as the posterior mean of the leverage effect is nearly zero as reported

in Table 2. On the other hand, IDIC suggests that M1 is slightly better that M2 although

the difference is not worth to mention. In IDIC, P ID is 2.32 in M1 and 3.24 in M2. These

values are very close to the actual numbers of parameters in the two models. Given that M2

has one extra parameter, this difference is reasonable. Moreover, M1 and M2 perform nearly

the same judged by D(θ̄). These two observations explain why M1 is slightly better that M2.

This empirical example clearly demonstrates that IDIC and IDICBP is a more reliable model

selection criterion that DIC7.

6 Conclusion

Although latent variable models can be conveniently estimated in the Bayesian framework via

MCMC if the data augmentation technique is used, we argue that data augmentation cannot

be used to define the likelihood function for the purpose of obtaining DIC. This is because,

although the likelihood function based on data augmentation greatly simplifies calculation

of DIC, it makes the number of parameters increases with the number of observations, in-

validating the standard Bayesian large sample theory and the ML asymptotic theory, which

are needed to show that DIC is an asymptotically unbiased estimator of the expected KL

divergence between the DGP and the predictive distributions. In addition, the use of data
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Table 4: Model selection results for M1 and M2

Model M1 M2

PD,7 53.60 31.33
D(θ̄) 1695.40 1693.36
DIC7 1802.52 1756.21

P ID 2.32 3.24
D(θ̄) 1837.81 1837.78
IDIC 1842.50 1844.30

IDICBP 1841.77 1843.31

augmentation makes DIC very sensitive to nonlinear transformations of latent variables and

distributional representations.

While in principle one can use the standard DIC (i.e. DIC1) without resorting to the

data augmentation technique, in practice DIC1 is very difficult to use because the observed-

data likelihood is not available in closed-form for many latent variable models and one has

to numerically evaluate the observed-data likelihood at each MCMC iteration. It makes the

implementation of DIC1 practically non-operational for many latent variable models.

We introduce integrated deviance information criterion (IDIC) for comparing latent vari-

able models. IDIC is constructed on observed-data likelihood which integrates the latent

variable out of complete-data likelihood. We show that IDIC can be justified by the standard

Bayesian asymptotic theory. In particular, we show that IDIC is an asymptotically unbiased

estimator of the expected KL divergence when the loss function is based on a plug-in pre-

dictive distribution. We then develop a simple and general approach to computing IDIC for

latent variable models. Since the latent variables are not treated as parameters in defining

IDIC, IDIC is robust to nonlinear transformations of the latent variables. Asymptotic justifi-

cation, computational tractability and robustness to transformation of latent variables are the

three main advantages of IDIC. These advantages are illustrated using some popular models

in economics and finance.

In addition, based on the Bayesian predictive distribution, another version of IDIC, de-

noted as IDICBP , is also developed. It can be shown that IDICBP is an asymptotically

unbiased estimator of the expected KL divergence when the loss function is based on the

Bayesian predictive distribution. Furthermore, IDICBP has a smaller penalty term than the

original IDIC. It is invariant to reparametrization and yields a smaller risk than the IDIC

asymptotically. It is trivial to compute if IDIC is available.

It should be pointed out that both DIC1 and IDIC require that the candidate models are

good models in the sense that they can well approximate the DGP and that the standard

ML theory holds true. It is important to relax this assumption to allow the possibility that
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the candidate models are misspecified asymptotically. This line of research will be pursued in

later work.

Appendix

6.1 Proof of Lemma 4.1

In this subsection, for any function f(θ), let f (j) (θ) be the jth order derivative of f (θ) for

j = 1, 2, 3, 4, 5. Furthermore, let f̂ be the value of function f evaluated at θ̂, i.e., f̂ := f
(
θ̂
)

and for convenience of exposition, we write ∂d

∂θj1∂θj2 ···∂θjd
f (θ) as fj1···jd and let f̂j1···jd :=

fj1···jd

(
θ̂
)

. For the definition of high order derivatives, we follow Magnus and Neudecker

(1999), except that the first order derivative of a scalar function in our setting is a column

vector. Then the Hessian matrix at θ is denoted by h
(2)
n (θ) which is briefly written as h(2)

and its (i, j)-component is written as hij while the components of its inverse is written as

σij . Let µ4
ijkq, µ

6
ijkqrs, µ

8
ijkqrstw, µ10

ijkqrstwvβ , µ12
ijkqrstwvβτφ be the fourth, sixth, eighth, tenth,

and twelfth central moments of a multivariate Normal distribution whose covariance matrix

is ĥ(−2) :=
(
h(2) (θ)

)−1 |
θ=θ̂

. In order to prove Lemma 4.1, we first prove two fundamental

lemmas and review another lemma.

Lemma 6.1 For some real-valued function g(θ), if both ({hn(θ)} , g(θ)bD(θ)) and ({hn(θ)} , bD(θ))

satisfy the analytical assumptions for the stochastic Laplace method on ℘θ, then∫
g (θ) bD (θ) exp (−nhn (θ)) dθ∫
bD (θ) exp (−nhn (θ)) dθ

= ĝ +
1

n
B1 +

1

n2
(B2 −B3) +Op

(
1

n3

)
,

where

B1 =
1

2

∑
ij

σ̂ij ĝij +

∑
ij σ̂ij b̂D,j ĝi

b̂D
− 1

6

∑
ijkq

ĥijkµ
4
ijkq ĝq,
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B2 = − 1

120

∑
ijkqrs

ĥijkqrµ
6
ijkqrsĝs +

1

144

∑
ijkqrstw

ĥijkĥqrstµ
8
ijkqrstwĝw

− 1

1296

∑
ijkqrstwvβ

ĥijkĥqrsĥtwvµ
10
ijkqrstwvβ ĝβ −

1

24

∑
ijkqrs ĥijkqµ

6
ijkqrsb̂D,sĝr

b̂D

+
1

72

∑
ijkqrstw ĥijkĥqrsµ

8
ijkqrstw b̂D,wĝt

b̂D
− 1

12

∑
ijkζηξ ĥijkµ

6
ijkζηξ b̂D,ηξ ĝζ

b̂D

+
1

6

∑
ζηξω µ

4
ζηξω b̂D,ηξω ĝζ

b̂D
− 1

48

∑
ijkqrs

ĥijkqµ
6
ijkqrsĝrs

+
1

144

∑
ijkqrstw

ĥijkĥqrsµ
8
ijkqrstwĝtw −

1

36

∑
ijkζηξ

ĥijkµ
6
ijkζηξ ĝζηξ

+
1

24

∑
ζηξω

µ4
ζηξωĝζηξω −

1

12

∑
ijkζηξ ĥijkµ

6
ijkζηξ ĝζη b̂D,ξ

b̂D

+
1

6

∑
ζηξω µ

4
ζηξωĝζηξ b̂D,ω

b̂D
+

1

4

∑
ζηξω µ

4
ζηξω ĝζη b̂D,ξω

b̂D
,

B3 = B4 ×B1,

B4 =
1

2

∑
ij

σ̂ij
b̂D,ij

b̂D
− 1

6

∑
ijkq

ĥijkµ
4
ijkq

b̂D,q

b̂D
+

1

72

∑
ijkqrs

ĥijkĥqrsµ
6
ijkqrs −

1

24

∑
ijkq

ĥijkqµ
4
ijkq.

Lemma 6.2 Suppose A is a P × P matrix, then[
vec (A)′ ⊗ IP

]
[IP ⊗ vec (IP )] = A. (23)

Proof. The matrix A has P 2 elements denoted aij , i, j = 1, 2, . . . , P . Let e1, e2, . . . , eP

denote the columns of P × P identity matrix IP . We can express A as A =
∑

ij aijeie
′
j , then[

vec (A)′ ⊗ IP
]

[IP ⊗ vec (IP )]

=
∑
ij

aij
[(
vec

(
eie
′
j

)
⊗ IP

)
(IP ⊗ vec (IP ))

]
=
∑
ij

aij
[(
e′j ⊗ e′i ⊗ IP

)
(IP ⊗ vec (IP ))

]
=

∑
ij

aij
[(
e′jIP

)
⊗
((
e′i ⊗ IP

)
vec (IP )

)]
=
∑
ij

aij
[(
e′jIP

)
⊗ vec (IP IP ei)

]
=

∑
ij

aij
[
e′j ⊗ ei

]
=
∑
ij

aijeie
′
j = A.

The third equality above follows from

(B ⊗ C) (D ⊗ E) = BD ⊗ CE (24)

for four matrices B, C, D and E if BD and CE exist and the fourth equality is because of

vec (BCD) = (D ⊗B) vec (C) (25)

for three matrices B, C and D if the product BCD is defined.
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Lemma 6.3 (The Generalized Isserlis Theorem) If A = {α1, . . . , α2N} is a set of in-

tegers such that 1 ≤ αi ≤ P, for each i ∈ [1, 2N ] and X ∈ RP is a zero mean multivariate

normal random vector then

EXA = ΣΠ
A
E (XiXj) , (26)

where the notation ΣΠ means summing over all distinct ways of partitioning Xα1 , . . . , Xα2N

into pairs (Xi, Xj) and each summand is the product of the N pairs. This yields (2N)!/
(
2NN !

)
=

(2N − 1)!! terms in the sum where (2N − 1)!! is the double factorial such that (2N − 1)!! =

(2N − 1) (2N − 3) . . . 1.

The Isserlis theorem, first obtained by Isserlis (1918), expresses the higher order moments

of a zero mean Gaussian vector in terms of its covariance matrix. The generalized Isserlis

theorem is due to Withers (1985) and Vignat (2012). On the basis of Lemma 6.1, 6.2 and 6.3,

in the following, we prove the Lemma 4.1.

Proof. First, we define a function g (θ) = θ, and each element of g (θ) is given as gz (θ) = θz,

z = 1, . . . , P . Denote g(1), a P × P matrix, is the first order derivative of g evaluated at θ

and g
(1)
·z is the zth column of g(1). It is noted that since g (θ) = θ, g(1) = IP which is P × P

identity matrix.

For z = 1, . . . , P , gz (θ) is a real-valued function. Hence, using Lemma 6.1, we can get

that for each z∫
gz(θ)bD (θ) exp (−nhn (θ)) dθ∫
bD (θ) exp (−nhn (θ)) dθ

= gz(θn) +
1

n
B1

1,z +
1

n2

(
B1

2,z −B1
3,z

)
+Op

(
1

n3

)
,

Then, in the matrix form, we get∫
g(θ)bD (θ) exp (−nhn (θ)) dθ∫
bD (θ) exp (−nhn (θ)) dθ

= g(θ̂) +
1

n
B1

1 +
1

n2

(
B1

2 −B1
3

)
+Op

(
1

n3

)
.

For each z, note that gz,ij = ∂g2z(θ)
∂θ∂θ′ |ij = 0ij . Following Lemma 6.1, we have

B1
1,z = 0 +

∑
ij

ĝz,iσ̂ij
b̂D,j

b̂D
− 1

6

∑
ijkq

ĥijkµ
4
ijkq ĝz,q.

Thus, in the matrix form, we have

B1
1 =

∑
ij

ĝ
(1)
·i σ̂ij

b̂D,j

b̂D
− 1

2

∑
ijkq

ĝ
(1)
·q ĥijkσ̂ij σ̂kq =

∑
ij

ĝ
(1)
·i σ̂ij

b̂D,j

b̂D
− 1

2

∑
ijkq

ĝ
(1)
·q σ̂qkĥijkσ̂ij

= ĝ(1)ĥ(−2) b̂
(1)
D

b̂D
− 1

2
ĝ(1)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
, (27)
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Hence, we get

B1
1 = ĥ(−2) b̂

(1)
D

b̂D
− 1

2
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
. (28)

Furthermore, for each z

B1
2,z = − 1

120

∑
ijkqrs

ĥijkqrµ
6
ijkqrsĝz,s +

1

144

∑
ijkqrstw

ĥijkĥqrstµ
8
ijkqrstwĝz,w

− 1

1296

∑
ijkqrstwvβ

ĥijkĥqrsĥtwvµ
10
ijkqrstwvβ ĝz,β −

1

24

∑
ijkqrs ĥijkqµ

6
ijkqrsb̂D,sĝz,r

b̂D

+
1

72

∑
ijkqrstw ĥijkĥqrsµ

8
ijkqrstw b̂D,wĝz,t

b̂D
− 1

12

∑
ijkζηξ ĥijkµ

6
ijkζηξ b̂D,ηξ ĝz,ζ

b̂D

+
1

6

∑
ζηξω µ

4
ζηξω b̂D,ηξω ĝz,ζ

b̂D
.

Thus, in matrix form we have

B1
2 = − 1

120

∑
ijkqrs

ĝ·sĥijkqrµ
6
ijkqrs +

1

144

∑
ijkqrstw

ĝ·wĥijkĥqrstµ
8
ijkqrstw

− 1

1296

∑
ijkqrstwvβ

ĝ·βĥijkĥqrsĥtwvµ
10
ijkqrstwvβ −

1

24

∑
ijkqrs ĝ·rĥijkqµ

6
ijkqrsb̂D,s

b̂D

+
1

72

∑
ijkqrstw ĝ·tĥijkĥqrsµ

8
ijkqrstw b̂D,w

b̂D
− 1

12

∑
ijkζηξ ĝ·ζ ĥijkµ

6
ijkζηξ b̂D,ηξ

b̂D

+
1

6

∑
ζηξω ĝ·ζµ

4
ζηξω b̂D,ηξω

b̂D
. (29)

We can write each item on the right hand side of (29) into matrix form with (26)

− 1

120

∑
ijkqrs

ĝ·sĥijkqrµ
6
ijkqrs = −1

8

∑
ijkqrs

ĝ·sσ̂srĥijkqrσ̂ij σ̂kq = −1

8
ĝ(1)ĥ(−2)ĥ(5)′vec

[
ĥ(−2) ⊗ vec

(
ĥ(−2)

)]
,

1

144

∑
ijkqrstw

ĝ·wĥijkĥqrstµ
8
ijkqrstw

=
105

144

∑
ijkqrstw

ĝ·wĥijkσ̂ij σ̂kqσ̂rsĥqrstσ̂tw =
35

48

∑
ijkqrstw

ĝ·w

(
σ̂wtσ̂rsĥtrsq

)
σ̂qk

(
ĥkij σ̂ij

)
=

35

48
ĝ(1)

[
ĥ(−2) ⊗ vec

(
ĥ(−2)

)]′
ĥ(4)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
,
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− 1

1296

∑
ijkqrstwvβ

ĝ·βĥijkĥqrsĥtwvµ
10
ijkqrstwvβ

= − 945

1296

∑
ijkqrstwvβ

ĝ·βσ̂ij ĥijkσ̂kqĥqrsσ̂rsσ̂twĥtwvσ̂vβ

= −35

48

∑
twvβ

ĝ·βσ̂βv

(
σ̂twĥtwv

) ∑
ijkqrs

(
σ̂ij ĥijk

)
σ̂kq

(
ĥqrsσ̂rs

)
= −35

48
ĝ(1)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)[
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)]
,

− 1

24

∑
ijkqrs ĝ·rĥijkqµ

6
ijkqrsb̂D,s

b̂D

= −15

24

∑
ijkqrs

ĝ·rĥijkqσ̂ij σ̂kqσ̂rs
b̂D,s

b̂D
= −5

8

∑
rs

ĝ·rσ̂rs
b̂D,s

b̂D

∑
ijkq

ĥijkqσ̂ij σ̂kq

= −5

8
ĝ(1)ĥ(−2) b̂

(1)
D

b̂D
tr
[[
ĥ(−2) ⊗ vec

(
ĥ(−2)

)]
ĥ(4)′

]
,

1

72

∑
ijkqrstw ĝ·tĥijkĥqrsµ

8
ijkqrstw b̂D,w

b̂D

=
105

72

∑
ijkqrstw

ĝ·tĥijkĥqrsσ̂ij σ̂kqσ̂rsσ̂tw
b̂D,w

b̂D
=

35

24

∑
tw

(
ĝ·tσ̂tw

b̂D,w

b̂D

) ∑
ijkqrs

ĥijkσ̂ij σ̂kqσ̂rsĥqrs

=
35

24
ĝ(1)ĥ(−2) b̂

(1)
D

b̂D

[
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)]
,

− 1

12

∑
ijkζηξ ĝ·ζ ĥijkµ

6
ijkζηξ b̂D,ηξ

b̂D

= −15

12

∑
ijkζηξ

ĝ·ζ ĥijkσ̂ij σ̂kζ σ̂ηξ
b̂D,ηξ

b̂D
= −5

4

∑
ijkζ

ĝ·ζ σ̂kζ

(
ĥijkσ̂ij

)∑
ηξ

σ̂ηξ
b̂D,ηξ

b̂D

= −5

4
ĝ(1)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
tr

[
ĥ(−2) b̂

(2)
D

b̂D

]
,

1

6

∑
ζηξω ĝ·ζµ

4
ζηξω b̂D,ηξω

b̂D
=

3

6

∑
ζηξω

ĝζ σ̂ζησ̂ξω
b̂D,ηξω

b̂D
=

1

2

∑
ζηξω

ĝζ σ̂ζη
b̂D,ηξω

b̂D
σ̂ξω

=
1

2
ĝ(1)ĥ(−2) b̂

(3)
D

b̂D

′ [
vec

(
ĥ(−2)

)]
.
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Hence, we have

B1
2 = −1

8
ĥ(−2)ĥ(5)′vec

[
ĥ(−2) ⊗ vec

(
ĥ(−2)

)]
+

35

48

[
ĥ(−2) ⊗ vec

(
ĥ(−2)

)]′
ĥ(4)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
−35

48
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)[
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)]
−5

8
ĥ(−2) b̂

(1)
D

b̂D
tr
[[
ĥ(−2) ⊗ vec

(
ĥ(−2)

)]
ĥ(4)′

]
+

35

24
ĥ(−2) b̂

(1)
D

b̂D

[
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)]
− 5

4
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)
tr

[
ĥ(−2) b̂

(2)
D

b̂D

]

+
1

2
ĥ(−2) b̂

(3)
D

b̂D

′ [
vec

(
ĥ(−2)

)]
. (30)

For B1
3 , following Lemma 6.1, note that, for any element z, B1

4,z = B1
4 which is a constant

and independent of the element z. We have

B1
3 = B1

1 ×B1
4 , (31)

where

B1
4 =

1

2

∑
ij

σ̂ij
b̂D,ij

b̂D
− 1

6

∑
ijkq

ĥijkµ
4
ijkq

b̂D,q

b̂D
+

1

72

∑
ijkqrs

ĥijkĥqrsµ
6
ijkqrs −

1

24

∑
ijkq

ĥijkqµ
4
ijkq. (32)

We can write each item on the right hand side of (32) as

1

2

∑
ij

σ̂ij
b̂D,ij

b̂D
=

1

2
tr

[
ĥ(−2) b̂

(2)
D

b̂D

]
, (33)

−1

6

∑
ijkq

ĥijkµ
4
ijkq

b̂D,q

b̂D
= −3

6

∑
ijkq

ĥijkσ̂ij σ̂kq
b̂D,q

b̂D
= −1

2
vec

(
ĥ(−2)

)′
ĥ(−3)ĥ(−2) b̂

(1)
D

b̂D
, (34)

1

72

∑
ijkqrs

ĥijkĥqrsµ
6
ijkqrs =

15

72

∑
ijkqrs

σ̂ij ĥijkσ̂kqĥqrsσ̂rs =
5

24

[
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)]
,

(35)

− 1

24

∑
ijkq

ĥijkqµ
4
ijkq = − 3

24

∑
ijkq

ĥijkqσ̂ij σ̂kq =
1

8
tr
[[
ĥ(−2) ⊗ vec

(
ĥ(−2)

)]
ĥ(4)′

]
. (36)

From (32), (33), (34), (35), (36), in the matrix form, we have

B1
4 =

1

2
tr

[
ĥ(−2) b̂

(2)
D

b̂D

]
− 1

2
vec

(
ĥ(−2)

)′
ĥ(−3)ĥ(−2) b̂

(1)
D

b̂D
+

5

24

[
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)]
+

1

8
tr
[[
ĥ(−2) ⊗ vec

(
ĥ(−2)

)]
ĥ(4)′

]
. (37)

38



From (27), (30) and (31), we have

θ = θ̂ +
1

n
B1

1 +
1

n2

(
B1

2 −B1
3

)
+Op

(
1

n3

)
= θ̂ +

1

n
B1

1 +
1

n2

(
B1

2 −B1
4B

1
1

)
+Op

(
1

n3

)
.

This is the end of proof for the first part of the lemma.

In the following, we prove the second part of the lemma. Define a function f (θ) = vec
(
θθ′
)

which is a P 2 × 1 vector. Hence, we can get the first and second derivatives of f with respect

to θ as f (1) (θ) = θ ⊗ IP + IP ⊗ θ and f (2) (θ) = [(IP 2 + KPP )⊗ IP ] [IP ⊗ vec (IP )], where

Kmn is a commutation matrix, which is defined by the equation KmnvecA = vecA′ for a m×n
matrix A. If m = n, Kmn is simplified as Km. By the properties of commutation matrix, we

have

Kmn (Y ⊗ x) = x⊗ Y, (38)

(
Y ⊗ x′

)
Ksm = x′ ⊗ Y, (39)

where Y is a n× s matrix, x is a m× 1 vector. Furthermore, for any matrix A1 and A2, if A1

is a n× s dimensional matrix and A2 is a m× t dimensional matrix, then,

Kmn (A1 ⊗A2) = (A2 ⊗A1) Kts. (40)

More details about matrix properties, one can refer to Magnus and Neudecker (1979).

Following Lemma 6.1, for each element fz(θ) which is also real-valued function, we can

get that∫
fz (θ) bD (θ) exp (−nhn (θ)) dθ∫

bD (θ) exp (−nhn (θ)) dθ
= fz(θ̂) +

1

n
B2

1,z +
1

n2

(
B2

2,z −B2
3,z

)
+Op

(
1

n3

)
.

Again, we can rewrite it in the matrix form,∫
f (θ) bD (θ) exp (−nhn (θ)) dθ∫
bD (θ) exp (−nhn (θ)) dθ

= f(θ) +
1

n
B2

1 +
1

n2

(
B2

2 −B2
3

)
+Op

(
1

n3

)
.

For each z, we have

B2
1,z =

1

2

∑
ij

σ̂ij f̂z,ij +
∑
ij

f̂z,iσ̂ij
b̂D,j

b̂D
− 1

6

∑
ijkq

ĥijkµ
4
ijkqf̂z,q.

Thus, in the matrix form

B2
1 =

1

2

[
IP 2 ⊗ vec

(
ĥ(−2)

)′]
vec

(
KPP f̂ (2)

)
+
∑
ij

f̂
(1)
·i σ̂ij

b̂D,j

b̂D
− 1

2

∑
ijkq

f̂
(1)
·q ĥijkσ̂ij σ̂kq. (41)
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Note that

vec
(
KPP f̂ (2)

)
= vec (KP 2P [(IP 2 + KPP )⊗ IP ] [IP ⊗ vec (IP )])

= vec ([IP ⊗ (IP 2 + KPP )] KPP 2 [IP ⊗ vec (IP )])

=
(
[IP ⊗ vec (IP )]′ ⊗ [IP ⊗ (IP 2 + KPP )]

)
vec (KPP 2)

=
(
IP ⊗ vec (IP )′ ⊗ IP ⊗ (IP 2 + KPP )

)
vec (KPP 2) , (42)

where the second equality is due to (40). From (42) and (23), we have

1

2

[
IP 2 ⊗ vec

(
ĥ(−2)

)′]
vec

(
KPP f̂ (2)

)
=

1

2

[
IP 2 ⊗ vec

(
ĥ(−2)

)′] (
IP ⊗ vec (IP )′ ⊗ IP ⊗ (IP 2 + KPP )

)
vec (KPP 2)

=
1

2

[[
IP 2

(
IP ⊗ vec (IP )′ ⊗ IP

)]
⊗
[
vec

(
ĥ(−2)

)′
(IP 2 + KPP )

]]
vec (KPP 2)

=

[
IP ⊗ vec (IP )′ ⊗ IP ⊗ vec

(
ĥ(−2)

)′]
vec (KPP 2)

= vec

([
IP ⊗ vec

(
ĥ(−2)

)′]
KPP 2 [IP ⊗ vec (IP )]

)
= vec

([
vec

(
ĥ(−2)

)′
⊗ IP

]
[IP ⊗ vec (IP )]

)
= vec

(
ĥ(−2)

)
, (43)

where the third equality is due to the fact that vec
(
ĥ(−2)

)′
KPP = vec

(
ĥ(−2)′

)′
= vec

(
ĥ(−2)

)′
and the fifth is due to (38). Hence, from (41), (42) and (43),

B2
1 = vec

(
ĥ(−2)

)
+ f̂ (1)ĥ(−2) b̂

(1)
D

b̂D
− 1

2
f̂ (1)ĥ(−2)ĥ(−3)′vec

(
ĥ(−2)

)
= vec

(
ĥ(−2)

)
+ f̂ (1)B1

1 . (44)
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And for each z

B2
2,z = − 1

120

∑
ijkqrs

ĥijkqrµ
6
ijkqrsf̂z,s +

1

144

∑
ijkqrstw

ĥijkĥqrstµ
8
ijkqrstwf̂z,w

− 1

1296

∑
ijkqrstwvβ

ĥijkĥqrsĥtwvµ
10
ijkqrstwvβ f̂z,β −

1

24

∑
ijkqrs ĥijkqµ

6
ijkqrsb̂D,sf̂z,r

b̂D

+
1

72

∑
ijkqrstw ĥijkĥqrsµ

8
ijkqrstw b̂D,wf̂z,t

b̂D
− 1

12

∑
ijkζηξ ĥijkµ

6
ijkζηξ b̂D,ηξ f̂z,ζ

b̂D

+
1

6

∑
ζηξω µ

4
ζηξω b̂D,ηξωf̂z,ζ

b̂D
− 15

48

∑
ijkq

ĥijkqσ̂ij σ̂kq
∑
rs

σ̂rsf̂z,rs

+
105

144

∑
ijkqrs

σ̂ij ĥijkσ̂kqĥqrsσ̂rs
∑
tw

σ̂twf̂z,tw −
15

12

∑
ζη

∑
ijk

σ̂ij ĥijkσ̂kζ
∑
ξ

σ̂ηξ
b̂D,ξ

b̂D

 f̂z,ζη

+
3

4

∑
ζη

σ̂ζηf̂z,ζη
∑
ξω

σ̂ξω
b̂D,ξω

b̂D
.

Let B2
2,z = B2

21,z +B2
22,z where

B2
21,z = − 1

120

∑
ijkqrs

ĥijkqrµ
6
ijkqrsf̂z,s +

1

144

∑
ijkqrstw

ĥijkĥqrstµ
8
ijkqrstwf̂z,w

− 1

1296

∑
ijkqrstwvβ

ĥijkĥqrsĥtwvµ
10
ijkqrstwvβ f̂z,β −

1

24

∑
ijkqrs ĥijkqµ

6
ijkqrsb̂D,sf̂z,r

b̂D

+
1

72

∑
ijkqrstw ĥijkĥqrsµ

8
ijkqrstw b̂D,wf̂z,t

b̂D
− 1

12

∑
ijkζηξ ĥijkµ

6
ijkζηξ b̂D,ηξ f̂z,ζ

b̂D

+
1

6

∑
ζηξω µ

4
ζηξω b̂D,ηξωf̂z,ζ

b̂D
,

and

B2
22,z = −15

48

∑
ijkq

ĥijkqσ̂ij σ̂kq
∑
rs

σ̂rsf̂z,rs

+
105

144

∑
ijkqrs

σ̂ij ĥijkσ̂kqĥqrsσ̂rs
∑
tw

σ̂twf̂z,tw −
15

12

∑
ζη

∑
ijk

σ̂ij ĥijkσ̂kζ
∑
ξ

σ̂ηξ
b̂D,ξ

b̂D

 f̂z,ζη

+
3

4

∑
ζη

σ̂ζηf̂z,ζη
∑
ξω

σ̂ξω
b̂D,ξω

b̂D
.

Then, we rewrite them in the matrix form so that we have

B2
2 = B2

21 +B2
22, (45)
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where

B2
21 = f̂ (1)B1

2 =
(
θ̂ ⊗ IP + IP ⊗ θ̂

)
B1

2 = vec
(
B1

2 θ̂
′
+ θ̂B1′

2

)
, (46)

B2
22 = − 5

16
vec

(
ĥ(−2)

)
tr

[(
ĥ(−2) ⊗ vec

(
ĥ(−2)

)′)
ĥ(4)

]
+

35

48
vec

(
ĥ(−2)

)[
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)]
−5

2
vec

[
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

) b̂(1)
D

b̂D

′

ĥ(−2)

]

+
3

4
vec

(
ĥ(−2)

)
tr

[
ĥ(−2) b̂

(2)
D

b̂D

]
. (47)

Since for z = 1, 2, · · · , P 2, by (43),
∑

tw σ̂twf̂z,tw can be rewritten in the vector form as

vec(ĥ(−2)) and 1
2

∑
ζη

(∑
ijk σ̂ij ĥijkσ̂kζ

∑
ξ σ̂ηξ

b̂D,ξ

b̂D

)
f̂z,ζη can be rewritten in the matrix form

as

1

2

IP 2 ⊗ vec

[
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

) b̂(1)
D

b̂D

′

ĥ(−2)

]′ vec
(
KPP f̂ (2)

)

= vec

[
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

) b̂(1)
D

b̂D

′

ĥ(−2)

]
.

We can also get

B2
3 = B2

1 ×B1
4 =

(
vec

(
ĥ(−2)

)
+ f̂ (1)B1

1

)
B1

4 , (48)

where

f̂ (1)B1
1 = vec

(
B1

1 θ̂
′
+ θ̂B1′

1

)
.

It is noted that

θ = θ̂ +
1

n
B1

1 +
1

n2

(
B1

2 −B1
3

)
+Op

(
1

n3

)
= θ̂ +

1

n
B1

1 +
1

n2

(
B1

2 −B1
4B

1
1

)
+Op

(
1

n3

)
.

Thus, we get

vec
(
θθ
′
)

= vec
(
θ̂θ̂
′)

+
1

n
vec

(
θ̂B1′

1 +B1
1 θ̂
′)

+
1

n2
vec

[
θ̂
(
B1

2 −B1
4B

1
1

)′
+
(
B1

2 −B1
4B

1
1

)
θ̂
′]

+Op

(
1

n3

)
.
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From (44), (45) and (48), we can show that∫
vec

(
θθ′
)
bD (θ) exp (−nhn (θ)) dθ∫

bD (θ) exp (−nhn (θ)) dθ

= vec
(
θ̂θ̂
′)

+
1

n
B2

1 +
1

n2

(
B2

2 −B2
3

)
+Op

(
1

n3

)
= vec

(
θ̂θ̂
′)

+
1

n

[
vec

(
ĥ(−2)

)
+ f̂ (1)B1

1

]
+

1

n2

(
B2

21 +B2
22 −B2

3

)
+Op

(
1

n3

)
= vec

(
θ̂θ̂
′)

+
1

n

[
vec

(
ĥ(−2)

)
+ f̂ (1)B1

1

]
+

1

n2

(
B2

21 +B2
22 −B2

3

)
+Op

(
1

n3

)
= vec

(
θ̂θ̂
′)

+
1

n

[
vec

(
ĥ(−2)

)
+ f̂ (1)B1

1

]
+

1

n2

[
f̂ (1)B1

2 +B2
22 −B1

4

(
vec

(
ĥ(−2)

)
+ f̂ (1)B1

1

)]
+Op

(
1

n3

)
= vec

(
θ̂θ̂
′)

+
1

n

[
vec

(
ĥ(−2)

)
+ vec

(
B1

1 θ̂
′
+ θ̂B1′

1

)]
+

1

n2

[
vec

(
B1

2 θ̂
′
+ θ̂B1′

2

)
+B2

22 −B1
4

(
vec

(
ĥ(−2)

)
+ vec

(
B1

1 θ̂
′
+ θ̂B1′

1

))]
+Op

(
1

n3

)
.

Hence we have ∫
vec

[(
θ−θ

) (
θ−θ

)′]
bD (θ) exp (−nhn (θ)) dθ∫

bD (θ) exp (−nhn (θ)) dθ

=

∫
vec

(
θθ′
)
bD (θ) exp (−nhn (θ)) dθ∫

bD (θ) exp (−nhn (θ)) dθ
− vec

(
θθ
)

=
1

n
vec

(
ĥ(−2)

)
+

1

n2

[
B2

22 −B1
4vec

(
ĥ(−2)

)]
+Op

(
1

n3

)
.

We can further decompose B2
22 −B1

4vec
(
ĥ(−2)

)
as

B2
22 −B1

4vec
(
ĥ(−2)

)
= F1 + F2,

where

F1 = − 5

16
vec

(
ĥ(−2)

)
tr

[(
ĥ(−2) ⊗ vec

(
ĥ(−2)

)′)
ĥ(4)

]
+

35

48
vec

(
ĥ(−2)

)[
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)]
−vec

(
ĥ(−2)

)( 5

24

[
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)]
+

1

8
tr
[[
ĥ(−2) ⊗ vec

(
ĥ(−2)

)]
ĥ(4)′

])
= − 7

16
vec

(
ĥ(−2)

)
tr

[(
ĥ(−2) ⊗ vec

(
ĥ(−2)

)′)
ĥ(4)

]
+

25

48
vec

(
ĥ(−2)

)[
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

)]
,
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and

F2 = −5

2
vec

[
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

) b̂(1)
D

b̂D

′

ĥ(−2)

]
+

3

4
vec

(
ĥ(−2)

)
tr

[
ĥ(−2) b̂

(2)

b̂D

]

−vec
(
ĥ(−2)

)(1

2
tr

[
ĥ(−2) b̂

(2)
D

b̂D

]
− 1

2
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2) b̂

(1)
D

b̂D

)

= −5

2
vec

[
ĥ(−2)ĥ(3)′vec

(
ĥ(−2)

) b̂(1)
D

b̂D

′

ĥ(−2)

]
+

1

4
vec

(
ĥ(−2)

)
tr

[
ĥ(−2) b̂

(2)

b̂D

]

+
1

2
vec

(
ĥ(−2)

)
vec

(
ĥ(−2)

)′
ĥ(3)ĥ(−2) b̂

(1)
D

b̂D
.

This is the end of proof for this lemma.

6.2 Proof of Theorem 4.1

It is noted that hn (θ) = −ln (θ) = − 1
n

∑n
t=1 lt (θ), bD (θ) = p (θ), π (θ) = ln p (θ) and

H̄
(j)
n (θ) = 1

n

∑n
t=1 l

(j)
t (θ) = l

(j)
n (θ) for j = 3, 4,. Thus, according to Lemma 4.1, we have

θ =

∫
θp (θ) exp (−nhn (θ)) dθ∫
p (θ) exp (−nhn (θ)) dθ

= θ̂ − 1

n
H̄n

(
θ̂
)−1 p̂(1)

p̂

+
1

2n
H̄n

(
θ̂
)−1

H̄(3)
n

(
θ̂
)′
vec

(
H̄n

(
θ̂
)−1

)
+Op

(
1

n2

)
, (49)

and

vec
(
V
(
θ
))

=

∫
vec

[(
θ−θ

) (
θ−θ

)′]
p (θ) exp (−nhn (θ)) dθ∫

p (θ) exp (−nhn (θ)) dθ

= − 1

n
vec

(
Ĥn

(
θ̂
)−1

)
+

1

n2
F1 +

1

n2
F2 +Op

(
1

n3

)
, (50)

where

F1 = − 7

16
vec

(
H̄n

(
θ̂
)−1

)
tr

[(
H̄n

(
θ̂
)−1
⊗ vec

(
H̄n

(
θ̂
)−1

)′)
H̄(4)
n

(
θ̂
)]

+
25

48
vec

(
H̄n

(
θ̂
)−1

)[
vec

(
H̄n

(
θ̂
)−1

)′
H̄(3)
n

(
θ̂
)

H̄n

(
θ̂
)−1

H̄(3)
n

(
θ̂
)′
vec

(
H̄n

(
θ̂
)−1

)]
F2 = −5

2
vec

[
H̄n

(
θ̂
)−1

H̄(3)
n

(
θ̂
)′
vec

(
H̄n

(
θ̂
)−1

)
p̂(1)

p̂

′

H̄n

(
θ̂
)−1

]

+
1

4
vec

(
H̄n

(
θ̂
)−1

)
tr

[
H̄n

(
θ̂
)−1 p̂(2)

p̂

]

+
1

2
vec

(
H̄n

(
θ̂
)−1

)
vec

(
H̄n

(
θ̂
)−1

)′
H̄(3)
n

(
θ̂
)

H̄n

(
θ̂
)−1 p̂(1)

p̂
.
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From (49), by the Taylor expansion of vec
(
H̄n

(
θ
))

at θ̂, we have

vec
(
H̄n

(
θ
))

= vec
[
H̄n

(
θ̂
)

+ H̄(3)
n

(
θ̂
)(
θ − θ̂

)]
+Op

(
1

n2

)
.

Hence, we get

P ID = tr
[
−nH̄n

(
θ
)
V
(
θ
)]

= −nvec
(
H̄n

(
θ
))′

vec
(
V
(
θ
))

= −nvec
(
H̄n

(
θ̂
))′
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By (42), (43), and (44), we can have
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Furthermore, it can be shown that
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Hence, from (54) and (55), it is easy to show that
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And from (52), (53) and (56), we can get that
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Then, from (51), (52) and (57), we have
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And from Li et al (2017)
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