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Abstract

We develop a new asset price model where the dynamic structure of the asset

price, after the fundamental value is removed, is subject to two different regimes.

One regime reflects the normal period where the asset price divided by the divi-

dend is assumed to follow a mean-reverting process around a stochastic long run

mean. This latter is allowed to account for possible smooth structural change.

The second regime reflects the bubble period with explosive behavior. Stochas-

tic switches between two regimes and non-constant probabilities of exit from the

bubble regime are both allowed. A Bayesian learning approach is employed to

jointly estimate the latent states and the model parameters in real time. An im-

portant feature of our Bayesian method is that we are able to deal with parameter

uncertainty, and at the same time, to learn about the states and the parameters

sequentially, allowing for real time model analysis. This feature is particularly

useful for market surveillance. Analysis using simulated data reveals that our

method has better power for detecting bubbles compared to existing alternative

procedures. Empirical analysis using price/dividend ratios of S&P500 highlights

the advantages of our method.
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1 Introduction

The recent global financial crisis and the ongoing European debt crisis have prompted

economists and regulators to work arduously to find ways to avoid the next crisis. From

a historical perspective, Ahamed (2009) argues that financial crises are often preceded

by an asset market bubble.1 Well-known bubble episodes include the Dutch tulip mania,

the British South Sea bubble, the Railway mania, Roaring Twenties stock-market bub-

ble, the Dot-com bubble, and the US housing bubbles related to the subprime mortgage.

All these bubbles were followed by financial crises. Bubbles are generally considered

harmful to economics and the welfare of society and they lead to the mis-allocation

of resources. In a recent article, Caballero, Farhi and Gourinchas (2008) argues the

burst of an asset price bubble can lead to recession in real economy. Consequently,

approaches have been tried to detect the presence and the burst of financial bubbles

and to estimate the bubble origination and collapsing dates.

Broadly speaking there are three alternative models in the bubble literature. The

first approach employs the regime switching models. The second approach is based on

various structural break models. The last approach is based on noncausal processes.

The regime switching models have a long history in economics, dating back to Gold-

feld and Quandt (1973) and Hamilton (1989). Evans (1991)’s model may be regarded as

a regime switching model with two regimes. One regime corresponds to bubble expan-

sion whereas the other regime corresponds to bubble collapse. The collapse is sudden

and takes place within a single period. After the bubble collapses, a new bubble starts

to emerge. The collapse of the bubble is determined by an independent Bernoulli trial.

Another regime switching model was proposed by Funke, Hall and Sola (1994) and Hall,

Psaradakis and Sola (1999). In this model, two regimes have been used: one regime

has a unit root and the market is efficient, whereas the other regime has a rational

bubble and hence has an explosive root. More recently, Shi (2013) extends the model

1As Federal Reserve Board former vice chairman – Donald Kohn – argued, Federal Reserve poli-
cymakers should deepen their understanding about how to combat speculative bubbles to reduce the
chances of another financial crisis.
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in Hall, Psaradakis and Sola (1999) to allow for heteroskedasticity. Shi and Song (2014)

proposed to use an infinite hidden Markov model, which allows for infinite number of

regimes, to detect, date stamp, and estimate speculative bubbles.

The structural break models have been extensively used to distinguish stationary

models and unit root models; see for example, Kim (2000) and Busetti and Taylor

(2004). Recently, Homm and Breitung (2012) extends some of the methods to distin-

guish explosive models and unit root models. The models considered in Homm and

Breitung (2012) have one change point. On one side of the change point, there is a unit

root in the dynamic structure. On the other side of the change point, the model has

an explosive root. The change point is not stochastic in these models. This determinis-

tic nature of modelling structural change point seems more restrictive than the regime

switching models.

More recently, Gourieroux and Zakoian (2013) proposes to use a noncausal Cauchy

autoregressive process to model explosiveness and showed that the model can explain

multiple bubbles phenomenon although the model is a strictly stationary process.

Regarding statistical inference of the presence of bubbles and the date-stamping of

bubble origination and termination, several methods have been proposed. The first

method is based on the full sample maximum likelihood (ML) method. This includes

Funke, Hall and Sola (1994) and Hall, Psaradakis and Sola (1999) in the context of

regime switching models. When the model is correctly specified, the ML estimator

(MLE) is efficient. Probabilistic inference about the unobserved regimes can be based

on the Hamilton filter by calculating either the filter probability or the smoothed prob-

ability. These probabilities naturally depend on the unknown parameters. To estimate

the probabilities, the unknown parameters are replaced by the MLE obtained from the

full sample. Consequently, the inferential approach does not allow for real time analysis

as there is no sequential learning about the parameters. This feature of lack of real time

analysis is shared by some MCMC algorithms in the literature such as the one in Shi

and Song (2014).

The second method is based on recursive techniques. For example, Phillips, Wu
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and Yu (2011) suggests implementing the right-tailed ADF test repeatedly on a for-

ward expanding sample sequence. To effectively deal with episodes with multiple bub-

bles, Phillips, Shi and Yu (2013a, 2013b, PSY hereafter) varies both the initial point

and the ending point of the sample in each recursive regression. Homm and Breitung

(2012) modifies various recursive methods for the purpose of bubble detection and

date-stamping of bubble origination and termination. Apart from the ease in imple-

mentation, a nice feature of the recursive method is that it provides real time estimate

of the bubble state. In practice, however, it is possible that the chosen minimum win-

dow size is larger than the actual bubble duration. Moreover, for the test statistic to

rise above the critical value, a long enough period and a strong enough signal from

the explosive regime are needed. Not surprisingly, in finite sample, the method may

overestimate the bubble origination and collapsing dates.

In this paper, we make several contributions to the empirical asset pricing literature.

First, we propose a two-state regime switching model of bubbles that generalizes the

existing literature. One state reflects the normal period corresponding to a common

stochastic trend between asset prices and dividends. Given that the underlying series

that we model is a price divided by a fundamental (e.g. a price-dividend or P/D

ratio) we assume a mean-reverting dynamics in this state around a potentially time

varying long-run mean. One can think of this mean-reverting behavior as a result of

low-frequency cyclical movements in the discount rates suggested in the recent finance

literature (Cochrane, 2011). In addition, to allow for smooth permanent structural

changes in asset markets, we allow the long-run mean of the series itself to follow a

random walk process. Evidently when the variance of this latter is set to zero, smooth

structural change is excluded. For the duration of this normal regime we assume a

standard exponential distribution that implies Markovianity of the regime changes. The

second state reflects the bubble period where the AR coefficient is larger than 1. Here

we depart from the extant regime-switching literature and allow for non-constant hazard

rates of exit from the bubble regime corresponding to Weibull-distributed durations.

Throughout we assume normally distributed innovations with heteroskedasticity across
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regimes. Our second contribution is to implement a Bayesian learning approach for

making sequential joint statistical inference over latent states, model parameters, and

model comparison. There are several appealing features of this new inferential method

for bubble detection. Firstly, based on the regime switching method, we can avoid the

need of specifying the minimum duration of each regime, including the bubble regime.

In PSY, the minimum duration is set to the minimum window size of regression. In

the case when the minimum window size has to be specified, if the minimum window

size is larger than the minimum duration of a regime, the identification of a regime will

be biased. Consequently, it is reasonable to believe that our model can identify the

change points more effectively and more quickly when there are quick regime shifts.

Secondly, the change points are endogenously determined. Thirdly, we are able to deal

with parameter uncertainty as well as learning about the states and the parameters

sequentially, allowing for real time model analysis. This feature is particularly useful

for market surveillance, as argued in PSY (2013a). Fourthly, our approach enables the

exact finite sample inference about the parameter as well as latent states and hence

avoids the derivation of asymptotic distribution. As shown in PSY, the asymptotic

properties can be very difficult to obtain in general and this is especially true for the

estimator of the change point.

To check the reliability of the proposed method for the model, we conduct a Monte

Carlo study. The Monte Carlo results show that the method is reliable both for the

estimation of parameters and more importantly for detecting bubbles. Comparing its

performance to PSY we find that our Bayesian learning algorithm reacts faster and

has better power to detect bubbles. To investigate the robustness of the method with

respect to outliers, we also simulate data from a model with fat tailed innovations but

estimate the (misspecified) model without fat tails using the proposed method and PSY

and find that both methods are robust. We also apply our method to real data, i.e.,

monthly S&P 500 P/D ratio between 1871 and 2012, as PSY did.

Our empirical estimates of the timing of bubbles are broadly similar to the empirical

results obtained by PSY (2013a) based on a recursive frequentist method. However,
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our procedure flags more bubble episodes than PSY and is more capable to differentiate

between bubble periods and normal periods. Furthermore, in line with our simulation

evidence, we find that a decision maker who is averse to erroneously declaring a regime

change will identify substantially fewer and longer bubble periods.

The organization of the paper is as follows. Section 2 introduces the model and

proposes a new estimation method. Section 3 presents simulation results. Section 4

reports the empirical results and Section 5 concludes.

2 Econometric Model and Estimation Method

2.1 Model and inferential task

We assume the presence of two regimes determining the autoregressive behavior of the

series, with st = 1 the normal regime, st = 2 the bubble regime. The distribution of

the duration of the normal regime is exponential with parameter λ1, i.e., if the duration

of the normal spell is denoted by τn, then we have Pr(τn > t) = exp (−t/λ1). As our

focus is on the bubble regimes, we assume that the bubble duration, τb, follows the

more flexible Weibull distribution with parameters λ2, k2, giving rise to the survival

probabilities

Pr(τb > t) = exp
(
− (t/λ)k2

)
.

The expected value of the bubble spell is µ2 = λ2Γ(1+1/k2) and we reparameterize the

model and define our prior over µ2 instead of λ2. The shape parameter k2 determines

whether the hazard rate of exit is constant, increasing or decreasing.

The process in each regime follows

st = 0 : xt = αt(1− β1) + β1xt−1 + σtεt, β1 < 1, (1)

αt = αt−1 + δηt, (2)

st = 1 : xt = β2xt−1 + σtεt, β2 > 1. (3)

6



In the normal state (1), xt follows a mean-reverting process around the stochastic

mean αt, where the speed of mean-reversion is β1. To allow for gradual parameter

change in the long-run mean, Equation (2) posits that αt follows a random walk whose

variability is determined by δ. Obviously, when δ = 0, we are back to a constant mean

reversion model. In the state with an explosive root (3), we claim that there is a bubble

in the asset price. This is because we will understand xt as an asset price with the

fundamental value removed. As a result, the presence of an explosive root implies the

presence of bubble according to the present value model; see, for example, Diba and

Grossman (1988). Following the suggestion of Phillips, Wu and Yu (2011), we do not

use an intercept in the explosive state for otherwise the intercept would dominate the

autoregressive term asymptotically which is not empirically realistic.2

To address the concern of Shi (2013) about the sensitivity to bubble identification

to the presence of heteroskedasticity, we allow σt to follow an independent 2-regime

Markov switching process, with diagonal probabilities zii. In the first (low) regime the

value of volatility is σt = σl while in the second (high) regime, σt = σmσl where σm > 1.

The transition matrix for volatility is

Pσ =

 z11 1− z22

1− z11 z22

 .

The fixed parameter vector describing the dynamics of the system has 10 unknown

parameters θ = (λ1, k2, µ2, , z11, z22, σl, σm, δ, β1, β2)
′.

To monitor bubbles in real time, the user of the model needs to evaluate the prob-

ability of being in a bubble (or normal) regime at time t, given information available

by time t. Even if he knows the fixed parameters θ, inference over the regimes, i.e.

obtaining

p(st = k | θ, x1:t) = E(1{st=k} | θ, x1:t),

is not easy as the filter is not analytically available for the model. However, in what

2In a more recent attempt, PSY (2014) show the impact of the intercept term on the asymptotics.
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follows we describe a very efficient sequential Monte Carlo technique (a particle filter)

to numerically approximate the filtering distributions.

2.2 Discrete particle filter

The theoretical quantity that the filtering algorithm targets is the sequence of filtering

distributions of the state-space system f(st, ht, σt, αt | x1:t, θ) where ht is the time

elapsed since the last regime change. Throughout this section we assume a known

parameter vector θ and, to simplify notation, we suppress dependence on it. The crucial

thing to realize is that conditional on the path of the discrete latent states s1:t, h1:t, σ1:t

the system is a linear Gaussian state space model, and hence the continuous state

variable αt can be marginalized out analytically using Kalman filtering recursions. Let

us denote the two filtering moments of αt (conditional on discrete latent variables) by

µt, Vt, and hence the joint filtering density to track becomes f(st, ht, σt, µt, Vt | x1:t).

Given that the state space that we need to filter numerically is discrete, we can employ

the discrete particle filter (DPF) of Fearnhead (1998) where all successor states are

generated avoiding the use of a proposal distribution. Let us assume that at t − 1 we

have N equal-weighted particles (sit−1, h
i
t−1, σ

i
t−1, µ

i
t−1, V

i
t−1), i = 1, . . . , N with weights

sit−1 = 1
N

representing the filtering distribution. We have the following recursion to

arrive to the filtering distribution at the next time instant t.

Branching out: To move the hidden state particles forward, one needs to attach

st, σt to the existing particles to characterize f(st, σt, st−1, ht−1, σt−1, µt−1, Vt−1 | x1:t−1).

Instead of some random proposal over the new states the DPF proposes to create all

possible successor states from each existing particles. In our case we haveK = 4 possible

successor particles for each ancestor corresponding to all possible configurations of st, σt.

This results in 4×N particles of the form (st = k, σt = l, sit−1, h
i
t−1, σ

i
t−1, µ

i
t−1, V

i
t−1), k =

0, 1; l = 1, 2, i = 1, . . . , N with attached weights

siklt|t−1 = f(st = k, σt = l | sit−1, h
i
t−1, σ

i
t−1)s

i
t−1.
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Attaching new information and computing the likelihood: Next, the particles are

reweighted to include the effect of the new observation xt. The theoretical relationship

between the predictive distribution and the filtering one is

f(st, σt, st−1, ht−1, σt−1, µt−1, Vt−1 | x1:t)

∝ f(xt | st, σt, µt−1, Vt−1)f(st, σt, st−1, ht−1, σt−1, µt−1, Vt−1 | x1:t−1).

This can be implemented in the algorithm by reweighting to arrive to the filtering

weights s̃iklt = f(xt | st = k, σt = l, µi
t−1, V

i
t−1)s

ikl
t|t−1. The estimate of the marginal

likelihood of xt can be computed as

p̂(xt | x1:t−1) =
1

4N

2∑
k=1

2∑
l=1

N∑
i=1

s̃iklt .

Resampling: Clearly, repeating the previous steps through multiple observations

would lead to an exponential growth in the number of discrete states to be maintained.

Hence it is crucial to include a resampling step where N particles are sampled out of

the 4 × N existing one with probability proportional to the normalized weights siklt =

s̃iklt∑2
k=1

∑2
l=1

∑N
i=1 s̃

ikl
t

. This results in an N -sample, (sit, σ
i
t, s

i
t−1, h

i
t−1, σ

i
t−1, µ

i
t−1, V

i
t−1), i =

1, . . . , N with equal weights sit =
1
N
. The last step is to update the hidden variables

(hi
t, µ

i
t, V

i
t ) which are simply deterministic functions of their past values, the new state

variables sit, σ
i
t and of the observation xt.

The empirical distribution of the particle cloud converges to the true filtering density

under weak conditions and it can be used to approximate any filtering quantity of

interest. For example the filtered bubble probability can be approximated as:

p(st = 1 | θ, x1:t) ≈ p̂(st = 1 | θ, x1:t) =
1

N

N∑
i=1

1{sit=1}.
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2.3 Parameter learning algorithm

In practice, we do not know θ. A common practice in the regime switching literature

is to replace θ by the ML estimates or the Bayesian estimates obtained from the full

sample, ignoring the parameter uncertainty. Since the estimates of θ are constructed

from the full sample of the data, such an analysis is not in real time. To carry out a real

time analysis, the model parameters also need to be sequentially updated as new data

arrive. Furthermore, ignoring parameter uncertainty can lead to an overestimation of

our ability to regime detection in real time, especially for more complex models.

To tackle these issues we turn to sequential Bayesian techniques that allow us to

sample from the posterior probability of the fixed parameters p(θ | x1:t). As an example,

assume that we have a weighted sample (πm
t , θ

m
t ,m = 1, . . . ,M) with normalized weights∑M

m=1 π
m
t = 1 whose empirical distribution approximates p(θ | x1:t). Further, assume

that for each θmt , we have N state particles sm,i, i = 1, . . . , N approximating f(st |

x1:t, θ
m
t ) obtained by running a DPF at θmt . Then the posterior probabilities that take

parameter uncertainty into account can be computed as

E
(
1{st=k} | x1:t

)
= E(E(1{st=k}, | θ, x1:t) | x1:t) ≈

M∑
m=1

πm
t

1

N

N∑
i=1

1{sm,i
t =1}.

The use of Bayesian methods enables us to conduct the exact finite sample inference of

the parameters as well as latent states and hence avoids the derivation of asymptotic

distribution. The derivation of asymptotic properties of classical estimators can be very

difficult to obtain for this class of models due to the presence of explosiveness. This

difficulty is especially true for the estimator of the change point; see, for example, PSY

(2013b).

Sequential analysis of state-space models under parameter uncertainty is of interest

in many settings. Since one of our primary interests here is real time analysis of regime

detection, parameter learning is needed. To sequentially learn over the parameters, we

turn to the marginalized resample-move approach of Fulop and Li (2013) and Chopin

et al. (2013). For completeness, we provide a brief overview of the method in this
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subsection. We need a method to sequentially sample from the sequence of posteriors

γt(θ) = p(θ | x1:t) ∝ p(x1:t | θ)p(θ) =
t∏

l=1

p(xl | x1:l−1, θ)p(θ), (4)

where p(θ) is the prior over the fixed parameters and for notational convenience we

suppress the dependence on the initial hidden state. While the individual conditional

likelihoods p(xl | x1:l−1, θ) cannot be obtained in closed form, Fulop and Li (2013)

and Chopin et al (2013) employ instead the approximate likelihoods obtained from

particle filters. In particular, instead of the targets in (4) they propose to work with

the extended target

γ̃t(θ, u1:t) =
t∏

l=1

p̂(xl, ul | x1:l−1, u1:l−1θ)ϕ(ul | x1:l, u1:l−1)p(θ), (5)

where the likelihood estimates p̂(xl, ul | x1:l−1, u1:l−1, θ) (denoted as p̂(xt | x1:t−1) in the

previous section) are obtained by running a particle filter with N particles for any given

fixed parameter θ, ul contains all the random variables created at time l by the particle

filter and ϕ(ul | x1:l, u1:l−1) is the density of these random variables.

Initialization: Sample particles from the prior θm0 ∼ p(θ), and attach equal weights

to each particle πm
0 = 1

M
. The resulting cloud, (πm

0 , θ
m
0 ) is trivially distributed according

to p(θ). For each θm0 initialize a particle filter with N state particles and denote the

random variables created by um
0 .

Recursion and reweighting: Assume that a weighted sample, (πm
t−1, θ

m
t−1), has been

obtained that represents p(θ | x1:t−1). Furthermore, for each θmt−1 we maintain a particle

filter with N state particles with attached random variables um
1:l−1 and the likelihood

estimates up to t − 1, p̂(x1:t−1 | θmt−1). Now the task is to include the new observation

into the information set and obtain a representation of the next posterior, p(θ | x1:t).

The sequential resample-move algorithm uses importance sampling for this task and the

intuition that the posterior at t− 1 is typically quite close to the posterior at t. Hence,

the sample from the former will provide a good proposal distribution for the latter.
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Then the location of the particles is inherited from the previous cloud: θmt = θmt−1.

However, the importance weights will change to account for the difference between the

target and the proposal leading to new un-normalized weights

wm
t = πm

t−1×
γ̃t(θ

m
t , u

m
1:t)

ϕ(um
t | x1:t, u1:t−1, θmt )γ̃t−1(θmt−1, u

m
1:t−1)

= πm
t−1× p̂(xt, u

m
t | x1:t−1, u

m
1:t−1θ

m
t ),

(6)

The incremental weights p̂(xt, u
m
t | x1:t−1, u

m
1:t−1θ

m
t ) are obtained by running the particle

filter for each θmt on the new observation xt and recording the resulting likelihood

estimate. The random numbers used in the particle filters need to be independent

across θmt and through time. The new normalized weights are πm
t =

wm
t∑M

i=1 w
i
t

and the

particle cloud, (πm
t , θ

m
t ), will represent the target p(θ | x1:t).

Sample Degeneracy: If we keep repeating the reweighting steps, at some point the

sample would degenerate. We measure sample diversity by the Efficient Sample Size:

ESS = 1∑M
m=1(π

m
t )2

. Whenever the ESS drops below some prespecified number B, we

will introduce additional algorithmic steps to improve the support of the distribution.

Resampling Step: First, to focus computational efforts on the more likely part of

the sample space, we resample the particles proportional to weights πm
t to arrive to an

equal-weighted sample and set weights to πm
t = 1/N . Any resampling method can be

used where choice probabilities are proportional to the weights. Also, notice that for

each resampled θm, the attached dynamic states and likelihood estimates need to be

resampled too. The resulting cloud is still distributed according to γ̃t(θ, u1:t).

Move Step: The resampling step in itself does not enrich the support of the particle

cloud. We need to boost the particle cloud in such a way that does not distort its dis-

tribution in a probabilistic sense as M goes to infinity. This can be achieved by moving

each particle through a kernel Kt(· | θ, u1:t) that admits γt(θ, u1:t) as an equilibrium

distribution. Kt(· | θ) will be a particle marginal M-H kernel from Andrieu et al (2010):

• Propose from a proposal density: (θ∗, u∗
1:t) ∼ ϕ(u∗

1:t | θ∗)ht(θ
∗ | θi).
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• Acceptance probability:

α = min

(
1,

γ̃t(θ
∗, u∗

1:t)ϕ(u
i
1:t | θi)ht(θ

i | θ∗)
γ̃t(θi, ui

1:t)ϕ(u
∗
1:t | θ∗)ht(θ∗ | θi)

)
= min

(
1,

p̂(x1:t, u
∗
1,t | θ∗)ht(θ

i | θ∗)
p̂(x1:t, ui

1,t | θi)ht(θ∗ | θi)

)
.

• With probability α, set (θi, u1:t) = (θ∗, u∗
1:t), otherwise keep original value.

Here, ht(· | θ(n)) can be fitted on the cloud of particles to better approximate the

target. Fulop and Li (2013) and Chopin et al (2013) show that this algorithm actually

delivers exact inference over the sequence of joint filtering distribution of the parameters

and the dynamic states.

Notice that the move step needs to browse through the full data-set x1:t as the

likelihood is evaluated at each new proposal θ∗. In contrast, the reweighting step only

needs the last individual likelihood p̂(xt | x1:t−1, θ). Hence the time needed for a move

step keeps increasing with the sample size, while the reweighting step has a constant

speed. Fortunately, as the sample becomes large the posteriors stabilize and one needs

to resort to move steps less and less often. To keep the estimation error in the likelihood

under control, under some mixing assumption on the state-space model the number of

state particles need to increase linearly with overall sample size. Chopin et al (2013)

show that overall the computational cost of the algorithm is of the order t2.

2.4 Loss functions for bubble-stamping

The discrete decision the policy maker is faced at time t is whether he stamps the given

period as a bubble or not. Let us denote this decision as at = 1 if the period is stamped

as a normal period, at = 0 if it is stamped as a bubble period. Then the loss function

related to the decision is defined as

Lt(st, at) = lbtat1st=0 + lnt (1− at)1st=1, (7)
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where lbt is the loss from classifying a normal period as a bubble period while lnt is the

loss from classifying a bubble period as a normal period. If the policy maker has a

preference of avoiding “crying wolf”, we can let these loss functions state-dependent,

i.e., if the previous period was stamped as a normal period (at−1 = 0), we would have

lbt > lnt and the reverse if the previous period was stamped as a bubble period. The

expected loss of the policy maker based on real time information corresponding to the

two decisions are

Et(Lt(st, at = 1)) = lbtPr(1{st=0} | x1:t), (8)

Et(Lt(st, at = 0)) = lnt Pr(1{st=1} | x1:t). (9)

Hence, flagging the period as a bubble period is optimal if

lbt
lnt

<
Pr(1{st=1} | x1:t)

Pr(1{st=0} | x1:t)
. (10)

Notice that for decision-making it is only the ratio of the loss functions denoted by

ζ =
lbt
lnt

that matters. If we assume that this parameter is time invariant conditional on

being in a regime stamped as a normal regime, the rule is to stamp the new regime as

a bubble if ζ <
Pr(1{st=1}|x1:t)

Pr(1{st=0}|x1:t)
. By analogy, we stamp the end of a bubble spell whenever

ζ <
Pr(1{st=0}|x1:t)

Pr(1{st=1}|x1:t)
.

3 Monte Carlo Study

3.1 Priors and parameter restrictions

In the simulation study and the empirical study, we use the following priors for model

parameters:

• λ1 : This is the parameter determining the expected length of a normal regime.

In particular we use a normal distribution truncated from below at 120 months

to reflect our a priori beliefs that the normal regime should be reasonably long
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lasting. The mean and standard deviation parameters of the normal are 180 and

60 respectively.

• k2 : Determines the shape of the bubble regime distribution. Here we assume

that k2 has an increasing probability of exit from the bubble state in duration,

so assume a normal distribution truncated from below with mean and standard

deviation parameters of the normal of 1.

• µ2: Determines the expected length of a bubble spell. Here again we use an

informative prior to focus on reasonably long-lasting bubble spells. In particular,

we use a normal distribution truncated from below at 24. The mean and standard

deviation parameters of the normal are 36 and 12 respectively.

• z11, z22 : For both we use a uniform prior on [0, 1].

• σl : We use a normal prior truncated below at 0, with µ = std(∆xt), σ = std(∆xt).

• σm : We use a normal prior truncated below at 1, with µ = 1, σ = 1.

• δ : We use a normal prior truncated below at 0, with µ = 0, σ = 0.25.

• β1 : Measures the mean reversion during the normal regime. The recent literature

in finance points towards time-varying discount rates as the main source behind

the cyclical variation in the P/D ratio (see for instance Cochrane (2011) for a

recent overview), usually thought of as a medium-to-low frequency phenomenon.

Hence we bound from below the half-life of the mean reversion at 2 years, corre-

sponding to β1 = 0.9715 with monthly data. In addition to this we only assume

non-explosiveness of the process in the normal regime leading to the uniform prior

β1 ∼ U [0.9715, 1].

• β2 : We simply use a β2 ∼ U [1, 1.02] prior where the upper boundary is chosen to

make sure that we cover all empirically relevant parameters of β2.

In the SMC procedure we use M = 2, 048 parameter particles with N = 128 state

particles in each particle filter. The resample-move step is triggered when the efficient
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sample size drops below N/2. In the move-steps we use an independent mixture normal

proposal. The routine has been coded in MATLAB with the particle filtering operation

programmed efficiently in CUDA and run on a Kepler K20 GPU.

3.2 Monte Carlo results

To investigate the reliability of the learning routine we design two Monte Carlo exper-

iments. In the first experiment, we simulate 100 data sets from the proposed regime

switching model, each with T = 1, 698 observations. The parameter setting, including

the sample size, is similar to what has been found in the empirical study from S&P500.

The first column of Table 1 reports the parameter values used to generate the data.

The second column reports the average of the full-sample posterior means and the third

column the average length of the central posterior 90% credible interval. For compara-

bility the last column shows the prior central 90% credible interval. The results show

that the informativeness of the data varies starkly across the various parameters. First,

one can see that the length of the posterior credible interval for λ1, k2, µ2 is only a bit

smaller compared to the prior analogue, mirroring limited learning about these param-

eters that determine the regime transition probabilities. This is a natural consequence

of the small average number of regime changes in the simulated data. Not surprisingly,

the average posterior means are markedly biased towards the prior means. A similar

phenomenon can be observed for δ that controls the variability of the long-run mean

of the time-series. The reason here is that changes in αt happen at a low frequency

resulting in a small effective sample. The remaining parameters, z11, z22, σl, σm, β1, β2,

describe time-varying volatility and the within-regime conditional means and are much

better identified from the data. The posterior means are close to the real generating

values and the posterior credible intervals are a fraction of the prior ones.

Now we turn to the ability of our model to detect explosive periods (bubbles) in the

underlying time series and compare it with the real time detection algorithm in PSY. In

our Bayesian algorithm we investigate several values of the date-stamping parameter ζ.

As a baseline, we look at the case of symmetric loss, i.e. ζ = 1. Then, we also investigate
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cases where the decision maker is averse to changing the stamp too quickly. Specifically,

we look at ζ = 2 and ζ = 3. For PSY, we follow Yiu,Yu and Jin (2013) and declare

a switch to a bubble stamp whenever the backward sup ADF (BSADF) test statistic

surpasses QBSADF (0.95) + log(t)/100 where QBSADF (0.95) is the 95% critical value of

the test statistic obtained by Monte Carlo simulation. Further, we stamp the end of the

bubble when the statistic drops below QBSADF (0.95). Note that both algorithms are

implementable using only data available in real time. In the upper panel of Figure 1 we

plot with solid lines the detection rates of our Bayesian learning algorithm as a function

of bubble duration, where the flat line corresponds to ζ = 1, the line with circles to

ζ = 2 and the line with plus signs to ζ = 3. The dashed line reports the detection

rates from using the BSADF statistic as in PSY. All results are averaged across 100

data sets using the true DGP to simulate the data. One can see that our Bayesian

methodology seems to react faster with better detection rates when only a few periods

has elapsed since the start of the bubble. The power of the two algorithms seems to

get closer as the length of bubble becomes large. Importantly, the detection capability

of the test does not seem to deteriorate much with an increase in the bubble stamping

parameter ζ. Let us note that the size of the Bayesian test (periods flagged as bubble

that are in fact not bubbles) is around 0.018 while for PSY it is 0.057. There are at

least two usual caveats with the use of relatively richly parameterized nonlinear models

like our regime-switching one in time-series: First, one is concerned about parameter

uncertainty, second about the robustness of the results to the exact model specification.

As mentioned earlier, our Bayesian learning approach deals with the first of these as it

fully takes parameter uncertainty into account. However, one may still wonder about

the extent to which these detection results are conditional on the model being exact.

In particular, given the well-known fact that asset returns are non-normal, in the lower

panel of Figure 1 we investigate the detection capability of our method and that of PSY

in a setting where the data innovations follow a fat-tailed student-t distribution with

4 degrees of freedom instead of the normal postulated by our regime switching model.

The results closely mirror the ones in the upper panel showing the robustness of both
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methods to the presence of fat-tailed innovations.

To gain further insight into the behavior of identified bubbles by the alternative bub-

ble indicators. Table 2 reports some summary statistics of identified bubbles, including

the number of identified bubble episodes, the proportion of the identified bubble periods,

and the average bubble duration, both for PSY and the regime switching model with

different value of ζ. The first and third columns show that both PSY and the regime

switching model with ζ = 1 (no aversion to regime change) indicate more frequent but

shorter bubbles compared to ζ > 1. Hence, allowing for a ”regime-change-averse” loss

function for the decision maker provides a principled way to flag fewer and longer bub-

bles in the regime-switching framework. Furthermore, the second column indicates that

the proportion of periods labeled as bubble is much less variable across the different

methods. Hence, these results are not simply the result of using a more aggressive test

procedure.

4 Empirical Study

In the empirical study, we confront the proposed model with a well-known time series.

We fit the model to the monthly real S&P500 series and dividend series as in PSY

(2013a). The data series is from January 1871 to June 2012, resulting in 1,698 observa-

tions and downloadable from Professor Shiller’s website. As in PSY, we investigate the

series of the price-dividend ratio, plotted in Figure 2. The choice of the data over a long

time span reflects our objective to capture as many stock market phases as possible. In

the meantime, the use of the same data as in PSY allows us to compare our estimates

with those of PSY.

Table 3 presents the full sample posterior estimates obtained from our learning rou-

tine and Figure 3 shows the histograms of the priors (in red) alongside the full-sample

posteriors (in blue). We can observe that while there is a large amount of uncertainty

remaining about the parameters driving the regime changes, the data does tell us some-

thing about these parameters. First, the posteriors of both λ1 and µ2 put relatively
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more weight onto lower values, suggesting somewhat more frequent regime changes

compared to our priors. Second, the posterior over the shape parameter of the bubble

duration k2 seems to have a density separated away from 1 providing evidence against a

simple exponential bubble duration distribution (case of k2 = 1). This evidence points

towards an increasing hazard function of exit from the bubble state, i.e. the probabil-

ity of a crash tends to increase as bubbles mature. This is in contrast to a standard

homogenous continuous time Markov-Switching model that gives rise to exponentially

distributed durations. Further, the presence of stochastic volatility is clear in the data.

The volatility in the high volatility regime is almost three time as large as that in the

low volatility regime but is markedly less persistent. As in the Monte Carlo simulations,

the data does not reveal too much about δ, the volatility of the long-run mean, but the

posterior seems separated from zero. In contrast, the mean-reversion coefficient in the

normal regime β1 seems well identified with a mode that is close to but separate from

unity and a posterior mean of 0.99. To translate this parameter to a more intuitive

scale, we compute the posterior mean of the half-life of the process during the normal

regime. If βi
1, i = 1, . . . ,M are the posterior draws of the parameter, the posterior

mean half-life is computed as ĤLnormal =
1
M

∑M
i=1

ln 0.5
lnβi

1
. In our data set this results

in an estimate of ĤLnormal = 130 i.e. 10.8 years. Last, the autoregressive coefficient

during explosive regimes is tightly identified and symmetrically distributed around a

posterior mean estimate of β̂2 = 1.015.

Our main object of interest is not the parameter estimates per se but the ability to

detect bubbles in real time using the filtered bubble probabilities. Table 4 reports some

summary statistics on bubble-stamping both from PSY (2013a) (row 1) and from our

algorithm with different values of ζ. The first thing to note is that in accordance with

the simulation results, both PSY (2013a) and the regime switching model with ζ = 1

seems to detect lots of short bubbles with the average bubble spell around 4 months

in both cases. Further, increasing the date stamping parameter to ζ > 1 seems to

lead to an increase in the average length of the detected bubble spells while decreasing

the number of bubble periods. Overall, allowing for aversion to change in the bubble
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stamps leads to more intuitive results at least for this data set. Second, the results are

not too different across ζ = 2 and ζ = 3. Hence, the results seem reasonably robust to

the exact choice of the loss function. Last, the regime switching labels more periods as

bubbles compared to PSY. Figure 4 shows the results from a real time bubble classifier

with ζ = 2 together with the filtered bubble regime probabilities. Here we label a

given month a bubble (shaded in grey) if the bubble regime has the highest filtered

probability. For comparison, we also implement the real time bubble indicator using

the BSADF statistics from PSY in Figure 5. It is reassuring to observe that there are

quite a few periods where the incidence of bubbles is preponderant according to both

methods. In particular, around 1880, the years before 1920, before the great depression

in 1929, the internet bubble before 2000 and last, the rebound after the recent 2008

financial crisis.

To better understand the behavior of the various bubble indicators, we take a mi-

croscopic view around well-known historical events. Here we focus on five events: The

banking crisis in October 1907, the great market crash in September 1929, the Black

Monday crash in October 1987, the DotCom mania peaking in March 2000 and the

sub-prime crisis exploding in September 2008. Figure 6 and Figure 7 reports both the

PSY BSADF statistic (row 1), the filtered bubble (row 2) probabilities our regime-

switching model in the two years preceding and following these events. For reference

row 3 depicts the original data series (P/D ratios) in the same periods. There are a

few interesting patterns emerging from these graphs. First, both methods seem to indi-

cate the presence of bubbles before the 1929 and 1987 crashes and during the DotCom

bubble before 2000. A slight difference is that the regime-switching model seems to

give more indication to the consecutive arrival of several shorter explosive periods, es-

pecially during the DotCom Mania. Second, the PSY method seems to have a difficulty

in differentiating bubbles from collapses, a feature also noted in PSY (2013a, Footnote

28). For instance, the BSADF statistic takes large positive values during the market

collapse before October 1907 or in the months right after the Lehman bankruptcy in

2008. In contrast in the regime switching model the bubble regime probabilities stay
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low during these times. Third, the two methods interpret very differently when the

market rallies after collapsing. For example, in months after October 1907 crash, after

the 2000 crash, and the 2008 crash, the BSADF statistic actually decreases while the

regime switching model sees explosive bubble periods.

5 Conclusion

In this paper, we propose a new regime switching model with two regimes, a normal

regime and a bubble regime. To estimate the model we use a sequential Bayesian simu-

lation method that allows for real time detection of bubble origination and conclusion.

A particular feature of our framework is that it sequentially tracks the joint posterior

distribution of the fixed parameters and of the hidden states. Hence, it properly al-

lows for real time parameter uncertainty. The Monte Carlo evidence suggests that our

method is reliable and quite robust to the presence of outliers and compares favorably

to existing online methods in detection power. We carry out empirical study using real

monthly S&P 500 price-dividend data. While some similar results have been obtained

by PSY (2013a) in a classical setup and by our method, we find some differences in the

two set of empirical results. In particular, our method detects more bubble periods and

can better discriminate between bubbles and collapses.
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Table 1: Monte Carlo Results on Posterior Parameter Estimates

True Post. Mean Post. 90% Credible Interval Prior 90% Credible Interval
λ1 150 189.4 126.9 153.7
k2 1.8 1.91 1.68 1.87
µ2 30 35.95 21.15 31.01
z11 0.98 0.97 0.01 0.89
z22 0.94 0.93 0.049 0.90
σl 0.65 0.65 0.04 2.7
σm 2.8 2.77 0.37 1.88
δ 0.3 0.214 0.428 0.477
β1 0.99 0.989 0.006 0.025
β2 1.015 1.014 0.005 0.0180

This table reports various statistics from the Monte Carlo exercise using the true regime switching

model as the data generating process, where we simulate 100 data sets with 1,698 observations. The

first column reports the true parameter values, the second column the average posterior means across

the 100 data sets, the third column the average length of the posterior central 90% credible interval

across the 100 runs and the fourth column the prior 90% credible interval.
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Figure 1: Monte Carlo Results on Bubble Detection Rates of Online Learning vs PSY
(2013a)
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This table reports how well the online Bayesian filter and the PSY (2013a) method perform in detecting

bubble regimes as a function of the duration of the bubble. We execute a Monte Carlo exercise using

two data generating processes. First, we run simulations using the true regime switching model as

the data generating process. Second, to investigate the effect of outliers, we simulate data from a

misspecified version with student-t innovations with 4 degrees of freedom. For each DGP, we simulate

100 data sets with 1,698 observations. The upper panel shows the average frequency of periods flagged

as bubble among the time periods that are in fact in the bubble regimes since n periods when the DGP

from our regime switching model is used to generate the data. The solid lines depict the detection

rates from our online Bayesian filter. The flat line corresponds to a stamping rule of ζ = 1, the one

with circles to ζ = 2 while the one with crosses to ζ = 3. The dotted line presents the detection rates

from the PSY (2013a) method. The lower panel reports analogous results when a misspecified DGP

with student-t innovations with 4 degrees of freedom is used.
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Table 2: Monte Carlo Bubble Detection Statistics

Number of Bubble Spells Total Bubble Length/T Avg Bubble Duration
in months

Panel A: Correctly Specified DGP
PSY 13.2 0.095 11.0
RS, ζ = 1 17.4 0.095 8.9
RS, ζ = 2 8.6 0.091 17.3
RS, ζ = 3 6.9 0.087 20.6
Panel B: Misspecified DGP
PSY 13.8 0.096 11.0
RS, ζ = 1 19.9 0.106 8.7
RS, ζ = 2 10.0 0.102 17.0
RS, ζ = 3 8.0 0.099 21.0

This table reports summary statistics on the different bubble-stamping procedures in a Monte Carlo

exercise using two data generating processes. First, we run simulations using the true regime switching

model as the data generating process. Second, to investigate the effect of outliers, we simulate data

from a misspecified version with student-t innovations with 4 degrees of freedom. For each DGP,

we simulate 100 data sets with 1,698 observations. In both panels, the first row reports the results

from the PSY (2013a) procedure while rows 2-4 report the results from our regime switching model

at different values of the bubble stamping parameter ζ. In all cases the figures are average numbers

across the 100 simulations.
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Figure 2: S&P 500 Price-Dividend Ratio
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This figure shows the monthly real S&P 500 P/D data between January 1871 to June 2012.
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Table 3: Full Sample Posterior Parameter Estimates for S&P 500

Posterior Posterior Posterior
Mean 5th Prctile 95th Prctile

λ1 147 123.5 183.1
k2 1.795 1.152 2.589
µ2 30.74 25.25 38.31
z11 0.9842 0.9754 0.9907
z22 0.9412 0.9128 0.963
σl 0.6694 0.6367 0.7017
σm 2.895 2.708 3.1
δ 0.3117 0.09392 0.6485
β1 0.99 0.9784 0.9982
β2 1.015 1.01 1.018

This table reports the full sample posterior estimates of the full model on monthly S&P 500 P/D data

between January 1871 to June 2012.
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Table 4: Bubble Detection Statistics for S&P 500

Number of Bubble Spells Total Bubble Length/T Avg Bubble Duration
in months

PSY 22 0.056 4.27
RS, ζ = 1 58 0.16 4.5
RS, ζ = 2 24 0.14 9.7
RS, ζ = 3 20 0.125 10.4

This table reports summary statistics on the different bubble-stamping procedures for monthly S&P

500 P/D data between January 1871 to June 2012. The first row reports the results from the PSY

(2013a) procedure while rows 2-4 report the results from our regime switching model at different values

of the bubble stamping parameter ζ.
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Figure 3: Histogram of parameter priors and posteriors
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This figure reports the histogram of the priors (in blue) and the full-sample posteriors (in red). The

sample is monthly S&P 500 P/D data between January 1871 to June 2012.
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Figure 4: Bubble Regimes from Bayesian Learning
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This figure reports the real-time bubble regimes indicated by our regime switching model together with

the filtered bubble regime probability. A given month is classified as belonging to the bubble regime

if this latter is the regime with the highest filtered probability. The plot corresponds to the bubble

stamping parameter ζ = 2. Bubble regimes are the shaded grey areas. The sample is monthly S&P

500 P/D data between January 1871 to June 2012.
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Figure 5: Bubble Regimes from recursive regressions as in PSY (2013a)
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This figure reports the real-time bubble regimes indicated the backward sup ADF (BSADF) statistics

from PSY (2013a). A given month is deemed to belong to a bubble regime if the value of the BSADF

statistic exceeds QBSADF (0.95)+ log(t)/100 where QBSADF (0.95) is the 95% critical value of the test

statistic. Bubble regimes are the shaded grey areas while the solid line depicts the BSADF sequence.

The sample is monthly S&P 500 P/D data between January 1871 to June 2012.
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Figure 6: Behavior of bubble detectors around historical events 1
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This figure reports the behavior of both the PSY and our regime-switching bubble indicators around

some well-known historical events. The event itself is always shown by a vertical dashed line. Each

time we report two years before and two years after the event. The first row reports the PSY BSADF

statistic together with QBSADF (0.95) + log(t)/100 in dashed red. The second row report the filtered

bubble probabilities from our regime-switching model. The last row shows the data, the real S&P 500

P/D ratio.
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Figure 7: Behavior of bubble detectors around historical events 2
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This figure reports the behavior of both the PSY and our regime-switching bubble indicators around

some well-known historical events. The event itself is always shown by a vertical dashed line. Each

time we report two years before and two years after the event. The first row reports the PSY BSADF

statistic together with the 95% critical values in dashed red. The second row report the filtered bubble

probabilities from our regime-switching model. The last row shows the data, the real S&P 500 P/D

ratio.
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