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a b s t r a c t

A new Bayesian test statistic is proposed to test a point null hypothesis based on a quadratic loss.
The proposed test statistic may be regarded as the Bayesian version of the Lagrange multiplier test.
Its asymptotic distribution is obtained based on a set of regular conditions and follows a chi-squared
distribution when the null hypothesis is correct. The new statistic has several important advantages that
make it appealing in practical applications. First, it is well-defined under improper prior distributions.
Second, it avoids Jeffrey–Lindley’s paradox. Third, it always takes a non-negative value and is relatively
easy to compute, even for models with latent variables. Fourth, its numerical standard error is relatively
easy to obtain. Finally, it is asymptotically pivotal and its threshold values can be obtained from the chi-
squared distribution. The method is illustrated using some real examples in economics and finance.
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1. Introduction

This paper is concerned with statistical testing of a point null
hypothesis after a Bayesian Markov chain Monte Carlo (MCMC)
method has been used to estimate the models. Testing for a point
null hypothesis is prevalent in economics although its impor-
tance is debatable. In the meantime, Bayesian MCMC methods
have foundmore andmore applications in economics because they
make it possible to fit increasingly complex models, including la-
tent variable models (Shephard, 2005), dynamic discrete choice
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models (Imai et al., 2009) and dynamic general equilibriummodels
(DSGE) (An and Schorfheide, 2007).

In the Bayesian paradigm, the Bayes factor (BF) is the gold
standard for Bayesian model comparison and Bayesian hypothesis
testing (Kass and Raftery, 1995; Geweke, 2007). Unfortunately, the
BF is not problem-free. First, the BF is sensitive to the prior and
subject to Jeffreys–Lindley’s paradox; see for example, Kass and
Raftery (1995), Poirier (1995) and Robert (1993, 2001). Second, the
calculation of the BF for hypothesis testing generally requires the
evaluation of marginal likelihood which is a marginalization over
the unknown quantities. In many cases, the evaluation of marginal
likelihood is difficult. Not surprisingly, alternative strategies have
been proposed to test a point null hypothesis in the Bayesian
literature. These methods can be classified into two classes.

In the first class, refinements are made to the BF to overcome
the theoretical and computational difficulties. For example, to re-
duce the influence of the prior on the BF, onemay split the data into
two parts, a training sample and a sample for statistical analysis.
The training sample is used to update the non-informative prior
and to obtain a new proper informative prior, as in the fractional
BF (O’Hagan, 1995). In practice, however, this strategy is not always
satisfactory because it relies on an arbitrary division of the data.
To alleviate this difficulty, Berger and Perrichi (1996) proposed
the so-called intrinsic BF which is based on the minimal training
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sample that results in proper posteriors. In general, the minimal
training sample is not unique. Hence, the intrinsic BF is obtained
by averaging the partial BFs calculated from all possible minimal
training samples. Unfortunately, the intrinsic BF is computationally
demanding, especially for latent variable models. O’Hagan (1995)
discussed properties of the fractional and the intrinsic BFs.

In the second class, instead of refining the BF methodology,
several interesting Bayesian approaches have been proposed for
hypothesis testing based on the decision theory. For example,
Bernardo and Rueda (2002, BR hereafter) showed that the BF for
the Bayesian hypothesis testing can be regarded as a decision
problem with a simple zero–one discrete loss function. However,
the zero–one discrete function requires the use of non-regular
(not absolutely continuous) prior and this is why the BF leads
to Jeffreys–Lindley’s paradox. BR further suggested using a con-
tinuous loss function, based on the well-known continuous Kull-
back–Leibler (KL) divergence function. As a result, it was shown in
BR that their Bayesian test statistic does not depend on any arbi-
trary constant in the prior. However, BR’s approach has some dis-
advantages. First, the analytical expression of the KL loss function
required by BR is not always available, especially for latent variable
models. Second, the test statistic is not a pivotal quantity. Conse-
quently, BR had to use subjective threshold values to test the hy-
pothesis.

To deal with the computational problem in BR in latent variable
models, Li and Yu (2012, LY hereafter) proposed a new test
statistic based on the Q function in the Expectation–Maximization
(EM) algorithm of Dempster et al. (1977). LY showed that the
new statistic is well-defined under improper priors and easy
to compute for latent variable models. Following the idea of
McCulloch (1989), LY proposed to choose the threshold values
based on the Bernoulli distribution. However, like the test statistic
proposed by BR, the test statistic proposed by LY is not pivotal.
Moreover, it is not clear if the test statistic of LY can resolve
Jeffreys–Lindley’s paradox.

Based on the difference between the deviances, Li et al.
(2014, LZY hereafter), developed another Bayesian test statistic
for hypothesis testing. This test statistic is well-defined under
improper priors, free of Jeffreys–Lindley’s paradox, andnot difficult
to compute. Moreover, its asymptotic distribution can be derived
and one may obtain the threshold values from the asymptotic
distribution. Unfortunately, in general the asymptotic distribution
depends on some unknown population parameters and hence the
test is not pivotal.

In the present paper, we propose an asymptotically pivotal
Bayesian test statistic, based on a quadratic loss function, to test
a point null hypothesis within the decision-theoretic framework.
The new statistic has several nice properties that makes it
appealing in practice after the models are estimated by Bayesian
MCMC methods. First, it is well-defined under improper prior
distributions. Second, it is immune to Jeffreys–Lindley’s paradox.
Third, it is easy to compute. The main computational effort is to
get the first derivative of the likelihood function with respect to
the parameters. For latent variable models, the first derivative can
be easily evaluated from the MCMC output with the help of the
EM algorithm. Fourth, its numerical standard error (NSE) can be
relatively easy to obtain. Finally, the asymptotic distribution of the
test statistic follows the chi-squared distribution and hence the
test is asymptotically pivotal.

Under a set of regularity conditions, we show that if the null
hypothesis is correct our test statistic is asymptotically equivalent
to the Lagrange multiplier (LM) statistic, a very popular test statis-
tic in the frequentist’s paradigm for testing a point null hypothesis.
However, our proposed test has several important advantages over
the LM test. First, it can incorporate the prior information to im-
prove statistical inference. Second, the implementation of the LM
test requires maximum likelihood (ML) estimation of the model
under the null hypothesis. For some models, such as latent vari-
able models and DSGE models, it is generally hard to do ML and,
hence, to compute the LM statistic. Bayesian MCMC has been used
to fit models with increasing complexity. The proposed test is the
by-product of the Bayesian posterior output and hence easier to
implement than the LM test. Third, unlike the LM test that can take
a negative value in finite sample, our test always takes a nonneg-
ative value. Finally, unlike the LM test, the new test does not need
to invert any matrix. This advantage is useful when the dimension
of the parameter space is high.

The paper is organized as follows. Section 2 reviews the
Bayesian literature on testing a point null hypothesis from the
viewpoint of the decision theory. Section 3 develops the new
Bayesian test statistic, establishes its asymptotic properties, dis-
cusses how to compute it and its NSE from theMCMC outputs. Sec-
tion 4 illustrates the new method by using three real examples in
economics and finance. Section 5 concludes the paper. Appendix
collects the proof of all the theoretical results and the derivation of
the test statistic in the examples.

2. Bayesian hypothesis testing under decision theory

2.1. Testing a point null hypothesis

Let the observable data, y = (y1, y2, . . . , yn)′ ∈ Y. A probability
model M ≡ {p(y|θ,ψ)} is used to fit the data. We are concerned
with a point null hypothesis testing problemwhichmay arise from
the prediction of a particular theory. Let θ ∈ 2 denote a vector
of p-dimensional parameters of interest and ψ ∈ 9 a vector of
q-dimensional nuisance parameters. The problemof testing a point
null hypothesis is given by
H0 : θ = θ0
H1 : θ ≠ θ0

. (1)

The hypothesis testing may be formulated as a decision
problem. It is obvious that the decision space has two statistical
decisions, to accept H0 (name it d0) or to reject H0 (name it d1). Let
{L[di, (θ,ψ)], i = 0, 1} be the loss function of statistical decision.
Hence, a natural statistical decision to reject H0 can be made when
the expected posterior loss of accepting H0 is sufficiently larger
than the expected posterior loss of rejecting H0, i.e., when

T(y, θ0) =


Θ


Ψ

{L[d0, (θ,ψ)]

− L[d1, (θ,ψ)]} p(θ,ψ|y)dθdψ > c ≥ 0,

where T(y, θ0) is a Bayesian test statistic; p(θ,ψ|y) is the posterior
distribution with some given prior p(θ,ψ); c is a threshold value.
Let△L[H0, (θ,ψ)] = L[d0, (θ,ψ)]−L[d1, (θ,ψ)] be the net loss
difference function which can generally be used to measure the
evidence against H0 as a function of (θ,ψ). Hence, the Bayesian
test statistic can be rewritten as

T(y, θ0) = Eϑ|y (△L[H0, (θ,ψ)]) .

2.2. A literature review

The BF is defined as the ratio of the two marginal likelihood
functions, namely,

BF01 =
p(y|M0)

p(y|M1)
,
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where M0 := {p(y|θ0,ψ),ψ ∈ 9} is the model under the null;
M1 := M is the model under the alternative. The two marginal
likelihood functions are defined as

p(y|M0) =


Ψ

p(y|θ0,ψ)p(ψ|θ0)dψ,

p(y|M1) =


Θ


Ψ

p(y|θ,ψ)p(ψ|θ)p(θ)dθdψ.

The BF corresponds to the use of the zero–one discrete loss
function, namely,

△L[H0, (θ,ψ)] =


−1 if θ = θ0
1 if θ ≠ θ0,

and in this case, with c = 0, we

reject H0 iff BF01 =


Ψ
p(y|θ0,ψ)p(ψ|θ0)dψ

Θ


Ψ
p(y|θ,ψ)p(ψ|θ)p(θ)dθdψ

< 1.

Remark 2.1. The BF has several disadvantages. If the Jeffreys or the
reference prior (Jeffreys, 1961) is used to reflect the objectiveness,
the BF is not well-defined since it depends on an arbitrary constant
(Bernardo and Rueda, 2002). In addition, if a proper prior with
a large spread is used to represent the prior ignorance, the
BF has a tendency to favor the null hypothesis, giving rise to
Jeffreys–Lindley’s paradox; see Poirier (1995) and Robert (1993,
2001). Moreover, for many models in economics, such as latent
variablemodels and the DSGEmodels, themarginal likelihood and,
hence, the BF are very difficult to evaluate; seeHan anCarlin (2001)
for a good review ofmethods for calculating the BF from theMCMC
output.

Bernardo and Rueda (2002) suggested using a continuous loss
function based on the KL divergence,

KL[p(x), q(x)] =


p(x) log

p(x)
q(x)

dx, (2)

where p(x) and q(x) are any two regular probability density
functions (pdf). The corresponding Bayesian test statistic is:

TBR (y, θ0) = Eϑ|y (min {KL [p(y|θ,ψ), p(y|θ0,ψ)] ,

KL [p(y|θ0,ψ), p(y|θ,ψ)]}) . (3)

Remark 2.2. It is shown in Bernardo and Rueda (2002) that
TBR (y, θ0) is well-defined under improper distributions. This is an
important advantage over the BF. However, the BR test is not with-
out its problems. First, the KL divergence function often does not
have a closed-form expression. Consequently, TBR (y, θ0) may be
difficult to compute. Second, BR suggested choosing threshold val-
ues based on the normal distribution to implement the test. Un-
fortunately, the choice of the normal distribution and, hence, the
threshold values are subjective and lack rigorous statistical justi-
fications. A different distribution will lead to different threshold
values.

To alleviate the computational problems of TBR (y, θ0) in the
context of latent variable models, Li and Yu (2012) proposed a new
loss difference function, based on the Q function used in the EM
algorithm (Dempster et al., 1977). Let z = (z1, z2, . . . , zn)′ denote
the latent variables and x = (y′, z′)′. Let p(y|ϑ) and p(x|ϑ) (:=
p(y, z|ϑ)) be the observed data likelihood function and the com-
plete data likelihood function, respectively. The relationship be-
tween these two likelihood functions is

p(y|ϑ) =


p(y, z|ϑ)dz.
For any ϑ1 and ϑ2, the Q function is:

Q (ϑ1|ϑ2) = Ez|y,ϑ2 [log p(y, z|ϑ1)] .

Compared with the observed data likelihood function p(y|ϑ), the
Q function is easier to evaluate in latent variable models. In partic-
ular, when the analytical expression of p(y|ϑ) is not available, the
Q function can be easily approximated from theMCMC output via,

Q (ϑ1|ϑ2) ≈
1
G

G
g=1

log p

y, z(g)|ϑ1


,

where {z(g), g = 1, 2, . . . ,G} are the effective MCMC draws from
the posterior distribution p(z|y,ϑ2). Let ϑ0 = (θ0,ψ). Li and Yu
(2012) defined a new continuous net loss difference function as:

△L(ϑ,ϑ0) = {Q(ϑ,ϑ)− Q(ϑ0,ϑ)} + {Q(ϑ0,ϑ0)− Q(ϑ,ϑ0)} ,

and proposed a Bayesian test statistic as:

TLY (y, θ0) = Eϑ|y [△L (ϑ,ϑ0)] .

Remark 2.3. It is shown in Li and Yu (2012) that the test
statistic, TLY (y, θ0), is well-defined under improper priors and also
easy to compute. However, this test statistic has some practical
disadvantages. First, like the test statistic of BR, some threshold
values have to be specified. Following the idea of McCulloch
(1989), Li and Yu (2012) proposed to choose threshold values
based on the Bernoulli distribution. Unfortunately, the choice of
the Bernoulli distribution is arbitrary. If another distribution is
used, the threshold values will be different. Second, it is not clear
whether this test statistic is immune to Jeffreys–Lindley’s paradox.

Aiming to alleviate Jeffreys–Lindley’s paradox, Li et al. (2014)
developed an alternative Bayesian test statistic based on the
Bayesian deviance. The net loss function and the test statistic are
given, respectively, by

△L[H0, (θ,ψ)] = 2 log p(y|θ,ψ)− 2 log p(y|θ0,ψ),

TLZY (y, θ0) = 2


[log p(y|θ,ψ)− log p(y|θ0,ψ)]

× p(θ,ψ|y)dθdψ. (4)

TLZY can be understood as the Bayesian version of the likelihood
ratio test. However, for latent variable models, the likelihood
function p(y|θ,ψ) generally is not available in closed-form.
To achieve computational tractability, under some regularity
conditions, Li et al. (2014) gave an asymptotically equivalent form
for TLZY (y, θ0), i.e.,

T∗

LZY (y, θ0) = 2D + 2

log p(θ̄, ψ̄)− log p(ψ̄|θ0)


− 2


log p(θ|ψ)p(ϑ|y)dϑ


−


p + q − tr[−L(2)0n (ψ̄)V22(ϑ̄)]


,

where ϑ̄ = (θ̄, ψ̄)′ is the posterior mean of ϑ under H1, ϑ̄∗ =

(θ0, ψ̄)
′, ϑ̄b = (1 − b)ϑ̄∗ + bϑ̄, for b ∈ [0, 1], S(x|ϑ) = ∂ log p

(x|ϑ)/∂ϑ, D =
 1
0


(θ̄ − θ0)

′

Ez|y,ϑ̄b


S1(x|ϑ̄b)


db the subvec-

tor of S(x|ϑ) corresponding to θ, V22(ϑ̄) = E[(ψ − ψ̄)(ψ −

ψ̄)′|y,H1], the submatrix of V (ϑ̄) corresponding to ψ, and
L(2)0n (ψ) = ∂2 log p(y,ψ|θ0)/∂ψ∂ψ

′.

Remark 2.4. As shown in Li et al. (2014), T∗

LZY (y, θ0) appeals in four
aspects. First, it is well-defined under improper priors. Second, it
does not suffer from Jeffreys–Lindley’s paradox and, hence, can
be used under non-informative vague priors. Third, it is easy to
compute. Furthermore, for latent variable models, T∗

LZY (y, θ0) only
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involves the first and the second derivatives which is easy to
evaluate from theMCMC outputwith the help of the EM algorithm.
Finally, Li et al. (2014) derived the asymptotic distribution
of T∗

LZY (y, θ0). When θ and ψ̄ are orthogonal, the asymptotic
distribution is determined by the chi-squared distribution. In
this case the test is asymptotically pivotal and the thresholds
can be obtained form the asymptotic distribution. Unfortunately,
in general the test is not asymptotically pivotal because the
asymptotic distribution depends on some unknown population
parameters.

3. Bayesian hypothesis testing based on a quadratic loss

3.1. The test statistic

To deal with the non-pivotal problem, in this section, we
develop a new Bayesian test statistic for hypothesis testing. The
new statistic shares all the nice features of the LZY statistic. First,
it is motivated from the decision-theoretic perspective. Second,
it is well-defined under improper prior distributions. Third, it
is immune to Jeffreys–Lindley’s paradox. Fourth, it is easy to
compute. However, unlike the LZY statistic, the new statistic is
asymptotically pivotal and the threshold can be easily obtained
from its asymptotic distribution.

To fix the idea, let

s(ϑ) =
∂ log p(y|ϑ)

∂ϑ
, s0(ϑ) =

∂ log p(ϑ)
∂ϑ

,

s̃(ϑ) = s(ϑ)+ s0(ϑ), C(ϑ) = s̃(ϑ)s̃(ϑ)′,

where s(ϑ) is the score function and ϑ = (θ,ψ). We define a
quadratic loss function as:

△L[H0,ϑ] = (θ − θ̄)′Cθθ (ϑ̄0)(θ − θ̄), (5)

where Cθθ (ϑ) is the submatrix of C(ϑ) corresponding to θ and is
semi-positive definite, ϑ̄0 = (θ0, ψ̄0) is the posterior mean of ϑ
under H0, θ̄ is the posterior mean of θ under H1. Based on this
quadratic loss, we propose the following Bayesian test statistic:

T(y, θ0) =


△L[H0,ϑ]p(ϑ|y)dϑ

=


(θ − θ̄)′Cθθ (ϑ̄0)(θ − θ̄)p(ϑ|y)dϑ, (6)

where p(ϑ|y) is the posterior distribution of ϑ under H1.

Remark 3.1. Clearly T(y, θ0) depends on the posterior distribution
directly. The prior information only influences the test statistic via
the posterior distribution.

Remark 3.2. Since the posterior distribution p(ϑ|y) is indepen-
dent of an arbitrary constant in the prior distributions, both s(ϑ)
and Cθθ (ϑ̄0) are independent of the arbitrary constant. As a result,
T(y, θ0) is well-defined under improper priors.

Remark 3.3. Under some regular condition, wewill show in Theo-
rem3.1 that the proposed test converges to theχ2 distribution and
hence it is not subject to Jeffreys–Lindley’s paradox, at least when
the sample size is large. To see how it can avoid Jeffreys–Lindley’s
paradox, consider the example discussed in Li et al. (2014). Let
y ∼ N(θ, σ 2) with a known σ 2 and we test the null hypothesis
H0 : θ = 0. Let the prior distribution of θ be N(µ, τ 2)with µ = 0.
LZY showed that the posterior distribution of θ isN(µ(y), ω2)with

µ(y) =
σ 2µ+ τ 2y
σ 2 + τ 2

, ω2
=

σ 2τ 2

σ 2 + τ 2
,

and BF is

BF10 =
1

BF01
=


σ 2

σ 2 + τ 2
exp


τ 2y2

2σ 2(σ 2 + τ 2)


.

As τ 2 → +∞, BF10 → 0, suggesting the test always supports
H0, whether or not H0 holds true, giving rise to Jeffreys–Lindley’s
paradox. On the other hand, it is easy to show that

Cθθ (ϑ̄0) =
y2

σ 4
, and T(y, 0) =

y2

σ 4


(θ − θ̄ )2p(θ |y)dθ

=
ω2y2

σ 4
.

As τ 2 → +∞, µ(y) → y, ω2
→ σ 2, and, hence, T(y, 0) → y2/σ 2

which is distributed as χ2(1) when H0 is true. Consequently, our
proposed test statistic is immune to Jeffreys–Lindley’s paradox.

Remark 3.4. To calculate T(y, θ0), the first derivatives of the
observed-data likelihood function must be evaluated. For most
latent variable models, the first derivatives are difficult to evaluate
directly because the observed-data likelihood function is not
available in closed-form. There are several approaches to calculate
the first derivatives from the MCMC output.

First, the first derivatives can be approximated using the EM
algorithm in connection with the data augmentation technique.
For any ϑ and ϑ∗ in the support space of ϑ, it was shown in
Dempster et al. (1977) that

s(ϑ) =
∂ log p(y|ϑ)

∂ϑ
=
∂Q(ϑ|ϑ̃)

∂ϑ


ϑ̃=ϑ

=


∂ log p(y, z|ϑ)

∂ϑ
p(z|y,ϑ)dz.

Hence, based on the MCMC output, the first derivative can be
approximated by:

s(ϑ) ≈
1
G

G
g=1


∂ log p(y, z(g)|ϑ)

∂ϑ


,

where {z(g), g = 1, 2, . . . ,G} are effective MCMC draws
from the posterior distribution p(z|y,ϑ) due to the use of data
augmentation.

Second, for the dynamic state space models, more efficient
approaches are available to compute the first derivatives. For
example, for Gaussian linear state spacemodels the Kalman filter is
computationally very efficient for computing the first derivatives.
For non-Gaussian nonlinear state space models, the particle filter
is an efficient approach for computing the first derivatives. See, for
example, Poyiadjis et al. (2011) and Doucet and Shephard (2012)
for recent contributions in using the particle filter to approximate
the score functions. Doucet and Johansen (2011) gives an excellent
review of the literature on the particle filter.

Remark 3.5. It is known that the BF is the ratio of two marginal
likelihoods. For model M (corresponding to either the null
hypothesis or the alternative hypothesis), as shown in Chib (1995)
based on Bayes’ theorem, the log-marginal likelihood may be
calculated by

log p(y|ϑ,M)+ log p(ϑ|M)− log p(ϑ|y,M), (7)

where p(y|ϑ,M) is the observed likelihood function, p(ϑ|M) is the
prior distribution, and p(ϑ|y,M) is the posterior distribution, ϑ
is an appropriately selected high density point in the estimated
model. Chib (1995) suggested using the posterior mean, ϑ̄.
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The second term is the log prior density which is easy to
calculate. The third quantity, p(ϑ|y,M), is the posterior density
and only known up to a constant. Based on the Gibbs sampler
and the Metropolis–Hastings algorithm, Chib (1995) and Chib and
Jeliazkov (2001) proposed methods to approximate p(ϑ|y,M).
These methods are generally applicable to a wide class of models.
When the parameter ϑ is high-dimensional, however, estimating
p(ϑ|y,M) is computationally demanding. The first term, p(y|ϑ,M),
is easy to evaluate when it has an analytical expression. For many
models, including the dynamic latent variable models, however,
the first term, p(y|ϑ,M), is marginalized over the latent variables
such as z, that is,

p(y|ϑ,M) =


p(y, z|ϑ,M)dz =


p(y|z,ϑ,M)p(z|ϑ,M)dz.

Often integration is of high-dimension and has to be evaluated
numerically. Unfortunately, mimicking the strategy in Remark 3.4
by averaging p(y, z(g)|ϑ,M) over the effective draws {z(g), g =

1, 2, . . . ,G} from p(z|ϑ,M) is numerically unstable because
the expectation is taken with respect to the prior distribution.
Whereas, computing s(ϑ) in Remark 3.4 is taken with respect to
the posterior distribution. All these problems make it difficult to
evaluate the marginal likelihood log p(y|M) and BF. To calculate
T (y, θ0), the main computational effort is to evaluate the first
derivatives of log p(y|ϑ,M), which can be achieved by the EM
algorithm, the Kalman filter or the particle filter, as remarked
earlier. Thus, there is a computational advantage in the proposed
test over the BF.

Since T(y, θ0) is calculated from the MCMC output, it is
important to assess the NSE for measuring the magnitude of
simulation errors. When the observed likelihood function p(y|ϑ)
has a closed-form expression, the first derivative and Cθθ (ϑ̄0) are
also available analytically. Let

f (θ) = (θ − θ̄)′Cθθ (ϑ̄0)(θ − θ̄).

Then, we have

T (y, θ0) = Eϑ|y [f (θ)|y] , T (y, θ0) =
1
G

G
g=1

f

θ(g)


,

where θ(g), g = 1, 2, . . . ,G are random draws from the posterior
distribution p(ϑ|y).

If θ(g), g = 1, 2, . . . ,G are independent random samples, it can
be shown that

Var
T (y, θ0) = Var


G−1

G
g=1

f

θ(g)


=

1
G
Var


f

θ(g)


.

A consistent estimator of Var

f

θ(g)


is given by

G−1
G

g=1


f

θ(g)


−T (y, θ0) f θ(g)−T (y, θ0)′ .

If θ(g), g = 1, 2, . . . ,G are dependent random samples, following
Newey andWest (1987), a consistent estimator of Var

T (y, θ0) is
1
G


Ω0 +

q
k=1


1 −

k
q + 1

 
Ωk +Ω ′

k


, (8)

where

Ωk = G−1
G

g=k+1


f

θ(g)


−T (y, θ0) f θ(g)−T (y, θ0)′ ,

and q is a positive integer at which the autocorrelation tapers off.
In the applications, we set q = 10.
When the observed likelihood function p(y|ϑ) does not have
an analytical expression, another approach for assessing the NSE
is given below. Note that

T (y, θ0) =

 
θ − θ̄

′
Cθθ


ϑ̄0
 
θ − θ̄


p (ϑ|y) dϑ

=


tr

θ − θ̄

′
Cθθ


ϑ̄0
 
θ − θ̄


p (ϑ|y) dϑ

= tr

Cθθ


ϑ̄0
  

θ − θ̄
 
θ − θ̄

′
p (ϑ|y) dϑ


,

and that

s̃θ (ϑ) =


∂ log p (y, z,ϑ)

∂θ
p (z|y,ϑ) dz.

We can estimate s̃θ

ϑ̄0

by

h1 =
1
G

G
g=1

∂ log p

y, z(g), ϑ̄0


∂θ

=
1
G

G
g=1

h(g)1

where {z(g), g = 1, 2, . . . ,G} are efficient random draws from
p

z|ϑ̄0, y


. Furthermore, we get 

θ − θ̄
 
θ − θ̄

′
p (ϑ|y) dϑ ≈ H2

=
1
G

G
g=1


θ(g) − θ̄

 
θ(g) − θ̄

′
=

1
G

G
g=1

H(g)2 .

Then, we haveT (y, θ0) = tr
h1h′

1
H2

.

Following the notations for matrix derivatives in Magnus and
Neudecker (2002), leth2 = vech

H2

, h(g)2 = vech


H(g)2


, h =

h′

1,
h′

2

′
.

Note that the dimension ofh1 is p × 1 and the dimension ofh2 is
p∗

× 1, p∗
= p (p + 1) /2. Hence, we have

∂T (y, θ0)
∂h = vec(Ip)′

h′

1
H2
′

⊗ Ip
 ∂h1

∂h
+
H′

2 ⊗h1
 ∂h′

1

∂h +

Ip ⊗h1h′

1

 ∂H2

∂h


= vec(Ip)′
H′

2
h1 ⊗ Ip +H′

2 ⊗h1
 ∂h1

∂h
+

Ip ⊗h1h′

1

 ∂H2

∂h


where Ip is the p-dimensional identity matrix and

∂h1

∂h =
∂
h′

1


∂h =


Ip, 0p×p∗


,

∂H2

∂h =


0p2×p,


∂H2

∂h2


p2×p∗


=


0p2×p,

∂vec(H2)

∂h2 p2×p∗


.

By the Delta method,

Var
T (y, θ0) =

∂T (y, θ0)
∂h Var

h ∂T (y, θ0)
∂h

′

.
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Again, following Newey and West (1987), a consistent estimator
can be given by

Var(h) =
1
G


Ω0 +

q
k=1


1 −

k
q + 1

 
Ωk +Ω ′

k


,

where

Ωk = G−1
G

g=k+1


h(g) −h h(g) −h′ .

Remark 3.6. Based on (7), Chib (1995) provided a method to
calculate the NSE for estimating log p(ϑ|y,M).When log p(y|ϑ,M)
is available in closed-form, the NSE of the estimate of log p(y|M)
is the same as that of log p(ϑ|y,M) because both p(y|ϑ,M) and
p(ϑ|M) can be computed without incurring simulation errors.
However, when p(y|ϑ,M) does not have a closed-form expression,
it has to be calculated by a simulation-based method (such as the
EM algorithm or the particle filters) and there will be the NSE for
estimating it. In this case, it will be difficult to obtain the NSE of
log p(y|ϑ,M). Relative to log p(ϑ|y,M)whose order of magnitude
is often Op(1), log p(y|ϑ,M) is typically Op(n) so that log p(y|ϑ,M)
is dominant in log p(y|M). Consequently, one cannot ignore the
NSE of log p(y|ϑ,M) when calculating the NSE of log p(y|M). As a
result, it will be very difficult to obtain the NSE of the estimate of
log p(y|M) and hence that of the BF. The ease with which one can
calculate the NSE of the estimate of T(y, θ0) is another important
advantage of the proposed test over the BF.

3.2. The threshold value

To implement the proposed test, a threshold value, c , has to be
specified, i.e.,

Accept H0 if T(y, θ0) ≤ c; Reject H0 if T(y, θ0) > c.

This section obtains the asymptotic distribution of the test statistic
underH0 and establishes the link between the test statistic and the
LM test. To do so, following Li et al. (2014), we first impose a set of
regularity conditions.

Assumption 1. There exists a finite sample size n∗, so that, for
n > n∗, there is a local maximum at ϑ (i.e., posterior mode)
such that L(1)n (ϑ) = 0 and L(2)n (ϑ) is negative definite, where
Ln(ϑ) = log p(ϑ|y), L(1)n (ϑ) = ∂ log p(ϑ|y)/∂ϑ, L(2)n (ϑ) =

∂2 log p(ϑ|y)/∂ϑ∂ϑ′.

Assumption 2. The largest eigenvalueλn of−L−(2)
n (ϑ) goes to zero

when n → ∞.

Assumption 3. For any ϵ > 0, there exists an integer N and some
δ > 0 such that for any n > max{N, n∗

} and ϑ ∈ H(ϑ, δ) = {ϑ :

∥ϑ −ϑ∥ ≤ δ}, L(2)n (ϑ) exists and satisfies

−A(ϵ) ≤ L(2)n (ϑ)L
−(2)
n (ϑ)− Ep+q ≤ A(ϵ),

whereEp+q is an identitymatrix andA(ϵ) is a positive semi-definite
symmetric matrix whose largest eigenvalue goes to zero as ϵ → 0.

Assumption 4. For any δ > 0, as n → ∞,
�−H(ϑ,δ) p(ϑ|y)dϑ → 0,

where� is the support space of ϑ.
Assumption 5. The likelihood function under both the null
hypothesis and the alternative hypothesis is regular so that the
standard ML theory can be applied. Furthermore, if the null
hypothesis is true, let ϑ0 = (θ0,ψ0) be true value of ϑ, as n → ∞,
for any null sequence kn → 0, so that,

sup
∥ϑ−ϑ0∥<kn

n−1
∥I(ϑ)− I(ϑ0)∥

p
−→ 0,

where I(ϑ) = ∂2 log p(y|ϑ)/∂ϑ∂ϑ′.

Remark 3.7. In the literature, Assumptions 1–4 have been used
to develop the Bayesian large sample theory; see, for example,
Chen (1985). Assumption 5 is a fundamental regularity condition
for developing the standard ML theory. Based on these regularity
conditions, Li et al. (2014) showed that

ϑ̄ = E [ϑ|y,H1] =


ϑp(ϑ|y)dϑ =ϑ + op(n−1/2),

V (ϑ) = E

(ϑ −ϑ)(ϑ −ϑ)′ |y,H1


= −L−(2)

n (ϑ)+ op(n−1).

When the null hypothesis holds, we also have

ψ̄0 = E [ψ|θ0, y,H0]

=


ψp(ψ|y, θ0)dψ = ψ0 + op(n−1/2),

V0(ψ0) = E

(ψ −ψ0)(ψ −ψ0)

′
|y,H0


= −L−(2)

0n (ψ0)+ op(n−1),

where L(2)0n (
ψ0) = ∂2 log p(ψ|θ0, y)/∂ψ∂ψ′

|ψ=ψ0
and ψ0 is the

local maximum of log p(ψ|y, θ0) under H0.

Lemma 3.1. Let

J(ϑ) = I−1(ϑ).

When the null hypothesis is true, and ϑ0 = (θ0,ψ0) is the true value
of ϑ, for any consistent estimator ϑ̃ of ϑ, we have

I(ϑ0) = Op(n), I(ϑ̃) = I(ϑ0)+ op(n) = Op(n),

J(ϑ0) = Op(n−1), J(ϑ̃) = J(ϑ0)+ op(n−1) = Op(n−1).

Lemma 3.2. Letϑ0 = (θ0,ψ0) be the posterior mode of ϑ under the
null hypothesis. Under Assumptions 1–5 andwhen the null hypothesis
is true and the likelihood dominates the prior, we have

s(ϑ0) = Op(n1/2), s(ϑ̄0) = Op(n1/2), C(ϑ0) = Op(n),

C(ϑ̄0) = C(ϑ0)+ op(n) = Op(n).

Let the LM statistic (Breusch and Pagan, 1980) be

LM = sθ (ϑm0)

−Jθθ (ϑm0)


sθ (ϑm0),

where ϑm0 = (θ0,ψm0) is the ML estimator of ϑ under the null
hypothesis, sθ (ϑ) is the score function corresponding to θ, Jθθ (ϑ)
is the submatrix of J(ϑ) corresponding to θ.

Theorem 3.1. Under Assumptions 1–5, we can show that

T(y, θ0) = sθ (ϑ0)

−L−(2)

n,θθ (
ϑ) sθ (ϑ0)+ op(1), (9)

where L−(2)
n,θθ is the submatrix of L−(2)

n (ϑ) corresponding to θ.
Furthermore, when the null hypothesis is true and the likelihood
dominates the prior, we have

T(y, θ0) = LM + op(1)
d

→χ2(p). (10)
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Table 1
Comparison of 2 log BF10 , T(y, θ0), and LM.

Prior N(0.25, 10−4) N(0, 104)

n 10 100 1000 10,000 10 100 1000 10000

2 log BF10 624.69 643.11 753.13 2601.01 −11.56 −13.45 −15.87 −18.16
T(y, θ0) 624.13 636.81 684.81 1300.98 0.025 13.03 59.84 676.49
LM 0.025 13.03 59.84 676.49 0.025 13.03 59.84 676.49
Remark 3.8. From Eq. (10), T(y, θ0) may be regarded as the
Bayesian version of the LM statistic. However, the LM test is a
frequentist test which is based on ML estimation of the model in
the null hypothesis whereas our test is a Bayesian test which is
based on the posterior quantities of themodels under both the null
hypothesis as well as the alternative hypothesis.

Remark 3.9. In Theorem 3.1, we can see that under the null
hypothesis, the asymptotic distribution of T(y, θ0) always follows
the χ2 distribution and, hence, is independent of the nuisance
parameters. This suggests that the new test is asymptotically
pivotal, a property that compares favorably with the use of the
subjective threshold values as in Bernardo and Rueda (2002) and
Li and Yu (2012).

Remark 3.10. When the likelihood dominates the prior, the
posterior mode, ϑ, reduces to the ML estimator of ϑ under the
alternative hypothesis, and the posterior mode, ϑ0 = (θ0,ψ0),
reduces to the ML estimator of ϑ under the null hypothesis. From
Eq. (9), we can see that

T(y, θ0) = sθ (ϑ0)

−L−(2)

n,θθ (
ϑ) sθ (ϑ0)+ op(1)

= −sθ (ϑ0)

Jθθ (ϑ) sθ (ϑ0)+ op(1).

If the null hypothesis is false, according to the standard ML theory,
we get

J(ϑ0) = J(ϑ)+ op(n−1) ≠ J(ϑ0)+ op(n−1)

except that J(ϑ) is independent on ϑ. This is because, under the
alternative,ϑ is a consistent estimator of ϑ whereasϑ0 is not.

T(y, θ0) = −sθ (ϑ0)
′Jθθ (ϑ)sθ (ϑ0)+ op(1)

≠ −sθ (ϑ0)
′Jθθ (ϑ0)sθ (ϑ0)+ op(1)

= LM + op(1).

Remark 3.11. T(y, θ0) can incorporate the prior information to
improve statistical inference when the sample size is small. This
property is shared by the BF but not by the LM test. To illustrate
the idea, consider a simple example, where y1, . . . , yn ∼ N(θ, σ 2)
with a known variance σ 2

= 1. The true value of θ is set at
θ0 = 0.25. The prior distribution of θ is set asN(µ0, τ

2). The simple
point null hypothesis is H0 : θ = 0. It can be shown that

2 log BF10 =
(nȳτ 2 + µ0σ

2)2

(σ 2 + τ 2)(σ 2τ 2)
+ log

σ 2

nτ 2 + σ 2
,

T(y, θ0) =
τ 2σ 2

nτ 2 + σ 2


nȳ
σ 2

+
µ0

τ 2

2
, LM =

nȳ2

σ 2
,

where ȳ =
1
n

n
i=1 yi. When n −→ ∞, T(y, θ0) −→ LM and

the asymptotic distribution for both T(y, θ0) and LM is χ2(1).
Let us consider the case that corresponds to an informative
prior N(0.25, 10−4) and compare it to the case that corresponds
to a non-informative prior N(0, 104). Table 1 reports 2 log BF10,
T (y, θ0), and LM when n = 10, 100, 1000, 10,000 under these two
priors. It can be seen that both the BF and the new test depend on
the prior (although the BF tends to choose the wrong model under
Table 2
Comparison of 2 log BF10 , T(y, θ0), and LMwhen the prior distribution of θ isN(0, 1)
and ȳ =

√
6.634897/n so that the critical level of LM is always 99%.

n 10 100 1000 10,000

2 log BF10 3.63383 1.95408 −0.28049 −2.57621
Decision Positive Not worth mention Negative Negative
T(y, θ0) 6.03170 6.56920 6.62830 6.63420
LM 6.63490 6.63490 6.63490 6.63490

the vague prior even when the sample size is very large) while the
LM test is independent of the prior.Whenn = 10,T(y, θ0) correctly
rejects the null hypothesis when the prior is informative but fails
to reject it when the prior is vague. In this case, the LM test fails to
reject the null hypothesis under both priors.1

Remark 3.12. It is well known that the BF is conservative
compared to the likelihood ratio test; see, for example, Edwards
et al. (1963), Kass and Raftery (1995) and Li et al. (2014). Our test is
also less conservative than the BF since it is asymptotically pivotal.
To illustrate this property, we consider the example in Remark 3.12
of Li et al. (2014). Let y1, . . . , yn ∼ N(θ, 1). The prior distribution
of θ can be set as N(0, τ 2). We want to test the simple point null
hypothesis H0 : θ = 0. Suppose ȳ =

1
n

n
i=1 yi =

√
6.634897/n

so that the critical level of the LM test is always kept at 99%. In this
case, it can be shown that 2 log BF10 =

nτ2

nτ2+1
(
√
nȳ)2−log(nτ 2+1),

T(y, θ0) =
nτ2

nτ2+1
(
√
nȳ)2 and LM = (

√
nȳ)2. According to Fisher’s

scale, we have ‘‘strong’’ evidence for the alternative hypothesis
based on the LM test. Table 2 reports 2 log BF10, T(y, θ0), LM when
τ = 1. It can be seen that the BF finds the evidence for the
alternative hypothesis to be ‘‘positive’’ when n = 10. The evidence
turns to be ‘‘not worth more than a bare mention’’ when n = 100,
but to ‘‘negative’’ when n = 1000, 10,000. This result is consistent
with the conservative property of the BF relative to the LM test. In
the meantime, our test statistic is slightly more conservative than
the LM test although the difference is smaller and the two statistics
converge to each other as the sample size grows. When the user is
conservative and has a highly informative prior, we caution against
the idea of basing the hypothesis testing solely on the proposed
test.

The implementation of the LM test requires the ML estimation
of the null model. When it is hard to do the ML estimation,
it will be difficult to calculate the LM statistic. This is the case
for many models that involve latent variables. However, as long
as the Bayesian MCMC methods are applicable, our test can
be implemented. Moreover, our method offers two additional
advantages over the LM test, which we explain below.

1 To implement the LM test, we use the following Fisher’s scale. Let α be the
critical level and P = 1 − α. If P is between 95% and 97.5%, the evidence for
the alternative is ‘‘moderate’’; between 97.5% and 99%, ‘‘substantial’’; between 99%
and 99.5%, ‘‘strong’’; between 99.5% and 99.9%, ‘‘very strong’’; larger than 99.9%,
‘‘overwhelming’’. To implement the BF we use Jeffreys’ scale instead. If log BF10 is
less than 0, there is ‘‘negative’’ evidence for the alternative; between 0 and 1, ‘‘not
worth more than a bare mention’’; between 1 and 3, ‘‘positive’’; between 3 and 5,
‘‘strong’’; larger than 5, ‘‘very strong’’.
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Remark 3.13. We have shown that when the alternative hypoth-
esis is correct, our test statistic is not close to the LM test. In this
case, our test continues to take a nonnegative value whereas the
LM test can take a negative value. This is because, in our test, the
weight matrix Cθθ (ϑ̄0) remains at least semi-positive definite so
that T(y, θ0) is not negative.When θ0 is further away from the true
value of θ, sθ (ϑ̄0) and Cθθ (ϑ̄0)will be furtherway from zero. Conse-
quently, T(y, θ0)will be larger so that it can discriminateH0 against
H1. Whereas, when θ0 is further away from the true value of θ, the
weight matrix −J(ϑm0) in the LM statistic may not be positive def-
inite. This may cause some difficulties in using the LM test.

To illustrate the remark, consider the following example where
yt ∼ N(0, σ 2), t = 1, 2, . . . , n, and the true value of σ 2 is 0.1. We
would like to test

H0 : σ 2
= 1, H1 : σ 2

≠ 1.

In this case, we have

I(ϑ) = I(σ 2) =
∂2 log p(y|σ 2)

∂σ 2∂σ 2
=

n
2σ 4

−

n
t=1

y2t

σ 6
.

When n is large enough, we know that
n

t=1 y
2
t /n ≈ 0.1 and,

hence,

I(ϑm0) = I(σ 2
= 1) =

n
2

−

n
t=1

y2t

=
n
2

1 − 2

n
t=1

y2t

n

 ≈ 0.4n > 0,

−J(ϑm0) =
1

−I(ϑm0)
= −

1
0.4n

< 0.

Consequently, the LM statistic is negative. Whereas, for our
statistic, if the uninformative prior, p(σ 2) ∝ 1, is used, we have

Cθθ (ϑ̄0) =
1
4


n −

n
t=1

y2t

2

, σ̄ 2
=


σ 2p(σ 2

|y)dσ 2,

T(y, σ 2
= 1) =


(σ 2

− σ̄ 2)2Cθθ (ϑ̄0)p(σ 2
|y)dσ 2.

Hence, the proposed test does not suffer from the same problem as
the LM test.

Remark 3.14. The implementation of the LM test requires the
inversion of −I(ϑ0). When the dimension of ϑ is high, such an
inversion may be numerically challenging. Whereas, to calculate
T(y, θ0), one does not need to invert any matrix.

4. Empirical illustrations

In this section, we illustrate the proposed test statistic using
three popular examples in economics and finance. The first
example is a simple linear regression model where the BF and
our proposed test statistic both have analytical expressions. We
hope to compare them and pay particular attention to their
sensitivitywith respect to the prior. The second example is a probit
model. In this example, the observed data likelihood is available
in closed-form, facilitating the comparison of the BF, the LM and
our proposed test. We consider both the joint and individual point
null hypothesis tests. The third example is a stochastic conditional
duration (SCD)model,where the duration is latent. In this example,
the analytical expression of the observed data likelihood does not
exist so that the implementation of the LM test is very difficult.
Hence, we only compare the BF and our proposed test. However, it
is difficult to compute the NSE of the BF in this example.

4.1. Hypothesis testing in linear regression models

The first example is the simple linear regression model:

yi = α + βxi + εi, εi ∼ i.i.d. N

0, σ 2 , i = 1, . . . , n. (11)

We would like to test H0 : β = β0 against H1 : β ≠ β0.
Assume that the prior distributions for (α, β) and σ 2 are normal
and inverse gamma, respectively,

(α, β)′ ∼ N

µ̃, σ 2Ṽ


, σ 2

∼ IG(a, b),

where µ̃ =

µα, µβ

′, Ṽ = diag

Vα, Vβ


.

The marginal likelihood for the model under H0 is given by

p (y|M0) =
baΓ


a +

n
2


(2π)

n
2 Γ (a)


1

nVα + 1

×


b +

1
2


(y − β0x)′ (y − β0x)+

µ2
α

Vα
−
µ∗
α

V ∗
α

−(a+ n
2 )

,

where V ∗
α =

Vα
nVα+1 , µ

∗
α = V ∗

α

n
i=1 (yi − β0xi)+

µα
Vα


=

V ∗
α


ι′ (y − β0x)+

µα
Vα


with n × 1 vector ι = (1, . . . , 1)′. The

marginal likelihood for the model under H1 is given by

p (y|M1) =
ba

√
|V ∗|Γ


a +

n
2


(2π)

n
2 Γ (a)


|Ṽ |

×


b +

1
2


(µ̃)′Ṽ−1µ̃+ y′y − (µ∗)′V ∗−1µ∗

−(a+ n
2 )
,

where V ∗
=


Ṽ−1

+ X ′X
−1

, µ∗
= V ∗


Ṽ−1µ̃+ X ′y


, X = (ι, x).

The derivation is given in Appendix A.4. Hence, in this simple
model, BF10 = p (y|M1) /p (y|M0) has an analytical expression.
Furthermore, the analytical expression of the proposed statistic
can be given by

T (y, β0) =
2sV ∗

22

ν − 2
Cθθ


ϑ̄0

,

where Cθθ

ϑ̄0


=


1
σ̄ 2
0
x′ (y − ᾱ0ι− β0x)−

1
Vβ
(β0 − µβ)

2
, ᾱ0

and σ̄ 2
0 are the posterior means of α and σ 2 under H0, ν = 2a + n,

s =
1
ν


b +

1
2


(µ̃)′Ṽ−1µ̃+ y′y − (µ∗)′V ∗−1µ∗


and V ∗

22 is the
submatrix of V ∗ corresponding to β . The derivation is also given in
the same Appendix.

We now analyze a model in Brooks (2008, Page 40) where the
return on a spot price is linked to the return on a futures price, i.e.,

∆ log (st) = α + β∆ log (ft)+ εt , εt ∼ i.i.d.N(0, σ 2),

where ∆ log (st) is the log-difference of the spot S&P500 index
and ∆ log (ft) is the log-difference of the S&P500 futures price,
and β captures the optimal hedge ratio. We would like to test if
β = β0 = 1.

The hyperparameters are set at

µa = 0, Va = 103, µβ = 0,
a = 0.001, b = 0.001.

In addition, we allow the prior variance of β , Vβ , to vary so that
we can examine how the prior influences the BF and T (y, β0).
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Table 3
log BF10 , T (y, β0), the posterior means and standard errors of ϑ under H1 .

Vβ = 0.1 Vβ = 100 Vβ = 105 Vβ = 1022 Vβ = 1025 Vβ = 1035

log BF10 14.7354 11.2948 7.8409 −11.7311 −15.1849 −26.6979
T(y, θ0) 14.9596 15.1693 15.1696 15.1696 15.1696 15.1696
β̄ 0.1220 0.1232 0.1248 0.1243 0.1236 0.1233
SE(β̄) 0.1331 0.1338 0.1334 0.1347 0.1343 0.1337
ᾱ 0.3603 0.3633 0.3587 0.3655 0.3634 0.3622
SE(ᾱ) 0.4438 0.4445 0.4423 0.4449 0.4477 0.4435
σ̄ 2 12.5972 12.5792 12.5790 12.5621 12.5741 12.5817
SE(σ̄ 2) 2.2913 2.2768 2.2941 2.2693 2.2785 2.2936
Table 4
log BF10 , T (y, β0), the posterior means and standard errors of ϑ under different
hyperparameters pairs (a, b).

(0.001, 0.001) (0.1, 0.1) (0.1, 0.01) (1, 0.1) (2, 0.001)

log BF10 −0.21813 −0.17002 −0.16703 0.29718 0.81978
T(y, θ0) 15.2158 15.2628 15.2635 15.8318 16.3386
β̄ 0.12378 0.12378 0.12378 0.12291 0.12295
SE

β̄


0.13399 0.1338 0.13378 0.13249 0.13056
ᾱ 0.35948 0.35948 0.35948 0.36327 0.36223
SE (ᾱ) 0.13399 0.1338 0.13378 0.13249 0.13056
σ̄ 2 12.5948 12.5584 12.5556 12.2152 11.84
SE

σ̄ 2


2.2909 2.2805 2.28 2.1805 2.0787

Since both the priors and the likelihood function are in theNormal-
Gamma form, we can directly draw samples from their posterior
joint distributions under H0 and H1. In particular, 35,000 random
draws are sampled from the posterior distributions for Bayesian
statistical inference.

Table 3 reports log BF10, T (y, β0), the posterior means and
the posterior standard errors of all the parameters under H1 for
different values of Vβ . From Table 3, we observe that the posterior
quantities of all three parameters are robust to Vβ . However,
log BF10 is very sensitive to Vβ . In particular, log BF10 decreases
as Vβ increases. When the prior variance Vβ is moderate, log BF10
is more than 0 and tends to reject the null hypothesis. When Vβ
is sufficiently large, log BF10 is less than 0 and does not reject
the null hypothesis. This observation clearly demonstrates that
the BF is subject to Jeffreys–Lindley’s paradox. On the contrary,
T (y, β0) takes nearly identical values with different Vβ . Therefore,
T (y, β0) is immune to Jeffreys–Lindley’s paradox. The asymptotic
distribution of T (y, β0) under H0 is χ2(1), and the 99.9 percentile
of χ2(1) is 10.83. T (y, β0) is much larger than 10.83 in all cases,
suggesting that the null hypothesis is rejected under the 99.9%
probability level.

To investigate the sensitivity of our proposed test statistic and
BF, Table 4 reported log BF10, T (y, β0), the posterior mean and
the posterior standard error of all the parameters under different
values of (a, b) given the prior hyperparameters (µa = 0, Va =

103, µβ = 0, Vβ = 1012). The results clearly show the sensitivity
of the BF to the prior because the BF values change the sign. In
the contrast, our test statistic does not change a lot and always
supports the alternative hypothesis.

4.2. Hypothesis testing in discrete choice models

The probit model is widely used to analyze binary choice data.
In this section,we fit the probitmodel to a dataset originally used in
Mroz (1987). Since the observeddata likelihood in theprobitmodel
is available in closed-form, we can directly compute the proposed
Bayesian test statistic T(y, θ0) based on theMCMCoutput. Also, the
LM test can be easily obtained.

In the probit model, we take the married women’s labor
force participation (inlf ) as the binary dependent variable (y) and
nwifeinc, educ, exper, expersq, age, kedslt6, and kidsge6 are taken
as independent variables; see Wooldridge (2002) for detailed
explanation of these variables. The latent variable representation
of the model is given by

z = ϑ0 + ϑ1nwifeinc + ϑ2educ + ϑ3exper
+ϑ4expersq + ϑ5age + ϑ6kedslt6 + ϑ7kidsge6 + e,

where z is the latent variable, e follows a standard normal
distribution, and inlf takes value 1 if z > 0, and 0 otherwise.

Proper but vague priors are used for all the regression
coefficients. Specifically, each element of ϑ is assumed to follow
the normal distribution with mean 0 and variance 108. In this
example, we test a joint point null hypothesis and an individual
point null hypothesis. In particular, we test whether exper and
expersqhave the joint explanatory power for y andwhether kidsge6
has the explanatory power for y. Hence, the null hypothesis is
ϑ7 = 0 in the individual test and ϑ3 = ϑ4 = 0 in the joint test.

Following Koop (2003), 35,000 draws are obtained using the
Gibbs sampler under H0 and H1 with the first 10,000 samples
discarded as burning-in samples. The convergence of Markov
chains is monitored using the statistic of Heidelberger and Welch
(1983). The parameter estimates and their corresponding standard
errors under H1 for both the Bayesian method and the ML method
are reported in Table 5. For the Bayesian method, we report the
posterior means and the posterior standard errors. For the ML
method, we report the ML estimates and the asymptotic standard
errors. Clearly, the difference between the two sets of results is
small.

Since T(y, θ0) does not have a closed-form expression, we can
obtain its estimate,T(y, θ0), from theMCMC outputs. The estimate
and the NSE (in the bracket) are reported in Table 6. Since the
observed likelihood function has an analytical expression, the LM
test can be easily obtained and is reported in Table 6. In addition,
the estimator of log BF10 and its NSE are also reported in Table 6.
The details about the derivation of these statistics are given in
Appendix A.5.

For the individual test, the asymptotic distribution of T (y, θ0)
under H0 is χ2 (1) whose 95 percentile is 3.8415. According toT(y, θ0) and the LM statistic, the hypothesis ϑ7 = 0 cannot
be rejected, suggesting that kidsge6 does not have a significant
explanatory power on y. Furthermore, these two values are very
close to each other, consistent with the result in Theorem 3.1.
What is more, the BF also strongly support the null hypothesis,
reinforcing the conclusion drawn from the other two statistics. The
NSEs of the new test and log BF10 are of smaller order of magnitude
than the corresponding statistics.

For the joint test, the asymptotic distribution of T (y, θ0) under
H0 is χ2 (2) whose 99.99 percentile is 18.42. T(y, θ0) is much
larger than 18.42, suggesting that the null hypothesis is rejected
under the 99.99% probability level. Similarly, the LM statistic is
much larger than the 99.99 percentile of χ2 (2) and rejects the
null hypothesis. The BF also strongly supports the alternative
hypothesis. The three statistics all provide the ‘‘strong’’ evidence
that exper and expersq have the joint explanatory power on y.
Furthermore, the difference betweenT(y, θ0) and the LM statistic
is significant. It suggests that these two test statistics may differ
significantly when the null hypothesis is not held, consistent with
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Table 5
Bayesian and ML estimates and their standard errors.

Bayesian method ML method
Posterior mean Posterior SE Estimate SE

ϑ0 0.2576 0.5125 0.2701 0.5086
ϑ1 −1.2146 × 10−2 4.8169 × 10−3

−1.2024 × 10−2 4.8398 × 10−3

ϑ2 0.1323 2.5451 × 10−2 0.1309 2.5254 × 10−2

ϑ3 0.1242 1.8706 × 10−2 0.1233 1.8716 × 10−2

ϑ4 −1.9 × 10−3 6.0366 × 10−4
−1.8871 × 10−3 6 × 10−4

ϑ5 −5.3083 × 10−2 8.4437 × 10−3
−5.2853 × 10−2 8.4772 × 10−3

ϑ6 −0.8752 0.1187 −0.8683 0.1185
ϑ7 3.7766 × 10−2 4.2809 × 10−2 3.6005 × 10−2 4.3477 × 10−2
Table 6
The proposed test statistic, the LM test statistic, log BF10 , and the numerical standard
errors of the proposed test statistic and log BF10 (in the bracket).

H0 T(y, θ0) LM log BF10

ϑ7 = 0 0.6805 (0.0204) 0.6861 −12.1454 (0.0226)
ϑ3 = ϑ4 = 0 126.7931 (3.7603) 99.088 21.9721 (0.021)

Remark 3.10. The NSEs of the new test and log BF10 are of smaller
order of magnitude than the corresponding statistics.

4.3. Hypothesis testing in stochastic conditional duration models

The third example is a simple extension of the stochastic
conditional duration (SCD) model of Bauwens and Veredas (2004)
given by
dt = exp (ϕt) εt εt ∼ Exp (1) ,
ϕt = φϕt−1 + α + x′

tβ + σϵt ϵt ∼ N (0, 1) ,

ϕ1 ∼ N

α + x′

1β

1 − φ
,

σ 2

1 − φ2


,

for t = 1, . . . , T . In this model, dt is the adjusted duration; ϕt is
the latent variable which is potentially serially correlated and |φ|

is assumed to be less than 1; β = (β1, β2)
′, x′

t = (Pt−1, VOLt−1),
where Pt−1 is the price of the underlying stock at time t − 1 and
VOLt−1 is the trading volume of the stock at time t − 1; εt and ϵt
are independent random errors.

The data, collected from the TAQdatabase, are the time intervals
(durations) between transactions for IBM between September 3,
1996 and September 30, 1996. Following Bauwens and Veredas
(2004), the transaction data before 9:30 and after 16:00 are
excluded and the simultaneous trades are treated as one single
transaction. As a result, we are left with 17,103 raw durations.

Following Engle andRussell (1998),we adjust the rawdurations
using the daily season factor Ψ (ti)which is assumed to be a cubic
splinewith each node being the average duration on each half hour
from 9:30 to 16:00, i.e.,

dti =
Dti

Ψ (ti)
,

where Dti is the raw durations. Similar adjustments are also made
to the prices and the volumes.We first testwhether or not the price
and the traded volume at time t − 1 have a joint impact on the
duration at time t , i.e., β1 = β2 = 0. Furthermore, we also test
whether the individual effect is significant or not, i.e., β1 = 0 and
β2 = 0.

Because the observed-data likelihood function is not available
in closed-form, it is very hard to calculate the LM statistic even for
themodel under the null hypothesis. However, since the complete-
data likelihood function has an analytical expression, the data
augmentation technique facilitates the BayesianMCMC estimation
of themodels. As a result, the proposed statistic is easy to calculate
and the detailed derivation ofT (d, θ0) is reported in Appendix A.6.
The prior distributions for parameters are given as follows,

φ = 2φ∗
− 1, φ∗

∼ Beta(1, 1), σ 2
∼ IG (0.01, 0.01) ,

α,β′
′

|σ 2
∼ N


0, 100 × σ 2I3


where I3 is 3 × 3 identity matrix. 55,000 MCMC draws are
obtainedwith the first 15,000 being treated as the burn-in samples.
Again, we use the statistic of Heidelberger and Welch (1983) to
check the convergence of all the chains. The posterior means and
posterior standard errors of all the parameters under the three null
hypotheses and the alternative hypothesis are reported in Table 7.

Table 8 reports the values of the new statistic and the BF and
the computing time (in seconds) of the new test in the three cases.
For hypotheses β1 = β2 = 0 and β2 = 0,T (d, θ0) strongly reject
the null hypothesis, even under the 99.9% probability level. This
is consistent with the BFs, which also strongly support the model
under H1. For hypothesis β1 = 0, the BF does not find strong
evidence for the alternative hypothesis with ‘‘not worthmore than
a baremention’’ evidence. Our proposed statistic also fails to reject
the null hypothesis at the 95% probability level.

Finally, from Table 8, we can show that the new statistic takes
less time to compute than the BF. Moreover, the NSEs of the new
test are of a smaller order of magnitude than the corresponding
statistics. However, the NSEs of the BFs are difficult to obtain
because the log-likelihood is not available in closed-form for the
SCD model.

5. Conclusion

In this paper, we have proposed a new Bayesian test statistic
to test a point null hypothesis based on a quadratic loss function.
Under the null hypothesis and a set of regularity conditions, we
show that our test is asymptotically equivalent to frequentist’s
LM test and follows a chi-squared distribution asymptotically. The
proposed method is illustrated using a simple linear regression
model, a discrete choice model and a stochastic conditional
duration model.

The main advantages of the proposed test statistic are as
follows. Relative to the BF, (i) it is well-defined under improper
prior distributions; (ii) it is immune to Jeffreys–Lindley’s paradox;
(iii) it is easy to compute, even for the latent variable models; (iv)
its asymptotic distribution is pivotal so that the threshold values
are easy to obtain; (v) its NSE can be easily obtained. Relative to
the LM test, (i) it can incorporate the prior information to improve
hypothesis testing when the sample size is small; (ii) it does not
suffer from the problem of taking negative values; (iii) it does not
need to invert any matrix.

Appendix

A.1. Proof of Lemma 3.1

When the likelihood information dominates the prior informa-
tion, the posterior mean ϑ̄ reduces to the ML estimator ϑ, under
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Table 7
The posterior means and posterior standard errors of all the parameters under the three null hypotheses and the alternative hypothesis for the SCD model.

Parameter α φ σ 2 β1 β2

Hypothesis Mean SE Mean SE Mean SE Mean SE Mean SE

H1 .1147 .0364 .9473 .0061 .0209 .0028 −.1105 .0363 −.0099 .0015
H0 : β1 = β2 = 0 −.0052 .0014 .9523 .0059 .0204 .0028 - - - -
H0 : β1 = 0 .0039 .0018 .9498 .0049 .0204 .0023 - - −.0093 .0015
H0 : β2 = 0 .0849 .0354 .9504 .0055 .0208 .0025 −0.0904 .0356 - -
Table 8
The proposed test statistic, log BF10 , their computing time (in seconds), and the numerical standard errors of the proposed test statistic (in the bracket).

β1 = β2 = 0 β1 = 0 β2 = 0T (d, θ0) 17.8312 (0.6262) 2.3209 (0.2979) 14.8087 (0.4107)
Time forT (d, θ0) (s) 4116.1709 4634.9620 3840.8727
log BF10 17.9863 0.8196 18.9603

Time for log BF10 (s) 6889.1324 6913.0687 6510.5200
the alternative hypothesis. When H0 is true, let ϑ0 = (θ0,ψ0) be
the true value of ϑ. According to the standard ML theory and the
central limit theorem, it can be shown that
√
n(ϑ − ϑ0)

d
→N [0, F(ϑ0)] ,

where F(ϑ0) = nI−1(ϑ0), I(ϑ0) = −E [I (ϑ0)] is the Fisher
information matrix, and

I(ϑ) =
∂2 log p (y|ϑ)
∂ϑ∂ϑ′

= L(2)n (ϑ).

Under the standard regularity conditions, as n → ∞, we have

−nJ(ϑ0)
p

→ F(ϑ0),

where J(ϑ0) is the inverse matrix of I(ϑ0). Therefore, it can be
shown thatϑ − ϑ0 = Op(n−

1
2 ),

J(ϑ0) = Op(n−1), I(ϑ0) = Op(n).

For any consistent estimator of ϑ, say ϑ̃, there exists a positive
sequence k∗

n → 0 such that p(∥ϑ̃ − ϑ0∥ ≤ k∗
n) ≥ 1 − k∗

n . Hence,
when n is large enough, we can find some N > 0, and n > N to
make ∥ϑ̃ − ϑ0∥ ≤ k∗

n . Under Assumption 5, we have

1
n
∥I(ϑ̃)− I(ϑ0)∥ ≤ sup

∥ϑ−ϑ0∥<kn

1
n
∥I(ϑ)− I(ϑ0)∥

p
−→ 0.

Hence, for any consistent estimator ϑ̃, 1
n


I(ϑ̃)− I(ϑ0)


= op(1)

so that I(ϑ̃) = I(ϑ0) + op(n) and that I(ϑ̃) = Op(n). Similarly,
J(ϑ̃) = J(ϑ0)+ op(n−1) and J(ϑ̃) = Op(n−1).

A.2. Proof of Lemma 3.2

When the likelihood information dominates the prior informa-
tion, the posterior modeϑ0 of ϑ under the null hypothesis reduces
to theMLestimator ofϑ under thenull hypothesis and s̃(ϑ) = s(ϑ).
Similar to Lemma 3.1, when H0 is true, according to the standard
ML theory, we have
1

√
n
s(ϑ0) ∼ N[0, F(ϑ0)],

√
n(ψ0 − ψ0) ∼ N[0, Fψψ (ϑ0)],

where Fψψ (ϑ0) is the submatrix of F(ϑ0) corresponding to ψ.
Hence, we have

s(ϑ0) = Op(n1/2), ψ0 − ψ0 = Op(n−1/2),ϑ0 − ϑ0 = Op(n−1/2).
Furthermore, based on Remark 3.7, it can be shown that

ψ̄0 −ψ0 = op(n−1/2), ϑ̄0 −ϑ0 = op(n−1/2),

ψ̄0 − ψ0 = ψ̄0 −ψ0 +ψ0 − ψ0

= op(n−1/2)+ Op(n−1/2) = Op(n−1/2),

ϑ̄0 − ϑ0 = Op(n−1/2).

Using the first-order Taylor expansion, we have

s(ϑ0) = s(ϑ0)+ I(ϑ̃0)(ϑ0 − ϑ0),

where θ̃0 lies on the segment betweenϑ0 and ϑ0. Sinceϑ0 −ϑ0 =

Op(n−1/2), it means thatϑ0 is a consistent estimator of ϑ0 so that
ϑ̃0 is also a consistent estimator of ϑ0. Hence, we get

s(ϑ0) = s(ϑ0)+ I(ϑ̃0)(ϑ0 − ϑ0)

= s(ϑ0)+ [I(ϑ0)+ op(n)](ϑ0 − ϑ0)

= s(ϑ0)+ I(ϑ0)(ϑ0 − ϑ0)+ op(n)(ϑ0 − ϑ0)

= s(ϑ0)+ I(ϑ0)(ϑ0 − ϑ0)+ op(n)Op(n−1/2)

= s(ϑ0)+ I(ϑ0)(ϑ0 − ϑ0)+ op(n1/2)

= Op(n1/2)+ Op(n)Op(n−1/2)+ op(n1/2) = Op(n1/2),

C(ϑ0) = s(ϑ0)s(ϑ0)
′
= Op(n1/2)Op(n1/2) = Op(n).

Similarly, since ϑ̄0 − ϑ0 = Op(n−1/2), it means that ϑ̄0 is a
consistent estimator of ϑ0 so that ϑ̃0 is also a consistent estimator
of ϑ0. Hence, we can get

s(ϑ̄0) = Op(n1/2),

C(ϑ̄0) = s(ϑ̄0)s(ϑ̄0)
′
= Op(n).

Furthermore, we can show that

s(ϑ̄0) = s(ϑ0)+ I(ϑ̃0)(ϑ̄0 −ϑ0),

where ϑ̃0 lies on the segment between ϑ̄0 and ϑ0. Because bothϑ0 and ϑ̄0 are consistent estimators of ϑ0, ϑ̃0 is also a consistent
estimator of ϑ0. Using Lemma 3.1, we get

C(ϑ̄0) = s(ϑ̄0)s(ϑ̄0)
′

= [s(ϑ0)+ I(ϑ̃0)(ϑ̄0 −ϑ0)][s(ϑ0)+ I(ϑ̃0)(ϑ̄0 −ϑ0)]
′

= s(ϑ0)s(ϑ0)
′
+ 2I(ϑ̃0)(ϑ̄0 −ϑ0)s(ϑ0)

+ I(ϑ̃0)(ϑ̄0 −ϑ0)(ϑ̄0 −ϑ0)
′I(ϑ̃0)

= s(ϑ0)s(ϑ0)
′
+ 2Op(n)op(n−1/2)Op(n1/2)

+Op(n)op(n−1/2)op(n−1/2)Op(n)

= s(ϑ0)s(ϑ0)
′
+ op(n) = C(ϑ0)+ op(n).
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A.3. Proof of Theorem 3.1

Using the Bayesian large sample theory, we have

E

(ϑ − ϑ̄)(ϑ − ϑ̄)′|y


= E


(ϑ −ϑ +ϑ − ϑ̄)(ϑ −ϑ +ϑ − ϑ̄)′|y


= E


(ϑ −ϑ)(ϑ −ϑ)′|y

+ 2E

(ϑ −ϑ)|y (ϑ − ϑ̄)+ (ϑ − ϑ̄)(ϑ − ϑ̄)′

= E

(ϑ −ϑ)(ϑ −ϑ)′|y

− 2(ϑ − ϑ̄)(ϑ − ϑ̄)+ (ϑ − ϑ̄)(ϑ − ϑ0)
′

= E

(ϑ −ϑ)(ϑ −ϑ)′|y− (ϑ − ϑ̄)(ϑ − ϑ̄)

= −L−(2)
n (ϑ)+ op(n−1)+ op(n−1/2)op(n−1/2).

The last equality E

(ϑ −ϑ)(ϑ −ϑ)′|y = −L−(2)

n (ϑ) + op(n−1)
follows Li et al. (2012) based on the assumptions listed in
Section 3.2. Hence, we have

T(y, θ0) =


(θ − θ̄)′Cθθ (ϑ̄0)(θ − θ̄)p(ϑ|y)dϑ

= tr

Cθθ (ϑ̄0)E[(θ − θ̄)(θ − θ̄)′|y]


= tr


Cθθ (ϑ̄0)[−L−(2)

n,θθ (
ϑ)+ op(n−1)]


= tr


Cθθ (ϑ0)+ op(n)


[−L−(2)

n,θθ (
ϑ)]

+ tr

Cθθ (ϑ̄0)op(n−1)


= tr


Cθθ (ϑ0)[−L−(2)

n,θθ (
ϑ)]

+ op(n)[−L−(2)
n,θθ (

ϑ)] + Op(n)op(n−1)

= tr

s̃θ (ϑ0)s̃θ (ϑ0)

′
[−L−(2)

n,θθ (
ϑ)]

+ op(n)Op(n−1)+ op(1)

= tr

s̃θ (ϑ0)s̃θ (ϑ0)

′
[−L−(2)

n,θθ (
ϑ)]+ op(1)

= s̃θ (ϑ0)
′
[−L−(2)

n,θθ (
ϑ)]s̃θ (ϑ0)+ op(1).

This proves Eq. (9) in the theorem.
When the likelihood information dominates the prior informa-

tion, the posterior modeϑ reduces to the ML estimator of ϑ under
the alternative hypothesis, the posterior mode ψ0 to the ML es-
timator of ψ under the null hypothesis, and L(2)n (ϑ) to I(ϑ), s̃(ϑ)
to s(ϑ). Under H0, let ϑ0 = (θ0,ψ0) be the true value of ϑ, andϑ0 = (θ0,ψ) be the ML estimator of ϑ. Then, when the null hy-
pothesis is true, ϑ and ϑ0 are both consistent estimators of ϑ.
Hence, based on Lemmas 3.1 and 3.2, we get

J(ϑ) = I−1(ϑ) =

I(ϑ0)+ op(n)

−1
+ op(n−1)

= J(ϑ0)+ op(n−1),

J(ϑ0) = I−1(ϑ0) =

I(ϑ0)+ op(n)

−1
+ op(n−1)

= J(ϑ0)+ op(n−1).

Then, we can further derive that

T(y, θ0) =


(θ − θ̄)′Cθθ (ϑ̄0)(θ − θ̄)p(ϑ|y)dϑ

= sθ (ϑ0)
′
[−L−(2)

n,θθ (
ϑ)]sθ (ϑ0)+ op(1)

= −sθ (ϑ0)
′Jθθ (ϑ)sθ (ϑ0)+ op(1)

= −sθ (ϑ0)
′Jθθ (ϑ)sθ (ϑ0)+ op(1)

= −sθ (ϑ0)
′

Jθθ (ϑ0)+ op(n−1)


sθ (ϑ0)+ op(1)

= −sθ (ϑ0)
′ [Jθθ (ϑ0)] sθ (ϑ0)
+ sθ (ϑ0)
′op(n−1)sθ (ϑ0)+ op(1)

= −sθ (ϑ0)
′ [Jθθ (ϑ0)] sθ (ϑ0)

+Op(n1/2)op(n−1)Op(n1/2)+ op(1)

= −sθ (ϑ0)
′ [Jθθ (ϑ0)] sθ (ϑ0)+ op(1)

= −sθ (ϑ0)
′

Jθθ (ϑ0)+ op(n1/2)


sθ (ϑ0)+ op(1)

= −sθ (ϑ0)
′Jθθ (ϑ0)sθ (ϑ0)

+Op(n1/2)op(n−1)Op(n1/2)+ op(1)

= −sθ (ϑ0)
′Jθθ (ϑ0)sθ (ϑ0)+ op(1)

= LM + op(1).

According to the standard ML theory, under the null hypothesis,
LM

d
→χ2(p). Therefore, T(y, θ0)

d
→χ2(p) and the theorem is

proved.

A.4. Derivation of T(y, θ0) and the BF in linear regression model

It is known that the log BF10 can be expressed as

log BF10 = log p (y|M1)− log p (y|M0) .

In the simple linear regression model, under H0, the marginal
likelihood p(y|M0) is given by

p(y|M0) =

 
p (y|α, β0) p


α|σ 2 p σ 2 dαdσ 2

=
ba

(2π)
n
2 Γ (a)

 
exp


−

1
2σ 2

n
i=1

(yi − α − β0xi)2


×
1

√
2πVασ

exp


−
(α − µα)

2

2σ 2Vα


×

σ 2−a− n

2 −1
exp


−

b
σ 2


dαdσ 2

=
ba

(2π)
n
2 Γ (a)

 
1

√
2πVασ

× exp


−

1
2σ 2


−2α

n
i=1

(yi − β0xi)+ nα2



× exp


−

1
2σ 2

n
i=1

(yi − β0xi)2


× exp

−

1
2σ 2Va


α2

− 2µαα


exp


−
µ2
α

2σ 2Vα


dαdσ 2

=
ba

(2π)
n
2 Γ (a)

 
1

√
2πVασ

× exp


−

1
2σ 2

n
i=1

(yi − β0xi)2

exp


−

µ2
α

2σ 2Vα



× exp


−

1
2σ 2


n +

1
Vα


α2

− 2α


n

i=1

(yi − β0xi)+
µα

Vα


dαdσ 2

=
ba

(2π)
n
2 Γ (a)


1

nVα + 1


+∞

0


σ 2−a− n

2 −1

× exp


−

1
σ 2


b +

1
2


n

i=1

(yi − β0xi)2
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+
µ2
α

Vα
−
µ∗2
α

V ∗
α


dσ 2

=
baΓ


a +

n
2


(2π)

n
2 Γ (a)


1

nVα + 1

×


b +

1
2


n

i=1

(yi − β0xi)2 +
µ2
α

Vα
−
µ∗
α

V ∗
α

−(a+ n
2 )

=
baΓ


a +

n
2


(2π)

n
2 Γ (a)


1

nVα + 1

×


b +

1
2


(y − β0x)′ (y − β0x)+

µ2
α

Vα
−
µ∗
α

V ∗
α

−(a+ n
2 )

.

Under the alternative hypothesisH1, we rewrite the equation in
a matrix form:

y = Xγ + ε,

where γ = (α, β)′, X = (ι, x). The prior for γ is N

µ̃, σ 2Ṽ


,

where µ̃ =

µα, µβ

′, Ṽ = diag

Vα, Vβ


. Similarly, the marginal

likelihood p(y|M1) is

p(y|M1) =

 
p (y|β, α) p


γ |σ 2 p σ 2 dγ dσ 2

=
ba

(2π)
n
2 Γ (a)

  
σ 2−a− n

2 −1
exp


−

b
σ 2


× exp


−

1
2σ 2 (y − Xγ )′ (y − Xγ )


1

2π |Ṽ |
1
2 σ 2

× exp


−
1

2σ 2 (γ − µ̃)
′ Ṽ−1 (γ − µ̃)


dγ dσ 2

=
ba

(2π)
n
2 Γ (a)


|Ṽ |

 
1

2πσ 2


σ 2−a− n

2 −1

×


−

1
σ 2


b +

1
2


y′y + (µ̃)′Ṽ−1µ̃


× exp


−

1
2σ 2


γ ′


X ′X + Ṽ−1


γ − γ ′


X ′y + Ṽ−1µ̃


−


X ′y + Ṽ−1µ̃

′

γ


dγ dσ 2

=
ba

(2π)
n
2 Γ (a)


|Ṽ |

 
1

2πσ 2

× exp

−

1
2σ 2


γ − µ∗

′ V ∗−1 γ − µ∗


× exp


−
1

2σ 2


(µ̃)′Ṽ−1µ̃+ y′y − (µ∗)′V ∗−1µ∗


×

σ 2−a− n

2 −1
exp


−

b
σ 2


dγ dσ 2

=
ba

√
|V ∗|

(2π)
n
2 Γ (a)


|Ṽ |

 
σ 2−a− n

2 −1
exp


−

1
σ 2


b

+
1
2


(µ̃)′Ṽ−1µ̃+ y′y − (µ∗)′V ∗−1µ∗


dσ 2

=
ba

√
|V ∗|Γ


a +

n
2


(2π)

n
2 Γ (a)


|Ṽ |
×


b +

1
2


(µ̃)′Ṽ−1µ̃+ y′y − (µ∗)′V ∗−1µ∗

−(a+ n
2 )
.

In the following, we show how to calculate T (y, θ0). It is noted
that the log-likelihood function is:

log p (y|ϑ) = −
n
2
log (2π)−

n
2
log σ 2

−
1

2σ 2

n
i=1

(yi − α − βxi)2 .

Hence, given ϑ =

α, β, σ 2

′, for H0 of θ = β , we have

s(ϑ) =


1
σ 2

n
i=1

(yi − α − βxi) ,
1
σ 2

n
i=1

xi (yi − α − βxi) ,

−
n

2σ 2
+

1
2σ 4

n
i=1

(yi − α − βxi)2
′

,

and

Cθθ

ϑ̄0


=


1
σ̄ 2
0

n
i=1

xi (yi − ᾱ0 − β0xi)−
1
Vβ
(β0 − µβ)

2

=


1
σ̄ 2
0
x′ (y − ᾱ0ι− β0x)−

1
Vβ
(β0 − µβ)

2
,

where ᾱ0 and σ̄ 2
0 are the posterior means of α and σ 2 under H0.

Since the likelihood and the prior are both in the Normal-
Gamma form, based on the previous derivation of p (y|M1), if we
integrate the σ 2, we can have the posterior density of γ = (α, β)′

π (γ |y) ∝


b +

1
2


(µ̃)′Ṽ−1µ̃+ y′y − (µ∗)′V ∗−1µ∗


+

1
2


γ − µ∗

′ V ∗−1 γ − µ∗
 2a+n

2 +1

∝


1 +

1
2νs


γ − µ∗

′ V ∗−1 γ − µ∗
 ν2 +1

,

which is a density function of multivariate t distribution with
degrees of freedom ν = 2a + n, mean µ∗, and a positive definite
symmetric matrix, V ∗. That is,

γ |y ∼ t

µ∗, 2sV ∗, ν


.

Let

µ∗
=


µ∗

1
µ∗

2


, V ∗

=


V ∗

11 V ∗

12
V ∗

21 V ∗

22


.

It is easy to show that β|y ∼ t

µ∗

2, 2sV
∗

22, ν

. Then, the posterior

variance ofβ isVar (β|y) =
2sV∗

22
ν−2 . Hence, the proposed test statistic

can be calculated analytically as

T (y, θ0) = Cθθ

ϑ̄0

Var (β|y) =

2sV ∗

22

ν − 2
Cθθ


ϑ̄0

.
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A.5. Derivation of the BF and T(y, θ0) in the probit model

In the binary probit model, for each yi, i = 1, 2, . . . , n, there is
a corresponding latent variable zi that satisfies:
yi = 1 if zi ≥ 0
yi = 0 if zi < 0,

and

zi = x′

iϑ + ei,

whereϑ is the (p+q)×1 parameter vectormeasuring themarginal
effects and ei ∼ N (0, 1) for i = 1, . . . , n.

Rewrite the above equation as:

zi = x′

i1ψ + x′

i2θ + ei.

For each i, we have
p (yi = 1|ϑ) = p (zi ≥ 0|ϑ) = p


ei ≥ −


x′

i1ψ + x′

i2θ

|ϑ


= Φ

(2yi − 1)


x′

i1ψ + x′

i2θ


p (yi = 0|ϑ) = p (zi < 0|ϑ) = p

ei < −


x′

i1ψ + x′

i2θ

|ϑ


= Φ

(2yi − 1)


x′

i1ψ + x′

i2θ

,

where the Φ (·) is the standard normal cumulative distribution
function. Note that the log-likelihood function is:

log p (y|ϑ) =

n
i=1

logΦ

qi

x′

i1ψ + x′

i2θ

,

where qi = 2yi − 1.

• The estimator of T (y, θ0) and its NSE.
For H0 of θ = 0, note that,

∂ log p (y|ϑ)
∂θ

=

n
i=1

qi
φ

qi

x′

i1ψ + x′

i2θ


xi2
Φ

qi

x′

i1ψ + x′

i2θ
 ,

where φ (·) is the pdf of the standard normal distribution. The
proposed test statistic is

T (y, θ0) =

 
θ − θ̄

′
Cθθ


ϑ̄0
 
θ − θ̄


p (ϑ|y) dϑ,

where

Cθθ

ϑ̄0


=


∂ log p (y,ϑ)

∂θ


∂ log p (y,ϑ)

∂θ

′

ϑ=ϑ̄0

=


n

i=1

φ

qi

x′

i1ψ̄0


qixi2

Φ

qi

x′

i1ψ̄0

 

×


n

i=1

φ

qi

x′

i1ψ̄0


qixi2

Φ

qi

x′

i1ψ̄0

 ′

,

where ϑ̄0 = (θ0, ψ̄0) and ψ̄0 is the posterior mean of ψ under
H0.
To sum up, to compute the T (y, θ0), we firstly draw MCMC
samples for the model under H0 and calculate Cθθ


ϑ̄0

. We

then draw MCMC samples for the model under H1 to obtain
ϑ(g)

G
g=1 =


θ(g),ψ(g)

G
g=1. Naturally, the estimator of the

statistic is

T (y, θ0) =
1
G

G
g=1

f

θ(g)


,

where,

f

θ(g)


=

θ(g) − θ̄

′
Cθθ


ϑ̄0
 
θ(g) − θ̄


,

where θ̄ is the posterior mean of θ for the model under H1.
Following the discussion about the NSE in Section 3, the
numerical variance ofT (y, θ0) is
Var

T (y, θ0) =
1
G


Ω0 + 2

q
k=1


1 −

k
q + 1


Ωk


,

where

Ωk =
1
G

G
g=k+1


f

θ(g)


−T (y, θ0)2 .

• The estimator of the BF and its NSE.
We know that the logarithmic observed likelihood function,
log p (y|ϑ), is given by

log p (y|ϑ) =

n
i=1

logΦ

qi

x′

i1ψ + x′

i2θ

,

which is easy to compute.
Based on Chib (1995), the logarithmic marginal likelihood
under H1, log p (y|M1), is given by

log p (y|M1) = log p

y|ϑ̄

+ log p


ϑ̄

− log p


ϑ̄|y

,

where p

ϑ̄

is the pdf of the prior evaluated at ϑ̄, p


ϑ̄|y

is the

pdf of the posterior distribution evaluated at ϑ̄. The posterior
quantity can be approximated by

p ϑ̄|y


=
1
G

G
g=1

p

ϑ̄|z(g)1


,

where {z(g)1 , g = 1, 2, . . . ,G} are efficient random draws
from p


z1|y, ϑ̄


and the posterior distribution p (ϑ|z) has a

closed-form expression in thismodel. The logarithmicmarginal
likelihood under H0, log p (y|M0), is given by

log p (y|M0) = log p

y|ϑ̄0


+ log p


ψ̄0


− log p


ψ̄0|y, θ0


.

Similarly,p ψ̄0|y, θ0


=
1
G

G
g=1 p


ψ̄0|z

(g)
0 , θ0


, and {z(g)0 , g =

1, 2, . . . ,G} are efficient random draws from p

z0|y, ϑ̄0


.

Hence, the logarithmic BF can be estimated by

log BF10 =

log p


y|ϑ̄

+ log p


ϑ̄

− logp ϑ̄|y


−

log p


y|ϑ̄0


+ log p


ψ̄0


− logp ψ̄0|y, θ0


.

To calculate theNSE, following Chib (1995), let h(g)1 = p

ϑ̄|z(g)


,

h(g)0 = p

ψ̄0|z

(g)
0 , θ0


, h(g) =


h(g)1 , h

(g)
0

′

,h =
h1,h0


,h0 =

1
G

G
g=1 h

(g)
0 ,h1 =

1
G

G
g=1 h

(g)
1 . Then the numerical variance is

Var


log BF10


=


∂ log BF10
∂h

′

Var (h)


∂ log BF10
∂h


,

Var (h) =
1
G


Ω0 +

q
k=1


1 −

k
q + 1

 
Ωk +Ω ′

k


,

Ωk =
1
G

G
g=k+1


h(g) −h h(g) −h′ ,

∂ log BF10
∂h =


−p ϑ̄|y

−1

p ψ̄0|y, θ0
−1


.

A.6. Derivation of the BF and T(y, θ0) in the stochastic conditional
duration model

To save the space, here we only discuss the most specification
corresponding to H1. For the SDC model under H1, denoted as M1,
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given by
dt = exp (ϕt) εt , εt ∼ Exp (1) ,
ϕt = φϕt−1 + α + x′

tβ + σϵt , ϵt ∼ N (0, 1) ,

ϕ1 ∼ N

α + x′

1β

1 − φ
,

σ 2

1 − φ2


,

we want to test whether β = 0 (hence θ = β in this case). As a
result, the nuisance parameter ψ =


α, φ, σ 2

′ and ϑ =

θ′,ψ′

′.
• The estimator of T(y, θ0) and its NSE.

The proposed statistic is given by:

T (d, θ0) =

 
β − β̄

′
Cθθ


ϑ̄0
 
β − β̄


p (ϑ|d) dϑ

= tr

Cθθ


ϑ̄0

E

β − β̄

 
β − β̄

′
|y

,

where d = {dt}Tt=1, ϑ̄0 =

0, ψ̄0


, ψ̄0 is the posterior mean of

ψ under H0, β̄ is the posterior mean of β under H1, and

Cθθ

ϑ̄0


=


∂ log p (d,ϑ)

∂θ


∂ log p (d,ϑ)

∂θ

′ 
ϑ=ϑ̄0

= sθ

ϑ̄0

sθ

ϑ̄0
′
.

According to Remark 3.4, the partial derivative of log-likelihood
functionwith respect to θ can be approximated based on theQ-
function. That is,

sθ

ϑ̄0


≈
1
G

G
g=1


−

1
2σ̄ 2

0
X̃ ′

ỹ(g) − ᾱ0ι



=
1
G

G
g=1

h(g)1 =h1,

where ι = (1, . . . , 1)′, ỹ(g) = (


1 − φ̄2

0ϕ
(g)
1 , ϕ

(g)
2 − φ̄0ϕ

(g)
1 ,

. . . , ϕ
(g)
T − φ̄0ϕ

(g)
T−1)

′, X̃ =


1+φ̄0
1−φ̄0

x′

1, x
′

2, . . . , x
′

T


, (ᾱ0, φ̄0, σ̄

2
0 )

is the Bayesian estimator under H0, {ϕ
(g)
t , g = 1, 2, . . . ,G, t =

1, 2, . . . , T } are effective draws of the latent variables from
the posterior distribution p(ϕ|d, ϑ̄0). Hence, T (d, θ0) can be
approximated by

T (d, θ0) = tr

Cθθ ϑ̄0
  1

G

G
g=1


β(g) − β̄

 
β(g) − β̄

′
= tr

h1h′

1
H2

,

where β̄ is the posterior mean of β under H1,

β(g)

G
g=1 are the

MCMC draws from the posterior distribution p(ϑ|y), and

Cθθ ϑ̄0


= h1h′

1,
H2 =

1
G

G
g=1


β(g) − β̄

 
β(g) − β̄

′
=

1
G

G
g=1

H(g)2 .

To calculate the NSE, let h(g)2 = vech

H(g)2


, h(g) =


h(g)′1 ,

h(g)′2

′
,h =

h′

1,
h′

2

′
. We have

∂h1

∂h =


1 0 0 0 0
0 1 0 0 0


,

∂H2

∂h =

0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1

 .
Hence,

∂T (d, θ0)
∂h = vec(Ip)′

H′

2
h1 ⊗ Ip +H′

2 ⊗h1
 ∂h1

∂h
+

Ip ⊗h1h′

1

 ∂H2

∂h

,

Var
T (d, θ0) =

∂T (y, θ0)
∂h Var

h ∂T (y, θ0)
∂h

′

,

Var(h) =
1
G


Ω0 +

q
k=1


1 −

k
q + 1

 
Ωk +Ω ′

k


,

Ωk = G−1
G

g=k+1


h(g) −h h(g) −h′

where Ip is the p-dimension identity matrix.
• The estimator of the BF.

Let log p (d|M0) and log p (d|M1) be the marginal likelihood
under H0 and H1 respectively. Hence,

log BF 10 = log p (d|M1)− log p (d|M0) .

The marginal likelihood under H1 is

log p (d|M1) = log p

d|ϑ̄


+ log p


ϑ̄

− log p


ϑ̄|y

,

where p

ϑ̄

is the prior density function evaluated at ϑ̄, p


ϑ̄|y


is the posterior density function evaluated at ϑ̄. The marginal
likelihood under H0 is

log p (d|M0) = log p

y|ϑ̄0


+ log p


ψ̄0


− log p


ψ̄0|d, θ0


.

FollowingChib (1995),we can approximate the quantities at the
right hand side of themarginal likelihood equations as follows,
– We use the auxiliary particle filter method proposed by Pitt

and Shephard (1999) to estimate log p

y|ϑ̄

and log p


y|ϑ̄0


.

The code is provided by Creal (2012).
– log p


ϑ̄

and log p


ψ̄0


are easy to evaluate since the prior

distributions are standard statistical distributions.
– log p


ϑ̄|y


and log p

ψ̄0|d, θ0


can be estimated via the

approach of Chib (1995).
However, since the NSE of the logarithmic observed likelihood
function dominates that of the logarithmic marginal likelihood
which is estimated by particle filters, the NSE of the BF cannot
be obtained.
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