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• This paper studies the bias issue in continuous-time Lévy processes.
• The approximate bias of the least squares estimator of κ is derived.
• Both known and unknown long-run mean cases are considered.
• We consider both fixed and random initial conditions in approximating bias.
• Simulations are conducted to examine the performance of the bias approximation and correction.
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a b s t r a c t

This paper develops the approximate bias of the ordinary least squares estimator of the mean reversion
parameter in continuous-time Lévy processes. Several cases are considered, depending on whether
the long-run mean is known or unknown and whether the initial condition is fixed or random. The
approximate bias is used to construct a bias corrected estimator. The performance of the approximate
bias and the bias corrected estimator is examined using simulated data.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

There is an extensive literature of using diffusion processes to
model the dynamic behavior of financial asset prices, including
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Black and Scholes (1973), Vasicek (1977) and Cox et al. (1985),
among others. Many processes considered in the literature are
based on the Brownian motion. In recent years, however, strong
evidence of jumps in financial variables has been reported. To
capture jumps, continuous-time Lévy processes have become
increasingly popular and various Lévymodels have beendeveloped
in the asset pricing literature; see, for example, Barndorff-Nielsen
(1998) and Carr and Wu (2003).

In practice, one can only obtain the observations at discrete
points froma finite time span. Based ondiscrete-timeobservations,
different methods have been used to estimate continuous-time
models. Phillips and Yu (2009) provided an overview of some
widely used estimation methods. When the drift function is linear
and the process is slowly mean reverting, it is found that there
exists serious bias in estimating the mean reversion parameter
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(say κ) by almost all the methods (Phillips and Yu, 2005). Because
themean reversion parameter has important implications for asset
pricing, riskmanagement and forecasting, accurate estimation of it
has received considerable attentions in the literature. For example,
Yu (2012) approximated the bias of the maximum likelihood
estimator (MLE) of κ when the long-run mean is known and the
initial value is random for the Gaussian Ornstein–Uhlenbeck (OU)
process. Tang and Chen (2009) approximated the bias of theMLE of
κ when the long-runmean is unknown for theGaussianOUprocess
and the Cox–Ingersoll–Ross (CIR) model.

While the bias in estimating κ has been studied in continuous-
time diffusion processes, to the best of our knowledge, nothing has
been reported on the analytical bias issue in continuous-time Lévy
processes. The objective of this paper is to develop the approximate
bias of the least squares (LS) estimator ofκ under the Lévymeasure.
The proof of the results in this paper can be found in Bao et al.
(2013).

2. Models and the bias

A Lévy-driven OU process is

dx(t) = κ(µ− x(t))dt + σdL(t), x(0) = x0, (2.1)

where L(t), t ≥ 0, is a Lévy process with L(0) = 0 a.s. In the
special case when L(t) is a Brownian motion, the process is the
Gaussian OU process used by Vasicek (1977) to model interest rate
data. When κ > 0, the process is stationary with µ being the long
run mean and κ captures the speed of mean reversion.

It is well known that the LS estimator of κ is

κ̂ = −
ln(φ̂)
h

, (2.2)

where φ̂ is the LS estimator of the autoregressive coefficientφ from
the discretized AR(1) model

xth = α + φx(t−1)h + εth, (2.3)

in which α = µ(1− e−κh), φ = e−κh, εth = σ
 th
(t−1)h e

−κ(th−s)dL(s),
h is the sampling interval, t = 1, . . . , n such that the observed data
are discretely recorded at (0, h, 2h, . . . , nh) in the time interval
[0, T ] and nh = T . By the properties of Lévy process, the sequence
of {εth}

n
t=1 consists of i.i.d. random variables. We assume that the

moments of εth exist, up to order 4, with variance σ 2
ε , and skewness

and excess kurtosis coefficients γ1 and γ2, respectively.1
We are interested in studying the properties of κ̂ estimated

from the discrete sample via φ̂. As it is expected, the properties of
κ̂ depend on how we spell out the initial observation x(0) = x0:
it can be fixed at a constant or can be random, independent of
(ε1, . . . , εn), such that the time series (x0, x1, . . . , xn) is stationary.

For notational convenience, we drop the subscript h, and
throughout, x = (x1, . . . , xn)′, x−1 = (x0, . . . , xn−1)

′, ε =

(ε1, . . . , εn)
′. For a given φ, f1 is an n×1 vector with f1,i = φi, f2 =

f1/φ, C1 is a lower-triangular matrix with c1,ij = φi−j, i ≥ j, C2

is a strict lower-triangular matrix with c2,ij = φi−j−1, i > j.
Note that by definition, C2 = φ−1(C1 − I). The dimensions of
vectors/matrices are to be read from the context, and thus we
suppress the dimension subscripts in what follows.

To derive the analytical bias of κ̂ , we follow the framework of
Bao (2013). Let θ̂ be a

√
n-consistent estimator of θ identified by

themoment conditionψ(θ̂) = 0 from a sample of size n. Typically,
ψ(θ̂) denotes the moment condition. In finite samples, θ̂ is usually

1 This might rule out some Lévy processes. Also, in general, the moments of εth
depend on the parameters κ , σ , and the sampling frequency h.
biased and one may approximate the bias E(θ̂) − θ to the second
order, namely, E(θ̂)− θ = B(θ̂)+ o(n−1), where B(θ̂) is defined as
the second-order bias. Bao (2013) showed that B(θ̂) can be written
as

B(θ̂) = 6−1E(H1 ⊗ ψ′)vec(6−1)

+
1
2
6−1E (H2) (6

−1
⊗ 6−1)vec


E


ψψ′


, (2.4)

where ψ = ψ(θ), Hl = ∇
lψ, l = 1, 2, ∇ denotes the derivative

with respect to θ, and 6−1
= −[E(H1)]

−1. For the scalar case, it
becomes

B(θ̂) =
1

[E(H1)]2
E(H1ψ)−

1
2[E(H1)]3

E(H2)E(ψ2). (2.5)

Note that (2.4) and (2.5) are derived for
√
n-consistent θ, so the bias

approximationswewill derive in the following are only for κ being
strictly positive and correspondingly the discrete AR(1)model does
not contain a unit root.

2.1. µ is known

When µ is known a priori (= 0, without loss of generality), we
canwrite x = x0f1+C1ε, x−1 = x0f2+C2ε, ε = x−exp(−κh)x−1.2
Themoment condition, up to some scaling constant, for estimating
κ is

ψ(κ) =
1
n
x′

−1ε. (2.6)

Upon taking derivatives, we have

Hl =
−(−h)lφ

n
x′

−1x−1, l = 1, 2. (2.7)

By substituting (2.6) and (2.7) into (2.5),wederive the approximate
bias of κ̂ , when x0 is fixed,

B(κ̂) =
1 + 3e−2κh

+ 4e−2nκh

2Te−2κh
−


1 − e−2nκh

 
1 + 7e−2κh


2Tne−2κh


1 − e−2κh


−

4e−2nκh

1 − e−2κh


x20

2Tσ 2
ε e−2κh

+


1 + 3e−2κh

 
1 − e−2nκh


x20

2Tnσ 2
ε e−2κh

+
2(1 + e−κh)


1 − e−nκh

 
e−κh

− e−nκh

x0γ1

2Tnσεe−2κh
, (2.8)

and when x0 is random,

B(κ̂) =
1
2T
(3 + e2κh)−

2(1 − e−2nκh)

Tn(1 − e−2κh)
. (2.9)

Remark 1. The skewness parameter γ1 matters for the bias of κ̂ .
Its effect, however, disappears for the special case of x0 = 0, where
the bias expression simplifies to

B(κ̂) =
1 + 3e−2κh

+ 4e−2nκh

2Te−2κh
−


1 − e−2nκh

 
1 + 7e−2κh


2Tne−2κh


1 − e−2κh

 .

Remark 2. Eq. (2.9) suggests that the result in Yu (2012) is in fact
robust to nonnormality.

2 When µ is known but may not be 0, one just needs to define yt = xt − µ and
work with yt .
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2.2. µ is unknown

When µ is unknown and has to be estimated, we put x =

x0f1+αC1ι+C1ε, x−1 = x0f2+αC2ι+C2ε, α = µ (1 − exp(−κh)),
and ε = x − αι − exp(−κh)x−1, where ι is an n × 1 vector
of unit elements. Since the pairs (α, φ), (α, κ), and (µ, κ) have
one-to-one mapping into each other, and we focus on deriving
the finite-sample bias of κ̂ , the reparametrized model xt = α +

exp (−κh) xt−1 + εt with parameter vector θ = (α, κ) gives
exactly the same κ̂ as that estimated from the original model xt =

µ (1 − exp (−κh)) + exp (−κh) xt−1 + εt with parameter vector
(µ, κ). Thus, we define the moment condition, up to some scaling
constant, as

ψ(θ) =
1
n


ι′ε

−hφx′

−1ε


. (2.10)

By taking derivatives, we haveH1 andH2 as given in Eq. (2.11) (see
Box I):

The approximate bias of κ̂ , when x0 is fixed, is in Eq. (2.12), (see
Box II): and when x0 is random,

B(κ̂) =
5 + 2ehκ + e2hκ

2T
−

2e−hκ

1 − e−nhκ

 
1 − e2hκ

2
µ2

Tnσ 2
ε

+


1 − e−nhκ


[ehκ + 4e2hκ + e3hκ + 2e−(n−2)hκ

]
1 − e2hκ


Tn

. (2.13)

Remark 3. The leading term (of order O(T−1)) in (2.13) gives the
result derived in Tang and Chen (2009). Moreover, (2.13) suggests
that the approximate bias of κ̂ under the case of random x0 is robust
to nonnormality.

Remark 4. Similar as before, the skewness matters for the
approximate bias. In contrast, for the special case when x0 is fixed
at 0, its effect does not disappear (see Box III):

Remark 5. When x0 is fixed at µ, however, the effect of skewness
disappears on the approximate bias (see Box IV):

Remark 6. For the random case, if further µ = 0 (i.e., the true
model has no drift term butwe still estimate the discrete ARmodel
with an intercept), the result reduces to

B(κ̂) =
5 + 2ehκ + e2hκ

2T

+


1 − e−nhκ


[ehκ + 4e2hκ + e3hκ + 2e−(n−2)hκ

]
1 − e2hκ


Tn

.

3. Numerical results

Our bias formulae (2.8), (2.9), (2.12), and (2.13) involve
unknown population parameters, but we can make them feasible
by replacing the unknown parameters with their consistent
estimates. That is, wemay replace κ by κ̂, µ by µ̂ = α̂/(1−φ̂), σ 2

ε

and γ1 by their sample analogues from the LS residuals, and denote
the feasible bias by B̂(κ̂). An immediate application of our bias
results is to construct a bias corrected estimator of κ . Here we
follow the indirect inference method introduced in Phillips and Yu
(2009) to design the bias corrected estimator of κ as follows:

κ̂bc = argmin
κ

∥κ̂ − κ − B̂(κ)∥, (3.1)

where B̂(κ) is B̂(κ̂(κ)) with κ̂(κ) being the LS estimate of κ when
its true value is κ . In (3.1) κ + B̂(κ) is the approximate mean
Table 1
Bias and bias correction, known µ.

κ Bias B̂(κ̂) κ̂ std(κ̂) κ̂bc std(κ̂bc)

µ = 0 and x0 fixed

0.1 0.0402 0.029 0.1402 0.0897 0.1112 0.0839
0.3 0.0413 0.0373 0.3413 0.128 0.3040 0.1266
0.5 0.0420 0.0390 0.5420 0.1586 0.5030 0.1578
0.7 0.0426 0.0399 0.7426 0.1850 0.7026 0.1844
0.9 0.0431 0.0406 0.9431 0.2088 0.9025 0.2082

µ = 0 and x0 random

0.1 0.0372 0.0335 0.1372 0.0841 0.1037 0.0801
0.3 0.0402 0.0389 0.3402 0.1251 0.3013 0.1243
0.5 0.0414 0.0400 0.5414 0.1564 0.5014 0.1558
0.7 0.0421 0.0406 0.7421 0.1832 0.7015 0.1827
0.9 0.0428 0.0411 0.9428 0.2072 0.9016 0.2067

function of κ̂ when the true value is κ . Unlike what is done for the
indirect inference method that relies on simulations to obtain the
mean function, we construct κ̂bc without invoking simulations to
approximate the mean of κ̂ , as we utilize directly our analytical
bias.

We conduct Monte Carlo simulations to demonstrate the per-
formance of our bias formulae and the bias corrected estimator
in finite samples. In practice we observe only the discrete sample
{x0, . . . , xn}. So we simulate discrete time observations from the
continuous time model (2.1) with the driving process being the
skew normal process of Azzalini (1985) with the shape parame-
ter α = 5 (and correspondingly γ1 = 0.8510 and γ2 = 0.7053).
We set µ = 0.1 when it is unknown, x0 = µ when it is fixed,
h = 1/12, σ = 1. Tables 1 and 2 report our feasible bias B̂(κ̂)
and the bias corrected estimator κ̂bc , in comparisonwith the actual
bias (denoted by ‘‘Bias’’ in the tables) and the LS estimator κ̂ , for
the cases of known µ(=0) and unknown µ, respectively. The data
span is set at T = 50. The results are averaged over 10,000 repli-
cations and the standard deviations (across the simulations) of κ̂
and κ̂bc are also reported. We observe that our bias approximation
formulaeworkwell to capture the true bias of κ̂ . The bias corrected
estimator κ̂bc performs much better than the uncorrected κ̂ , with-
out the trade-off of bias reduction and increased variance. Similar
findings have been recorded in Phillips and Yu (2009) regarding
this feature of bias reduction based on the indirect inference ap-
proach. We note that when κ is small (0.1), the feasible bias does
not capture well the true bias. (This is most pronounced when µ
is unknown, but still κ̂bc is much less biased than κ̂ .) Recall that
φ = exp(−κh), so this corresponds to a discrete AR(1) process
with φ = exp(−0.1/12) = 0.9917. Upon carefully examining the
simulation results when µ is unknown, we find that in this near
unit-root case, while the variance of φ̂ is small, the variance of the
estimated intercept α̂ is very big in small samples, resulting in a
very wide range of µ̂, which in turn substantially distorts the per-
formance of our bias formulae.

4. Conclusions

Lévy processes have found increasing applications in economics
and finance. It has been documented, however, that the typical
quasi maximum likelihood estimation procedure tends to over
estimate the mean reversion parameter in continuous-time Lévy
processes. Based on the technique of Bao (2013), we have derived
several analytical formulae to approximate the finite-sample
bias of the estimated mean reversion parameter under different
cases: known or unknown long-run mean, fixed or random
initial condition. Our simulation results indicate in general good
performance of the approximate bias formulae in capturing the
true bias behaviors of the mean reversion estimator and good
performance of our feasible bias corrected estimator. When the
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1)
H1 =
1
n


−n hφι′x−1

hφι′x−1 h2φx′

−1ε− h2φ2x′

−1x−1


,

H2 =
1
n


0 0 0 −h2φι′x−1

0 −h2φι′x−1 −h2φι′x−1 −h3φx′

−1ε+ 3h3φ2x′

−1x−1


(2.1

Box I.
2)
B(κ̂) =
5 + 2ehκ + e2hκ + 4e−2(n−1)hκ

2T
+

2[e−2nhκ
− e−2(n−1)hκ

](x0 − µ)2

Tσ 2
ε

+


1 − e−nhκ


[2ehκ + 13e2hκ + 4e3hκ + e4hκ + e−(n−4)hκ

+ 2e−(n−3)hκ
+ 9e−(n−2)hκ

]

2

1 − e2hκ


Tn

+


1 − e−nhκ


[ehκ + 5e−(n−1)hκ

]

x20 + µ2


Tnσ 2

ε

+


1 − e−nhκ


[5 + e2hκ + 5e−(n−2)hκ

+ 9e−nhκ
](x0 − µ)2

2Tnσ 2
ε

−
2


1 − e−nhκ


[e−hκ

− ehκ + e3hκ + 5e−(n−1)hκ
]x0µ

Tnσ 2
ε

−
γ1


1 − e−nhκ


[e−(n−1)hκ

+ e−(n−2)hκ
](x0 − µ)

Tnσε
(2.1

Box II.
B(κ̂) =
5 + 2ehκ + e2hκ + 4e−2(n−1)hκ

2T
+

2[e−2nhκ
− e−2(n−1)hκ

]µ2

Tσ 2
ε

+


1 − e−nhκ


[2ehκ + 13e2hκ + 4e3hκ + e4hκ + e−(n−4)hκ

+ 2e−(n−3)hκ
+ 9e−(n−2)hκ

]

2

1 − e2hκ


Tn

+


1 − e−nhκ


[5 + 2ehκ + e2hκ + 10e−(n−1)hκ

+ 5e−(n−2)hκ
+ 9e−nhκ

]µ2

2Tnσ 2
ε

+
γ1


1 − e−nhκ


[e−(n−1)hκ

+ e−(n−2)hκ
]µ

Tnσε

Box III.
B(κ̂) =
5 + 2ehκ + e2hκ + 4e−2(n−1)hκ

2T
−

2

1 − e−nhκ


(e−hκ

− 2ehκ + e3hκ)µ2

Tnσ 2
ε

+


1 − e−nhκ


[2ehκ + 13e2hκ + 4e3hκ + e4hκ + e−(n−4)hκ

+ 2e−(n−3)hκ
+ 9e−(n−2)hκ

]

2

1 − e2hκ


Tn

Box IV.
Table 2
Bias and bias correction, unknown µ.

κ Bias B̂(κ̂) κ̂ std(κ̂) κ̂bc std(κ̂bc)

µ = 0.1 and x0 fixed

0.1 0.1000 0.0586 0.2000 0.1122 0.1414 0.1005
0.3 0.0908 0.0732 0.3908 0.1438 0.3176 0.1402
0.5 0.0889 0.0772 0.5889 0.1709 0.5117 0.1689
0.7 0.0885 0.0792 0.7885 0.195 0.7092 0.1935
0.9 0.0886 0.0807 0.9886 0.2172 0.9079 0.2158

µ = 0.1 and x0 random

0.1 0.1255 0.0687 0.2255 0.1136 0.1568 0.1067
0.3 0.1114 0.0768 0.4114 0.1414 0.3346 0.1393
0.5 0.1091 0.0792 0.6091 0.1690 0.5299 0.1677
0.7 0.1087 0.0807 0.8087 0.1935 0.7280 0.1924
0.9 0.1088 0.0818 1.0088 0.2159 0.9270 0.2148

mean reversion parameter is near its lower bound 0, which
corresponds to the near unit-root case, however, our simulation
results reveal that the feasible bias does not approximate well the
true bias.
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