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Abstract

A test statistic is proposed to assess the model specification after the model is
estimated by Bayesian MCMC methods. The new test is motivated from the power
enhancement technique of Fan, Liao and Yao (2015). It combines a component (J1)
that tests a null point hypothesis in an expanded model and a power enhancement
component (J0) obtained from the null model. It is shown that J0 converges to
zero when the null model is correctly specified and diverges when the null model is
misspecified. Also shown is that J1 is asymptotically χ2-distributed, suggesting that
the proposed test is asymptotically pivotal, when the null model is correctly specified.
The proposed test has several properties. First, its size distortion is small and hence
bootstrap methods can be avoided. Second, it is easy to compute from the MCMC
output and hence is applicable to a wide range of models, including latent variable
models for which frequentist methods are diffi cult to use. Third, when the test statistic
rejects the specification of the null model and J1 takes a large value, the test suggests
the source of misspecification of the null model. The finite sample performance is
investigated using simulated data. The method is illustrated in a linear regression
model, a linear state-space model, and a stochastic volatility model using real data.
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1 Introduction

Economic theory has long been used to justify a particular choice of econometric mod-

els. These so-called structural econometric models are often based on a set of economic

assumptions used to develop the underlying economic theory. When some of the assump-

tions are invalid, the corresponding structural econometric models may be misspecified. In

many cases, economic theory may not be available and the choice of econometric models

may be arbitrary. Consequently, models in a reduced form are used and reduced form

models are vulnerable to specification errors.

In general misspecification of econometric models can potentially lead to inconsistent

estimation, which in turn may have serious implications for statistical inferences such as

hypothesis testing and out-of-sample forecasting and for economic decision makings such

as policy recommendation and investment decision. Consequently and not surprisingly, a

considerable amount of strenuous effort has been devoted in econometrics to detect model

misspecification.

One strand of the literature on specification tests unifies under the m-test of Newey

(1985), Tauchen (1985) and White (1987). These tests include as a special case of the

Lagrangian multiplier (LM) test, the tests of Sargan (1958) and Hansen (1982), the tests

of Cox (1961, 1962), the Hausman (1978) test, the conditional moment test of Newey

(1985), the information matrix test of White (1982), the IOS test of Presnell and Boos

(2004), the information ratio (IR) test of Zhou et al (2012). These tests are in the fre-

quentist paradigm, typically requiring parameters in the null hypothesis be estimated by

the maximum likelihood (ML) method or by generalized method of moments (GMM).

Another strand of the literature is based on tests that rely on the distances between

nonparametric and parametric counterparts. The idea originated from the Kolmogorov-

Smirnov test or the closely related family such as the Cramer-von Mises and Anderson-

Darling tests. Examples in this case include Eubank and Spiegelman (1990), Wooldrige

(1992), Fan and Li (1996), Gozalo (1993), Zheng (2000), Aït-Sahalia (1996), and Hong

and Li (2005). All the tests in this category are also in the frequentist paradigm, but

requiring either a nonparametric estimate of a function or a density.

For many widely used models in economics, such as latent variable models and struc-

tural dynamic choice models (Imai, Jain and Ching, 2009; Norets, 2009), it is not easy

to obtain the ML estimate or construct a nonparametric estimate. Not surprisingly, it

is diffi cult to apply any of the specification tests mentioned above. On the other hand,

there has been an increasing interest in using Bayesian methods to estimate econometric

models. With the advancement of the Markov chain Monte Carlo (MCMC) algorithms

and the rapid growth in computer capability, fitting models of increasing complexity has
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become easier and easier in the Bayesian paradigm.

In addition, it is well-known that specification tests that are based on the information

matrix, including the information matrix test (IMT) of White (1982), the IOS test of

Presnell and Boos (2004), the IR test of Zhou et al (2012), are subject to severe size

distortions. To reduce the size distortion, bootstrap methods have been used; see for

example, Horowitz (1994), Presnell and Boos (2004), Zhou et al (2012). For models where

MCMC is a popular estimation method, it is computationally infeasible to do bootstrap.

Given the increasing popularity of MCMC in practical applications, it is therefore

natural to introduce a specification test to assess the adequacy of a candidate model after

it is estimated by MCMC. We seek to answer two questions in the present paper. First,

how we can assess the validity of the model specification? Second, is it possible to tell the

source of model misspecification if the null model is misspecified? Motivated by the power

enhancement technique of Fan, et al (2015) and based on a model expansion strategy, we

propose a new specification test based on the MCMC output. It combines a component

(J1) that tests a null point hypothesis in an expanded model and a power enhancement

component (J0) obtained from the null model. It is shown that J0 converges to zero when

the null model is correctly specified and diverges when the null model is misspecified.

Also shown is that J1 is asymptotically χ2-distributed, suggesting that the proposed test

is asymptotically pivotal, when the null model is correctly specified.

The proposed test has several nice properties. First, its size distortion is small and

hence bootstrap methods can be avoided. Second, it is easy to compute from the MCMC

output and hence is applicable to a wide range of models, including latent variable models

for which ML and bootstrap methods are diffi cult to use. Third, when the test statistic

rejects the specification of the null model and J1 takes a large value, our test suggests the

source of misspecification of the null model. However, the proposed test as a lower local

power. This is the price we pay for avoiding using bootstrap methods.

The paper is organized as follows. Section 2 briefly reviews the literature on the

specification tests. Section 3 proposes the test statistic based on the MCMC output and

establishes the properties of the proposed test. Section 4 illustrates the new method

using two simulation studies and three empirical studies. Section 5 concludes the paper.

Appendix collects the proof of the theoretical results in the paper and discusses how to

compute the test statistic in the context of state-space models.

2 Specification Tests: A Literature Review

To begin, let y = (y1, . . . , yn) denote observed variables from a probability measure P0 on

the probability space (Ω, F, P0). Let model P be a collection of candidate models indexed
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by parameters θ whose dimension is q. Let Pθ denote P indexed by θ. Following White

(1987), if there exists θ, such that P0 ∈ Pθ, we say the model P is correctly specified.

However, if for all θ, P0 /∈ Pθ, we say the model P is misspecified. We would like to test

the null hypothesis that the model in concern is correctly specified.

One of the earliest specification tests is based on the information matrix equivalence

due to White (1982). Let p(y|θ) denote the likelihood function of Model Pθ and

s(y,θ) := ∂ log p(y|θ)/∂θ, h(y,θ) := ∂2 log p(y|θ)/∂θ∂θ′,

H(θ) :=

∫
h(y,θ)p(y|θ)dy, J(θ) :=

∫
s(y,θ)s′(y,θ)p(y|θ)dy.

Under the null hypothesis that the model is correctly specified, it is well-known that

H(θ) + J(θ) = 0. Define

d(y,θ) := vech
[
h(y,θ) + s(y,θ)s′(y,θ)

]
,

where vech is the column-wise vectorization with the upper portion excluded. Hence,

d(y,θ) = (dk(y,θ)) is a r (= q(q + 1)/2) dimensional vector. Let y = (y1, . . . , yn) denote

the i.i.d. observations and

Ĥn

(
θ̂ML

)
:=

1

n

n∑
t=1

h
(
yt, θ̂ML

)
, Ĵn

(
θ̂ML

)
:=

1

n

n∑
t=1

s
(
yt, θ̂ML

)
s′
(
yt, θ̂ML

)
,

where θ̂ML is the maximum likelihood estimator (MLE) of θ. Let

Dn

(
θ̂ML

)
=

1

n

n∑
t=1

d
(
yt, θ̂ML

)
, Ḋn

(
θ̂ML

)
=

1

n

n∑
t=1

∂d
(
yt, θ̂ML

)
∂θ

,

where Dn

(
θ̂ML

)
is a r-dimensional vector and Ḋn

(
θ̂ML

)
is a r×q matrix. White (1982)

proposed the following information matrix test

IMT = nDn

(
θ̂ML

)
V −1n

(
θ̂ML

)
Dn

(
θ̂ML

)
, (1)

where

Vn

(
θ̂ML

)
=

1

n

n∑
t=1

νt

(
θ̂ML

)
νt

(
θ̂ML

)′
,

νt

(
θ̂ML

)
= d

(
yt, θ̂ML

)
− Ḋn

(
θ̂ML

)
Ĥ−1n

(
θ̂ML

)
s
(
yt, θ̂ML

)
.

Under a set of regularity conditions, White (1982) showed that IMT d→ χ2(r) as n→∞
under the null hypothesis. White (1987) extended the method to cover dynamic models.

Lancaster (1984) pointed out that the covariance matrix of IMT can be estimated without

computing the third derivatives of the density function analytically.
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Presnell and Boos (2004) proposed an alternative test — the “in-and-out” likelihood

ratio (IOS) test for models with i.i.d. observations. Let θ̂
(t)
ML be the MLE of θ when the

t-th observation, yt, is deleted from the whole sample. From the predictive perspective,

the single likelihood p
(
yt, θ̂

(t)
ML

)
can be regarded as the predictive likelihood by the other

observations. Presnell and Boos (2004) defined the “in-and-out”likelihood ratio test as:

IOS = log

∏n
t=1 p

(
yt, θ̂ML

)
∏n
t=1 p

(
yt, θ̂

(t)
ML

) =
n∑
t=1

[
log p

(
yt|θ̂ML

)
− log p

(
yt, θ̂

(t)
ML

)]
,

and showed that the asymptotic form of IOS is

IOSA = tr
[
−Ĥ−1n

(
θ̂ML

)
Ĵn

(
θ̂ML

)]
, (2)

and IOS− IOSA = op
(
n−1/2

)
. Like IMT, IOSA also compares Ĥn

(
θ̂ML

)
with Ĵn

(
θ̂ML

)
,

but in a ratio form instead of an additive form. Under the null hypothesis, IOSA
p→ q and

n1/2 (IOSA − q) converges to a normal distribution with zero mean and finite variance.
Clearly, IOS and IOSA are asymptotically equivalent.

Zhou, et al (2012) considered the model misspecification problem that the first moment

of a candidate model is correctly specified, but the second moment is misspecified. The

proposed test statistic takes the form of IOSA/q which is denoted as the information ratio

(IR) test. Zhou, et al (2012) established the asymptotic distribution of IR. Under the null

hypothesis, it was shown that n1/2 (IR− 1) converges to a normal distribution with zero

mean and finite variance.

It is well documented that the asymptotic distributions poorly approximate their finite

sample counterparts for IMT, IOS, IOSA, and IR. As a result, they all suffer serious bias

distortions if the asymptotic distributions are used to obtain critical values. See Orme

(1990), Chesher and Spady (1991), Davidson and Mackinnon (1992), Horowitz (1994) for

evidence of size distortions for IMT. The poor finite sample performance of these tests

is not surprising as the asymptotic theory relies on the convergence of the sample high

order moments which is slow. To reduce the size distortion of IMT, Horowitz (1994)

advocated the use of bootstrap methods to obtain better critical values for implementing

IMT. Presnell and Boos (2004) suggested using a bootstrap method for implementing IOS

and IOSA. Zhou et al (2012) suggested using a different bootstrap method for the IR test.

It is not necessary to base a specification test on ML. Newey (1985) developed a class

of specification tests based on a finite set of moment conditions and the GMM estimator.

Under some regularity conditions, the test statistic of Newey follows asymptotically a χ2

distribution. It was shown that his test includes as a special case of the tests of Hausman

(1978) and Hansen (1982).
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Specification of a stationary dynamic model implicitly implies a distributional assump-

tion for the marginal density and that for the conditional density. Not surprisingly, many

specification tests check the validity of these distributional assumptions based on the

Kolmogorov-Smirnov test or the closely related family such as the Cramer-von Mises and

Anderson-Darling tests. Examples include Zheng (2000), Andrews (1997), Corradi and

Swanson (2004), Aït-Sahalia (1996), and Hong and Li (2005). For example, Aït-Sahalia

(1996) compares the parametric marginal density implied by the assumed continuous time

model to the marginal density estimated nonparametrically. The nonparametric test of

Hong and Li (2005) is based on the transition density.

The literature is much less extensive on Bayesian specification tests although MCMC

methods have been used more and more frequently for model estimation in practice. A

notable exception is the Bayesian χ2 test of Johnson (2004). Geweke and McCauland

(2001) outlines some essentials of Bayesian specification analysis.

3 A Specification Test based on the MCMC Output

After a candidate model is estimated by a Bayesian MCMC method, a natural way to

check the validity of the model is to construct a MCMC-based version of a ML-based

specification test. This is a reasonable way to proceed as both ML and MCMC are full-

likelihood-based approaches.

3.1 A naïve MCMC-based information matrix test

In this subsection, we propose a naïve MCMC-based information matrix test. First we

need to introduce some notations. Define lt (θ) = log p
(
yt|θ

)
− log p

(
yt−1|θ

)
to be the

conditional likelihood for t observation and ∇jlt (θ) as the jth derivative of lt (θ), we

suppress the subscript when j = 1. Let yt := (y1, . . . , yt), and

s
(
yt,θ

)
:=

∂ log p
(
yt|θ

)
∂θ

=

t∑
i=1

∇li (θ) , h
(
yt,θ

)
:=

∂2 log p
(
yt|θ

)
∂θ∂θ′

=

t∑
i=1

∇2li (θ) ,

st (θ) := ∇lt (θ) = s
(
yt,θ

)
− s

(
yt−1,θ

)
, ht (θ) := ∇2lt (θ) = h

(
yt,θ

)
− h

(
yt−1,θ

)
,

Ĵn (θ) :=
1

n

n∑
t=1

st (θ) s′t (θ) , Ĥn (θ) :=
1

n

n∑
t=1

ht (θ) ,

Jn (θ) :=

∫
Ĵn (θ) g(y)dy,Hn (θ) :=

∫
Ĥn (θ) g(y)dy

Ln (θ) := log p(θ|y), L(j)n (θ) := ∂j log p (θ|y) /∂θj .

In this paper, we assume that the following mild regularity conditions are satisfied.
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Assumption 1: Let θ̂ be the posterior mode such that L(1)n (θ̂) = 0. There exists an

integer N1 and some δ > 0 such that for n > N1 and θ ∈ H(θ̂, δ) = {θ : ||θ − θ̂|| ≤ δ},
L
(2)
n (θ̂) is negative definite with probability approaching one.

Assumption 2: The largest eigenvalue of
[
−L(2)n

(
θ̂
)]−1

goes to zero in probability

as n→∞.
Assumption 3: For any ε > 0, there exists a positive number δ, such that

lim
n→∞

P

 sup

θ∈B
(
θ̂, δ

)
∥∥∥∥[−L(2)n (

θ̂
)]−1 [

L(2)n (θ)− L(2)n
(
θ̂
)]∥∥∥∥ < ε

 = 1. (3)

where B
(
θ̂, δ

)
is the neighborhood of θ̂.

Assumption 4: For any δ > 0, as n→∞,∫
Θ−B

(
θ̂, δ

) p (θ|y) dθ = Op
(
n−3

)
,

where Θ is the support space of θ.

Assumption 5: Let g(y) be the true data generating process (DGP), and denote θ0
∈ Θ ⊂ Rq the pseudo-true value that minimizes the Kullback-Leibler (KL) loss between

the DGP and the parametric model,

θ0 = arg min
θ

∫
log

g(y)

p (y|θ)
g(y)dy.

where θ0 is a unique minimizer.

Assumption 6: The prior p(θ) is Op(1) for all θ ∈ Θ.

Assumption 7: Assume

H (θ0) := lim
n−→∞

Hn (θ0) and J (θ0) := lim
n−→∞

Jn (θ0)

exist and are nonsingular, and limn−→∞ n−1
∫ ∑n

t=153lt (θ0) g(y)dy exists.

Assumption 8: θ0 ∈ int (Θ) where Θ is a compact, separable metric space.

Assumption 9: {yt, t = 1, 2, 3, . . .} is an α mixing sequence that satisfies, for F t−∞ =

σ (yt, yt−1, . . .) and F∞t+m = σ (yt+m, yt+m+1, . . .), the mixing coeffi cient α (m) = O
(
m
−2r
r−2−ε

)
for some ε > 0 and r > 2.

Assumption 10: There exists a function Mt(yt) such that for 0 6 j 6 8, all θ ∈ G
where G is an open, convex set containing Θ, 5jlt (θ) exists, supθ∈G

∥∥5jlt (θ)
∥∥ 6Mt(yt),

and suptE ‖Mt (yt)‖r+δ ≤M <∞ for some δ > 0.

Assumption 11:
{
5jlt (θ)

}
is L2-near epoch dependent with respect to {yt} of size

−1 for 0 6 j 6 1 and −12 for j = 2, 3 uniformly on Θ.

7



Assumption 12: For all θ,θ′ ∈ Θ,
∥∥5jlt (θ)−5jlt

(
θ′
)∥∥ ≤ ct

(
yt
) ∥∥θ − θ′∥∥ for 0 6

j 6 3 in probability, where ct
(
yt
)
is a positive random variable, suptE

∥∥ct (yt)∥∥ <∞ and

limn→∞
1
n

∑n
t=1 (ct − Ect)

p→ 0.

Remark 3.1 Assumption 1-4 have been used to develop the Bayesian large sample theory;

see, for example, Chen (1985), Kim (1994, 1998), Geweke (2005). Similar assumptions

have been used to develop the asymptotic properties of the Laplace type estimator in Cher-

nozhukov and Hong (2003). The order condition in Assumption 4 is used to develop higher

order expansions; see, for example, Miyata (2004, 2010). Based on these assumptions, Li,

Zeng and Yu (2015) showed that,

θ̄ = E [θ|y] =

∫
p (θ|y)θdθ = θ̂ + op(n

−1/2),

V
(
θ̂
)

=

∫ (
θ − θ̂)(θ − θ̂

)′
p (θ|y) dθ =− L−(2)n

(
θ̂
)

+ op(n
−1).

Assumption 5 is a standard regularity condition on the Hessian; see Müller (2013). As-

sumption 6 ensures that when the sample size increases, the likelihood information dom-

inates the prior information so that the prior information can be ignored asymptotically.

Assumption 7-10 are similar to those made in Rilstone et al (1996), Newey and Smith

(2004), and Bester and Hansen (2006) for developing higher order expansions.

Based on Remark 3.1 and the expression for IOSA given in Equation (2), if we replace

−Ĥ−1n
(
θ̂ML

)
with V

(
θ̂
)
, a natural MCMC-based informative matrix test statistic can

be defined as:

BIMT = tr
[
nV
(
θ̄
)
Ĵn
(
θ̄
)]

= n

∫ (
θ − θ̄

)′
Ĵn
(
θ̄
) (
θ − θ̄

)
p (θ|y) dθ. (4)

Proposition 3.1 Under Assumptions 1-12, we have

BIMT = IOSA + op

(
n−1/2

)
= q × IR+ op

(
n−1/2

)
,

where q is the dimension of parameter θ. If the model is correctly specified, we have

BIMT = q +Op

(
n−1/2

)
.

Remark 3.2 Following Proposition 3.1, we can see that n1/2 (BIMT/q − 1) has the same

asymptotic distribution as n1/2 (IOSA/q − 1) and n1/2 (IR− 1). Hence, BIMT may be

regarded as the MCMC-based version of IOSA and IR. Different from IMT, IOS, IOSA,

BIMT is based on the MCMC output and hence is easier to obtain for some complex

models, such as latent variable models.
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Remark 3.3 However, since n1/2 (BIMT/q − 1) has the same asymptotic distribution as

n1/2 (IOSA/q − 1) and n1/2 (IR− 1), BIMT inherits the size distortion problem of IOSA
and IR and bootstrap methods must be used. This is why we do not use BIMT for specifi-

cation testing directly. Instead it is used to construct the power enhancement function in

our proposed test statistic.

3.2 Power enhancement technique

Before we introduce our test statistic, it is important to review the power enhancement

technique of Fan, et al (2015). Fan, et al considered the hypothesis testing problem of

H0 : θ = 0 where θ is a high-dimensional vector. The alternative hypothesis H1 is sparse

so that the null hypothesis is violated by only a few components. They showed that

traditional tests, such as the Wald test, have a low power. To enhance the power, they

introduced a power enhancement component which is zero under the null hypothesis with

high probability and diverges quickly under sparse alternatives.

Their new test statistic (call it J) has the form of

J = J0 + J1,

where J1 is an asymptotically pivotal test statistic, such as Wald test, and J0 is the power

enhancement component. J0 needs to satisfy three properties: (a) J0 ≥ 0 almost surely;

(b) under H0, Pr(J0 = 0|H0) → 1; (c) J0 diverges in probability under some specific

regions of H1. Clearly, property (a) ensures that J is at least as powerful as J1; property

(b) guarantees that the asymptotic distribution of J under H0 is determined by J1 and

hence the size of J is asymptotically equivalent to that of J1; property (c) guarantees that

the power of J improves that of J1.

Motivated by this power enhancement technique, we propose a specification test based

on the MCMC output. This new test combines a component (J1) that tests a null point

hypothesis in an expanded model and a power enhancement component (J0) obtained

from the original model to which we wish to perform the specification test.

3.3 A specification test based on the MCMC output

As in Fan et al (2015), our proposed test has two components, J0 and J1. To introduce

J1, we expand p(y|θ), the model in concern, to a larger model denoted by p (y|θL) where

θL =
(
θ
′
,θ
′
E

)′
with θE being a qE-dimensional vector. So the expanded model p (y|θL)

nests the original model p (y|θ). We assume that if the specification p (y|θ) is correct,

then the true value of θE is zero.
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Let

s (y,θL) =
∂ log p (y|θL)

∂θL
,

C (y,θL) = s (y,θL) s (y,θL)′ ,

V
(
θ̄L
)

= E
[(
θL − θ̄L

) (
θL − θ̄L

)′ |y] =

∫ (
θL − θ̄L

) (
θL − θ̄L

)′
p(θL|y)dθL,

where θ̄L is the posterior mean of θL in the expanded model. The J1 component is

designed to test the point null hypothesis θE = 0 after the expanded model is estimated

by a Bayesian MCMC method. In particular, we follow Li, et al (2015) by considering a

test statistic given by

J1 = tr
{
CE
(
y,
(
θ̄,θE = 0

))
VE
(
θ̄L
)}
, (5)

where CE
(
y,
(
θ̄,θE = 0

))
is the submatrix of C (y,θL) corresponding to θE evaluated at(

θ̄,θE = 0
)
and VE

(
θ̄L
)
is the submatrix of VE (θL) corresponding to θE evaluated at

θ̄L. As shown in Li, et al (2015), J1 is a Bayesian version of Lagrange multiplier (LM;

Breusch and Pagan, 1980) test and J1
d→ χ2 (qE) when θE = 0. Typically, J1 has good

size property as it is designed to test the point null hypothesis.

If J1 rejects the hypothesis θE = 0, it suggests that the original model p (y|θ) is

misspecified and indicates a source of model misspecification in p (y|θ). Unfortunately, if

J1 fails to reject the hypothesis θE = 0, no conclusion can be drawn about the validity

of the original model p (y|θ). This is because, in practice, there are many different paths

to expand the model. While J1 may have good powers in some paths, it may have low

powers in other paths. This problem is similar to that in the Wald statistic in the context

of testing a high-dimensional vector against sparse alternatives.

To deal with this problem of low power, we introduce the following power enhancement

component,

J0 =
√
n(BIMT/q − 1)2, (6)

and propose a MCMC-based test statistic for model misspecification

BMT = J1 + J0 = tr
{
CE
(
y,
(
θ̄,θE = 0

))
VE
(
θ̄L
)}

+
√
n(BIMT/q − 1)2. (7)

In the following theorem, we establish the large sample properties of J0 and J1.

Theorem 3.1 Under Assumptions 1-12 and if the model is correctly specified, we have,

J1
d→ χ2 (qE) , J0 = op(1), BMT d→ χ2 (qE) .

If the model is misspecified with q∗ 6= q, we have

J0 =
√
n (q∗/q − 1)2 + op(

√
n), BMT ∼ Op(

√
n),
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where q∗ = tr
[
−H (θ∗)−1 J (θ∗)

]
with θ∗ being the pseudo true value of θ (Huber, 1967;

White, 1982).

Remark 3.4 From (6) and Theorem 3.1, it is easy to see that J0 is nonnegative almost

surely and J0 = op(1) under H0. In addition, Theorem 3.1 suggests that whenever q∗ 6= q,

as n→∞, J0 →∞. Hence, J0 satisfies the three power enhancement properties listed in
Fan, et al. (2015). Since J1

d→ χ2 (qE) and J0 = op(1), BMT is asymptotically pivotal

(χ2) under H0 and the size distortion in BMT due to adding J0 is asymptotically negligible.

Under the alternative hypothesis in the region where q∗ 6= q, J0 diverges and dominates

J1, serving nicely as the power enhancement component.

Remark 3.5 It was noted earlier that IOSA, IR and BIMT all have a complex asymptotic

variance under H0. In BMT, we do not use J0 as the test statistic but as the power

enhancement component. The asymptotic distribution of BMT under H0 is determined

by that of J1. Since the establishment of asymptotic distribution of J1 under H0 requires

relatively mild regularity conditions, BMT is applicable to a wide range of models.

Remark 3.6 BMT has several nice properties. First, compared with IM, IOS, IOSA and

IR, BMT is based on the MCMC output. When the likelihood function is diffi cult to

optimize but the MCMC draws from the posterior distribution are available, BMT is easier

to compute than IM, IOS, IOSA and IR. Second, when J1 does not have the size distortion

problem, it is most likely that BMT will not suffer from size distortion. As a result, no

bootstrap method is needed and intensive computational effort is avoided.

Remark 3.7 It is well documented in the specification test literature that most specifica-

tion tests do not provide guidance to the possible source of model misspecification when

the null hypothesis is rejected. Since our test relies on selecting particular paths for model

expansion, if both BMT and J1 are larger than the critical value, our approach not only

suggests that the original model p (y|θ) is misspecified but also indicates a source of model

misspecification in p (y|θ).

Remark 3.8 While J1 depends on the path of model expansion, J0 is always independent

of paths. According to Theorem 3.1, as long as q∗ 6= q, J0 = Op (
√
n). Hence, no matter

which path the model is expanded in, even in the path where J1 takes a very small value,

BMT can still detect the model misspecification due to the power enhancement component.

Remark 3.9 Relative to IOSA, IR and BIMT, the proposed test has a lower local power.

This is the price we pay for avoiding using bootstrap methods. From Proposition 3.1 and
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Theorem 3.1, it is easy to show that IOSA, IR and BIMT can detect the local misspeci-

fication that shrinks to the null at the rate of n−1/2 (i.e. q∗ − q = Op(n
−1/2)). Since J0

is Op(1) when q∗ − q = Op(n
−1/4), BMT can detect the local misspecification that shrinks

to the null at the rate of n−1/4. This comparison suggests that one may define an alter-

native power enhancement function such as J0 = nα(BIMT/q − 1)2 for α ∈ (1/2, 1) to

improve the local power. While the new J0 can raise the local power, it introduces more

size distortion to BMT. The analysis of such a trade-off is beyond the scope of the present

paper.

Remark 3.10 BMT will depend on the choice of prior. In general, a highly informative

prior may have a strong influence on BMT. When BMT is used to test the model misspec-

ification, we suggest the use of noninformative priors to avoid the dependence of BMT on

priors in finite sample.

Remark 3.11 An important class models for which MCMC has been heavily used is state-

space models. In Appendix 3, we discuss how to compute BMT in state-space models when

the MCMC output is available.

4 Simulation and Empirical Studies

In this section, we first design two simulation studies to check the finite sample performance

of the proposed test. In the first simulation study, we test for heteroskedasticity in a linear

regression model. This study aims to compare BMT with other popular tests in terms of

size and power. In the second simulation study, we test the specification of a linear state-

space model where existing misspecification tests are diffi cult to use but BMT is easier to

obtain. Then, we consider empirical studies to examine the specification of three models

and to highlight the usefulness of our test. The first model is a linear regression model.

The second model is a linear state-space model where the existing tests are diffi cult to use.

This third model is a stochastic volatility model where the existing tests are impossible

to use.

4.1 Simulation Studies

4.1.1 Test for heteroskedasticity in a linear regression model

To do a Monte Carlo comparison of the IR test with other popular misspecification tests,

Zhou et al (2012) considered the heteroskedasticity testing problem in a linear regression

model. In our first simulation study, we adopt the simulation design of Zhou et al (2012)

and compare the size and the power of BMT with those of the alternative tests. The linear

12



regression model is specified as,

yi = 1 + 2xi1 + 2xi2 + εi, εi = σiξi, ξi
i.i.d.∼ N(0, 1),

For this model, the covariates xi1 and xi2 are independently generated from the U [−3, 3]

distribution. We would like to test the following null hypothesis of homoskedasticity, i.e.,

H0 : V ar(εi) = σ2i = σ2, i = 1, 2, · · · , n.

The DGP under the null hypothesis and the alterative hypothesis is, respectively,

H0 : σ2i = 1; H1 : σ2i = exp(xi1 + xi2).

For the expanded model, we use

yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + εi, εi = σξi, ξi ∼ N(0, 1).

Following Zhou et al (2012), we run 2,000 replications, each of which has three different

sample sizes, 50, 100, 200.

Table 1: The empirical size for IOSA

IOSA
n Asymptotic distribution Bootstrap distribution
50 0.216 0.049
100 0.147 0.050
200 0.136 0.056

Table 2: The empirical size for alternative tests

n IR IM IOS BMT
50 0.044 0.050 0.060 0.051
100 0.045 0.059 0.056 0.055
200 0.046 0.065 0.048 0.050

Table 3: Empirical power under the alternative hypothesis

n IR IM IOS BMT
50 0.85 0.11 0.9837 0.797
100 0.95 0.46 1 0.976
200 1.00 0.93 1 1.000

We first design an experiment to check the size distortion problem in IOSA. Table 1

reports the size of IOSA based on the asymptotic distribution and on the bootstrap distri-

bution. The method used to obtain the asymptotic variance was proposed by Lancaster
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(1984). It can be seen clearly that the size distortion is very large when the asymptotic

distribution is used and the bootstrap method can solve the size distortion problem. In

this example, MLE is trivial to compute and hence bootstrap methods are feasible.

To implement the proposed test, we need to use the Bayesian MCMC method to

estimate the model under the null hypothesis and the expanded model. The conjugate

vague priors for the hyper-parameters are set as

µβ = 0, Vβ = 100× I, a = 0.01, b = 0.01,

where β is the vector of intercept and slope parameters and I is the identity matrix with

dimension 3 for the null model, and with dimension 4 for the expanded model. In this

example, since the posterior distribution is available analytically, we simply make 2,000

draws from the posterior directly.

Table 2 reports the empirical size of IR, IM, IOS and BMT under the null hypothesis

and at the 5% significance level. The results of the first three tests are extracted from Zhou

et al (2012) where the critical values are obtained from bootstrap methods. The BMT

test entertains similar performance to the other test and shows the small size distortion

in all cases.

Table 3 reports the empirical power of IR, IM, IOS and BMT at the 5% significance

level. The results of the first two tests are extracted from Zhou et al (2012). From this

table, it can be seen that the power of IOS is always the highest, followed closely by BMT

and IR, while the power of IM can be very low (when n =50). The power of BMT is

compatible with that of IR.

From this experiment we can conclude that the finite sample performance of BMT is

satisfactory with small size distortion and good power. We should emphasize that the

critical value of BMT is obtained from χ2(1) and no bootstrap method is used.

4.1.2 A linear state-space model

The model under the null hypothesis is the following linear state-space model

Rt = βtR0t + εt, εt
i.i.d.∼ N

(
0, σ2ε

)
, (8)

βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt, ηt

i.i.d.∼ N
(
0, σ2η

)
.

This random coeffi cient model has found many applications in economics and finance.

While MLE of this model can be obtained by using the Kalman filter, the bootstrap

method will be computationally costly for obtaining critical values for IM, IOSA and IR.

Consequently, we only implement BMT in this example.

The expanded model is

Rt = α+ βtR0t + εt, εt
i.i.d.∼ N

(
0, σ2ε

)
(9)
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βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt, ηt

i.i.d.∼ N
(
0, σ2η

)
,

where an intercept is added to the observation equation. If Model (8) is correctly specified,

α = 0 in the expanded model.

For Bayesian estimation, we use the following vague priors for the hyper-parameters,

α ∼ N(0, 103), β̄ ∼ N(0, 103), φ ∼ Beta(1, 1), σ−2ε ∼ Γ(10−3, 10−3), σ−2η ∼ Γ(10−3, 10−3).

Based on 20,000 MCMC samples after 2,000 burning-in observations from the posterior

distribution, we compute BMT. We run 1,000 replications, each of which has three different

sample sizes, n =200, 400, 800.

To compute the empirical size, we set the parameter values at σ2ε = 0.000307, β̄ = 0.96,

φ = 0.5, σ2η = 0.208 and R0t are generated from a i.i.d. normal distribution with mean

0 and variance 0.001. To compute the empirical power, we consider two different DGPs.

The first DGP (denoted by M1) is given by

Rt = βtR0t +
σε√

3
εt, εt

i.i.d.∼ t3, (10)

βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt, ηt

i.i.d.∼ N
(
0, σ2η

)
,

where t3 is a t distribution with 3 degrees of freedom, σ2ε = 0.000307, β̄ = 0.96, φ = 0.5,

σ2η = 0.208 and R0t are generated from an i.i.d. normal distribution with mean 0 and

variance 0.001. The second DGP for computing the power of BMT (denoted by M2) is

given by

Rt = α+ βtR0t +
σε√

3
εt, εt

i.i.d.∼ t3, (11)

βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt, ηt

i.i.d.∼ N
(
0, σ2η

)
,

where α = 0.002, σ2ε = 0.000307, β̄ = 0.96, φ = 0.5, σ2η = 0.208 and R0t are generated

from an i.i.d. normal distribution with mean 0 and variance 0.001.

Table 4: Empirical size and empirical power

n Empirical size Empirical power (M1) Empirical power (M2)
J1 BMT J1 BMT

200 0.074 0.032 0.518 0.300 0.723
400 0.063 0.041 0.804 0.544 0.942
800 0.054 0.050 0.973 0.801 0.998

Table 4 reports the empirical size (at the 5% significance level) and the empirical power

of BMT. To check whether or not J1 is useful to provide the guidance about the source of
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misspecification, we also report the proportion of the 2,000 replications where J1 rejects

α = 0 in the expanded model (9).

Several interesting findings come from Table 4. First, the size distortion is small and

becomes better and better as the sample size increases, suggesting there is no need to

use bootstrap methods. Second, the power is good and becomes higher and higher as

the sample size increases. Third, the good power of BMT may not come from J1 at all.

In fact, J1 loses power under M1. This finding is not surprising because M1 implies

that E(Rt|βt, R0t) = βtR0t, suggesting the mean structure specified in the null model is

correct and hence α = 0. That is why J1 only rejects α = 0 at about 5% rate in the

experiment. The power of BMT comes from the power enhancement component. In this

case, unfortunately, J1 does not provide the source of misspecification. Fourth, when the

DGP is M2, E(Rt|βt, R0t) = 0.002 + βtR0t. The mean structure specified in the null

model is wrong and hence α 6= 0. In this case, J1 rejects α = 0 more often. When J1
indeed rejects α = 0, it suggests that the mean structure is the source of misspecification

in Model (8).

4.2 Empirical studies

4.2.1 A linear regression model

In the first empirical study, we test misspecification of a model that explains arrest records.

The data set contains data on arrests during the year 1986 and other information on 2,725

men born in either 1960 or 1961 in California. Each man in the sample was arrested

at least once prior to 1986. Let y be the number of times the man was arrested during

1986, x1, x2, x3, x4 be the proportion (not percentage) of arrests prior to 1986 that led

to conviction, average sentence length served for prior convictions, the months spent in

prison in 1986, and the number of quarters during which the man was employed in 1986.

See Wooldridge (2014) for more details. The null model is the following linear regression

model

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi, εi
i.i.d.∼ N

(
0, σ2

)
. (12)

The conjugated prior distributions for β (:=
(
β0 β1 β2 β3 β4

)′
) and σ2 are set at

β ∼ N
(
µβ, σ

2Vβ
)
, σ−2 ∼ Γ (a, b) .

We use vague priors where the hyper-parameters in the priors are set at

µβ = 0, Vβ = 100× I5, a = 0.01, b = 0.01.

For the expanded model, we use

yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + β5x
2
i1 + εi, εi

i.i.d.∼ N
(
0, σ2

)
. (13)
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If Model (12) is correctly specified, β5 = 0 in Model (13).

For the Bayesian MCMC analysis, 20,000 random draws are sampled from the posterior

distribution. The posterior mean, standard deviation, 2.5% quantile, and 97.5% quantile

of all the parameters are reported in Table 5 for both models.

Table 5: Posterior quantities of the null model and the expanded model

Linear Regression Model Expanded Model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent
β0 0.7063 0.0330 0.6404 0.7729 0.6327 0.0355 0.5639 0.7027
β1 -0.1515 0.0411 -0.2299 -0.0724 0.7851 0.1530 0.4801 1.0800
β2 0.0074 0.0046 -0.0014 0.0164 0.0041 0.0048 -0.0053 0.0138
β3 -0.0374 0.0088 -0.0545 -0.0203 -0.0441 0.0086 -0.0609 -0.0268
β4 0.1032 0.0107 -0.1229 -0.0815 -0.0934 0.0105 -0.1134 -0.0735
σ2 0.7068 0.0193 0.6686 0.7460 0.6971 0.0187 -0.9811 0.0786
β5 - - - - -0.9811 0.1554 0.6609 0.7329

The critical value of χ2 (1) is 6.63 at the 1% significance level. In this study, the BMT

statistic is 347.0783, suggesting that Model (13) is misspecified. It is easy to find out that

J1 is 37.7853 (i.e., J0=309.2930) which is also greater than the 1% critical value of χ2 (1).

Note that using J1 we can reject β5 = 0 in Model (13), suggesting that the misspecification

of Model (13) comes from the wrong functional form in xi1.

For this model it is easy to obtain IMT and feasible to obtain the critical value using

a bootstrap method. IMT is 1732 and the 95% bootstrap critical value is 46.0734. Hence,

IMT also suggest that Model (12) is misspecified, reinforcing the result from BMT. How-

ever, IMT does not tell the user how to improve the model.

4.2.2 A linear state-space model

In this section, we consider a capital asset pricing model (CAPM) with time-varying beta

in a state-space form. Following Mergner and Bulla (2008), we specify the following model

Rit = βitR0t + εit, εit
i.i.d.∼ N

(
0, σ2iε

)
, (14)

βit+1 = β̄i + φ
(
βit − β̄i

)
+ ηit, ηit

i.i.d.∼ N
(
0, σ2iη

)
,

where R0t denotes the excess return of the market portfolio and Rit denotes the excess

return to sector i for period t = 1, . . . , T . R0t is the DJ STOXX 600 return index, which

includes the 600 largest stocks in Europe, serves as a proxy for the overall market. The

dataset used are weekly excess returns calculated from the total return indices for pan-

European industry portfolios, covering the period from 2 December 1987 to 14 January

2016. The sample size is 1467. Here we choose the sector to be the insurance industry.
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The expanded model is

Rit = αi + βitR0t + εit, εit
i.i.d.∼ N

(
0, σ2iε

)
, (15)

βit+1 = β̄i + φi
(
βit − β̄i

)
+ ηit, ηit

i.i.d.∼ N
(
0, σ2iη

)
,

where an intercept is added to the mean equation. If Model (14) is correctly specified,

αi = 0 in Model (15).

For Bayesian estimation, we use the vague priors for the hyper-parameters which are

set as

αi ∼ N(0, 103), β̄i ∼ N(0, 103), φi ∼ Beta(1, 1), σ−2iε ∼ Γ(10−3, 10−3), σ−2iη ∼ Γ(10−3, 10−3),

and draw 20,000 MCMC samples after 2,000 burning-in observations from the posterior

distribution and compute BMT.We do not implement other tests as bootstrap methods are

computationally too expensive. The posterior mean, standard deviation, 2.5% quantile,

and 97.5% quantile of all the parameters are reported in Table 6 for both models (both

αi and σ2iε are multiplied by 10,000).

Table 6: Posterior quantities of the null model and the expanded model

Linear State Space Model Expanded Model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent
σ2iε 1.3613 0.0740 1.2234 1.5140 1.3593 0.0756 1.2181 1.5153
β̄i 1.2157 0.0270 1.1620 1.2680 1.2186 0.0273 1.1650 1.2720
φi 0.4261 0.0945 0.2338 0.6007 0.4227 0.0948 0.2294 0.6031
σ2iη 0.1622 0.0255 0.1123 0.2134 0.1629 0.0260 0.1121 0.2151
αi - - - - -3.9009 3.6097 -11.0550 3.1275

The critical value of χ2 (1) is 6.63 at the 1% significance level. BMT is 124.4333,

suggesting that Model (15) is misspecified. It is easy to find out that J1 is 1.2553 (i.e.,

J0=123.1780) which is less than the critical values of χ2 (1). Interestingly, using J1 alone

suggests that we cannot reject αi = 0 in Model (15).

4.2.3 A stochastic volatility (SV) model

The dataset used here contains the daily returns on AUD/USD exchange rates from Jan-

uary 2005 to December 2012. Following a suggestion of a referee, before we apply BMT

to the SV model, we first test the i.i.d. normal model with constant mean and constant

variance given by

yt = α+ εt, εt
i.i.d.∼ N

(
0, σ2

)
. (16)

An AR(1) model is used as the expanded model

yt = α+ βyt−1 + εt, εt
i.i.d.∼ N

(
0, σ2

)
. (17)
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The Bayesian MCMC method is implemented to estimate the parameters with the follow-

ing vague prior

α ∼ N(0, 100σ2), β ∼ N(0, 100σ2), σ−2 ∼ Γ(0.001, 0.001).

For the above two models, we draw 20,000 MCMC samples from the posterior distribution

and compute BMT. The posterior mean, standard deviation, 2.5% quantile, and 97.5%

quantile of all the parameters are reported in Table 7.

Table 7: Posterior quantities of the null model and the expanded model

IID Normal AR(1) Model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent
α -0.0140 0.0201 -0.0536 0.0263 -0.0137 0.0204 -0.0539 0.0270
σ2 0.8026 0.0259 0.7689 0.8727 0.8208 0.0255 0.7726 0.8737
β - - - - -0.0115 0.0216 -0.0524 0.0287

The critical value of χ2 (1) is 6.63 at the 1% significance level. BMT is 251.52, rejecting

the i.i.d. normal model. This conclusion is not surprising as the volatility of stock returns

is stochastic. However, J1 is 0.2858 (i.e., J0=251.23) which is less than the critical value

of χ2 (1). Using J1 alone only suggests that we cannot reject β = 0 in Model (17). This

conclusion is also not surprising as the weekly returns have very weak serial correlations.

Next, we change the null model to the following basic SV model,

yt = α+ exp (ht/2)ut, ut
i.i.d.∼ N (0, 1) , (18)

ht = µ+ φ (ht−1 − µ) + τνt, νt
i.i.d.∼ N (0, 1) .

The expanded model is as follows,

yt = α+ β1yt−1 + exp (ht/2)ut, ut
i.i.d.∼ N (0, 1) . (19)

ht = µ+ φ (ht−1 − µ) + τνt, νt
i.i.d.∼ N (0, 1) .

The following vague priors are used

α ∼ N(0, 100), µ ∼ N(0, 100), φ ∼ Beta(1, 1), τ−2 ∼ Γ(0.001, 0.001), β1 ∼ N(0.5, 100).

To obtain BMT, we draw 110,000 MCMC samples from the posterior distribution

and discard the first 10,000 as burning-in observations, and store the remaining samples

as effective observations in both models. The posterior mean, standard deviation, 2.5%

quantile, and 97.5% quantile of all the parameters are reported in Table 8. BMT is

calculated based on particle filters for which the calculation details are given in Appendix

5. In this case, BMT=0.4279 which is less than the critical value of χ2 (1), suggesting that

the basic SV model is not misspecified.
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Table 8: Posterior quantities of the null model and the expanded model

Basic SV Model Expanded Model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent
α -0.0290 0.0138 -0.0560 -0.0021 -0.0300 0.0139 -0.0574 -0.0027
µ -0.7518 0.2571 -1.2650 -0.2421 -0.7143 0.2499 -1.2180 -0.2142
φ 0.9905 0.0039 0.9821 0.9974 0.9901 0.0041 0.9813 0.9973
τ2 0.0163 0.0035 0.0105 0.0239 0.0167 0.0036 0.0106 0.0245
β1 - - - - -0.0153 0.0226 -0.0595 0.0291

5 Conclusions

In this paper, we have proposed a new specification test statistic based on the MCMC

output to assess the adequacy of specification of a model. It combines a component

(J1) that tests a null point hypothesis in an expanded model and a power enhancement

component (J0) obtained from the null model. It is shown that J0 converges to zero when

the null model is correctly specified and diverges when the null model is misspecified.

Also shown is that J1 is asymptotically χ2-distributed, suggesting that the proposed test

is asymptotically pivotal, when the null model is correctly specified.

When J1 does not suffer from the size distortion problem, the proposed test will have

good size. Consequently, no bootstrap method is needed to correct the size. When J1 loses

power, the power enhancement component (J0) raises the power of the proposed test. If

J1 rejects the null point hypothesis in an expanded model, it provides guidance of source

of misspecification.

An important feature of the proposed test is that it is based on the MCMC output.

While several specification tests based on the information matrix are available in the lit-

erature, they all require MLE as the input. Moreover, since the asymptotic distribution

of these test performs poorly in finite sample, bootstrap methods have been suggested to

calculate critical values, increasing the computational cost. For models where MCMC is

a popular method, MLE is very diffi cult to obtain and bootstrap methods are computa-

tionally too expensive. This may help explain why no specification test has been carried

out to these models in practice.

It is possible to introduce a ML-based test statistic of the same spirit. When MLE is

not diffi cult to obtain but it is not easy to find a suitable bootstrap method or all bootstrap

methods are too costly to implement, one can use a ML-based specification test with the

power enhancement technique. This alternative test will be reported in a separate study.
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6 Appendix

6.1 Appendix 1: Proof of Proposition 3.1

From the definition of BMT, we have,

BIMT = ntr
{

Ĵn(θ̄)E
[
(θ − θ̄)(θ − θ̄)′|y

]}
= tr

{[
Ĵn(θ̂) + op(n

−1/2)
]
E
[
n(θ − θ̄)(θ − θ̄)′|y

]}
= tr

{[
Ĵn(θ̂) + op(n

−1/2)
] [
−Ĥ−1n (θ̂) +Op(n

−1)
]}

= tr
[
−Ĵn(θ̂)Ĥ−1n (θ̂)

]
+ op(n

−1/2) = IOSA + op(n
−1/2) = q × IR+ op(n

−1/2),

since we have

Ĵn
(
θ̄
)

=
1

n

n∑
t=1

st
(
θ̄
)
st
(
θ̄
)′

=
1

n

n∑
t=1

[
st

(
θ̂
)

+ ht

(
θ̃1

)(
θ̄ − θ̂

)] [
st

(
θ̂
)

+ ht

(
θ̃1

)(
θ̄ − θ̂

)]′
=

1

n

n∑
t=1

st

(
θ̂
)
st

(
θ̂
)′

+
2

n

n∑
t=1

ht

(
θ̃1

)(
θ̄ − θ̂

)
st

(
θ̂
)′

+
1

n

n∑
t=1

ht

(
θ̃1

)(
θ̄ − θ̂

)(
θ̄ − θ̂

)′
ht

(
θ̃1

)′
= Ĵn

(
θ̂
)

+ op(n
−1/2), (20)

where θ̃1 lies between θ̄ and θ̂. To obtain (20), note that

vec
(
Ĵn
(
θ̄
))

=
1

n

n∑
t=1

vec

(
st

(
θ̂
)
st

(
θ̂
)′)

+
2

n

n∑
t=1

[
st

(
θ̂
)
⊗ ht

(
θ̃1

)]
vec

(
θ̄ − θ̂

)
+

1

n

n∑
t=1

[
ht

(
θ̃1

)
⊗ ht

(
θ̃1

)]
vec

(
θ̄ − θ̂

)
,

where vec is the column-wise vectorization. By Assumption 10, we have

2

n

n∑
t=1

[
st

(
θ̂
)
⊗ ht

(
θ̃1

)]
= Op (1) ,

1

n

n∑
t=1

ht

(
θ̃1

)
⊗ ht

(
θ̃1

)
= Op (1) ,

and θ̄− θ̂ = op
(
n−1/2

)
from Remark 3.1. Then we can get (20). And under Assumptions

1-12, following Li, Zeng and Yu (2015), we have

− 1

n
Ĥ−1n (θ̂) = E

[
(θ − θ̄)(θ − θ̄)′|y

]
+Op(n

−2).

Proposition 3.1 is proven.
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Next we give the proof for the order of BIMT−q. Note that, by Assumption 7,

Ĥn

(
θ̄
)

=
1

n

n∑
t=1

ht
(
θ̄
)

=
1

n

n∑
t=1

ht (θ0) +
1

n

n∑
t=1

5l(3)
(
θ̃2

) [
Iq ⊗

(
θ̄ − θ0

)]
=

1

n

n∑
t=1

ht (θ0) +Op

(
n−1/2

)
= H (θ0) +Op

(
n−1/2

)
, (21)

where 5l(3)
(
θ̃2

)
is the third order derivative of lt (θ) evaluated at θ̃2, θ̃2 lies between θ̄

and θ0, θ̄ − θ0 = Op
(
n−1/2

)
, H (θ0) = limn→∞

∫
1
n

∑n
t=1 ht (θ0) g (y) dy.

Ĵn
(
θ̄
)

=
1

n

n∑
t=1

st
(
θ̄
)
st
(
θ̄
)′

=
1

n

n∑
t=1

[
st (θ0) + ht

(
θ̃3

) (
θ̄ − θ0

)] [
st (θ0) + ht

(
θ̃3

) (
θ̄ − θ0

)]′
=

1

n

n∑
t=1

st (θ0) st (θ0)
′ +

2

n

n∑
t=1

ht

(
θ̃3

) (
θ̄ − θ0

)
st (θ0)

′

+
1

n

n∑
t=1

ht

(
θ̃3

) (
θ̄ − θ0

) (
θ̄ − θ0

)′
ht

(
θ̃3

)′
,

where θ̃3 lies between θ̄ and θ0. Note that

vec
(
Ĵn
(
θ̄
))

=
1

n

n∑
t=1

vec
(
st (θ0) st (θ0)

′)+
2

n

n∑
t=1

[
st (θ0)⊗ ht

(
θ̃3

)]
vec

(
θ̄ − θ0

)
+

1

n

n∑
t=1

[
ht

(
θ̃3

)
⊗ ht

(
θ̃3

)]
vec

((
θ̄ − θ0

) (
θ̄ − θ0

)′)
.

Hence, similar to Equation (20) and by Assumption 7, we have

Ĵn
(
θ̄
)

= J (θ0) +Op

(
n−1/2

)
, (22)

where J (θ0) = limn→∞
∫
1
n

∑n
t=1 st (θ0) st (θ0)

′ g (y) dy. If the model is correctly speci-

fied, −H (θ0) = J (θ0), then we have

− Ĥn

(
θ̄
)

= Ĵn
(
θ̄
)

+Op

(
n−1/2

)
. (23)

From Li, Zeng and Yu (2015), under Assumptions 1-12, by the Laplace expansion,

tr
(
−nĤn

(
θ̄
)
V
(
θ̄
))

= q +Op
(
n−1

)
. (24)

Hence, from (23) and (24), we have

BIMT = tr
(
nĴn

(
θ̄
)
V
(
θ̄
))

= tr
(
n
(
−Ĥn

(
θ̄
)

+Op

(
n−1/2

))
V
(
θ̄
))

= tr
(
−nĤn

(
θ̄
)
V
(
θ̄
))

+Op

(
n−1/2

)
= q +Op

(
n−1/2

)
.
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6.2 Appendix 2: Proof of Theorem 3.1

According to Li, et al (2015), if θE = 0 in the expanded model, as n→∞,

J1 = tr
{
CE
(
y, (θ̄,θE = 0)

)
VE
(
θ̄L
)} d→ χ2(qE)

By Proposition 3.1, we have

BIMT = tr
[
−Ĵn(θ̂)Ĥ−1n (θ̂)

]
+ op(1)

= tr
{
−
[
Ĵn(θ∗) + op(1)

] [
Ĥ−1n (θ∗) + op(1)

]}
+ op(1)

= tr
{
−Ĵn(θ∗)Ĥ−1n (θ∗)

}
+ op(1)

= tr
{
− [J(θ∗) + op(1)]

[
H−1(θ∗) + op(1)

]}
+ op(1)

= tr
[
−J(θ∗)H−1(θ∗)

]
+ op(1) = q∗ + op(1),

where θ∗ is the pseudo true value (Huber, 1967, White, 1982). Clearly, θ∗ = θ0 when the

model is correctly specified.

Hence, if the model is misspecified, we have

J1 =
√
n(BIMT/q − 1)2 =

√
n (q∗/q − 1 + op(1))2 =

√
n (q∗/q − 1)2 + op(

√
n).

6.3 Appendix 3: Computing BMT in Latent Variable Models

MCMC has been popular for estimate an important class of latent variable models —the

state-space models. We now discuss how to compute BMT for the state-space models after

they are estimated by MCMC. To introduce the state-space model, let y be the observed

variables and z = (z1, . . . , zn) be the latent variables. The model is given by{
yt = F (zt, ut,θ)
zt = G(zt−1, vt,θ)

. (25)

The first equation is the observation equation while the second equation is the state

equation. When the distribution of ut and vt is Gaussian and the functional form of

F and G is linear, the model is referred to as the linear Gaussian state-space model.

When the distribution of ut or vt is non-Gaussian or the functional form of F or G is

nonlinear, the model is often referred to as the nonlinear non-Gaussian state-space model

in the literature.

Let p(y|θ) be the observed-data likelihood function, and p(y, z|θ) the complete-data

likelihood function. Obviously these two functions are related to each other by

p(y|θ) =

∫
p(y, z|θ)dz. (26)
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The complete-data likelihood function p(y, z|θ) can be expressed as p(y|z,θ)p(z|θ). Usu-

ally analytical expressions for p(y|z,θ) and p(z|θ) are given by the specification of the

model. In particular, the observation equation gives the analytical expression for p(y|z,θ)

while the state equation gives the analytical expression for p(z|θ). However, in general

the integral in (26) does not have an analytical expression. Consequently, the statistical

inferences, such as estimation and hypothesis testing, are diffi cult to implement if they

are based on the ML approach. For linear Gaussian state-space models, p(y|θ) and its

derivatives with respect to θ can be computed numerically by the Kalman filter. For

nonlinear non-Gaussian state-space models, other methods are needed to compute p(y|θ)

and the derivatives.

The latent variables models can be effi ciently and easily estimated in the Bayesian

framework using MCMC techniques. Let p(θ) be the prior distribution of θ, and p(θ|y)

the posterior distribution of θ. The goal of the Bayesian inference is to obtain p(θ|y).

The data augmentation strategy of Tanner and Wong (1987), that expands the parameter

space with the latent variable z, is a Bayesian method that uses a MCMC algorithm to

generate random samples from the joint posterior distribution p(θ, z|y).

To implement our test, we still need to calculate p(y|θ) and its derivatives with respect

to θ. It is important to point out that there is no need to optimize p(y|θ) in our test.

Since there is no analytical expression for the observed-data likelihood function for many

latent variable models, in this section, we show how to use the EM algorithm, the Kalman

filter, and particle filters to calculate p(y|θ) and its derivatives with respect to θ.

6.3.1 Computing BMT by the EM algorithm

The EM algorithm is a powerful tool to deal with latent variable models. Instead of

maximizing the observed-data likelihood function, the EM algorithm maximizes the so-

called Q function given by

Q(θ|θ(r)) = E
θ(r)
{Lc(y,z|θ)|y,θ(r)}, (27)

where Lc(y,z|θ) := p(y, z|θ) is the complete-data likelihood function. The Q-function
is the conditional expectation of Lc(y,z|θ) with respect to the conditional distribution

p(z|y,θ(r)) where θ(r) is a current fit of the parameter. The EM algorithm consists of

two steps: the expectation (E) step and the maximization (M) step. The E-step evaluates

Q(θ|θ(r)). The M-step determines a θ(r) that maximizes Q(θ|θ(r)). Under some mild
regularity conditions, for large enough r, {θ(r)} obtained from the EM algorithm is the

MLE, θ̂. For more details about the EM algorithm, see Dempster et al. (1977).

Although the EM algorithm is a good approach to dealing with latent variable models,

the numerical optimization in the M-step is often unstable. Not surprisingly, the EM algo-
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rithm has been less popular to estimate latent variables models compared with the MCMC

techniques. However, we will show that, without using the numerical optimization in the

M-step, the theoretical properties of the EM algorithm can facilitate the computation of

the proposed test for latent variable models.

Since p(y|θ) and s(y,θ) are not analytically available for latent variable models, we

propose to use the EM algorithm to compute s(y,θ). For any θ and θ
∗
in Θ, it was shown

in Dempster et al. (1977) that

s(y,θ) =
∂Lo(y,θ)

∂θ
=
∂Q(θ|θ∗)

∂θ
|θ=θ∗ = E(z|y,θ)

{
∂Lc(y,z,θ)

∂θ

}
=

∫
∂Lc(y,z,θ)

∂θ
p(z|y,θ)dz.

If the analytical form of the Q-function is available, we can replace the first derivatives of
the log-likelihood function log p(y|θ) with the first derivatives of the Q-function. A more
general approach to evaluating the Q-function is to use the following formula based on the
MCMC output:

s(y,θ) ≈ 1

M

M∑
m=1

{
∂ log p(y, z(m)|θ)

∂θ

}
,

where {z(m),m = 1, 2, . . . ,M} is a random sample simulated from the posterior distribu-

tion p(z|y,θ).

Although EM algorithm is a very general approach for analyzing latent variable models,

it is very cumbersome to deal with the state-space models. This is because we have to

compute the s(y1:t,θ) recursively where the posterior sampling has to be implemented

for n times (Doucet and Shephard, 2012). As a result, it is computationally demanding

although some parallel computing techniques may be used. Alternatively, one can compute

s(y,θ) using the Kalman filter and particle filters.

6.3.2 Computing BMT by the Kalman filter

In economics, many time series models can be represented by a linear Gaussian state-space

form. The Kalman filter is an effi cient recursive method for computing the optimal linear

forecasts in such models. It also gives the exact likelihood function of the model. One

may refer to Harvey (1989) for the detailed textbook treatment of the linear Gaussian

state-space model and the calculation of the observed-data log-likelihood recursively.

Similarly, the first order derivative of the observed-data log-likelihood, st(θ), has to

be computed recursively. In Appendix 4, we give the expression of the relevant first order

derivatives that are used to compute BMT.
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6.3.3 Computing BMT by particle filters

In practice, the phenomenon of non-Gaussianity or non-linearity is often found. Conse-

quently, the nonlinear non-Gaussian state-space models have been widely used in empirical

studies. However, they cannot be analyzed using the Kalman filter. Instead, one can use

another recursive filtering algorithm known as particle filters. We only present the basic

idea of particle filters here and refer the reader to recent review papers on particle filters

by Doucet and Johansen (2009) and Creal (2012) for greater details.

Let zt+1|zt ∼ f (zt+1|zt,θ) and yt|zt ∼ g (yt|zt,θ). Let the initial density of z be

µ (z|θ). The joint density of
(
zt,yt

)
is

p
(
zt,yt|θ

)
= µ (z1|θ)

t∏
k=2

f (zk|zk−1,θ)

t∏
k=1

g (yk|zk,θ) ,

and hence

p
(
yt|θ

)
=

∫
p
(
zt,yt|θ

)
dzt.

For nonlinear and non-Gaussian state-space models, neither p
(
zt|yt,θ

)
nor p

(
yt|θ

)
are

available in closed-form. The goal here is to calculate p
(
zt|yt,θ

)
, p
(
yt|θ

)
, and s(yt,θ)

sequentially for t = 1, . . . , n. The idea of particle filters is to approximate the conditional

probability distribution p
(
zt|yt,θ

)
dzt by its empirical measure. An example of parti-

cle filters is the Sequential Important Sampling and Resampling (SISR) algorithm which

iterates the following step for i = 1, . . . , N ,

Step 1: At t = 1, z(i)1 ∼ µ (·) ,

w1

(
z1(i)

)
=
µ
(
z
(i)
1 |θ

)
g
(
y1|z(i)1 ,θ

)
q1

(
z
(i)
1

) , W
(i)
1 =

w1
(
z1(i)

)∑N
i=1w1

(
z1(i)

) ,
z1(i) = z

(i)
1 . Resample

(
W
(i)
1 , z1(i)

)
to obtain new particles

(
1
N , z̃

1(i)
)
.

Step 2: At t ≥ 2, z
(i)
t ∼ qn

(
·|z̃t−1(i)

)
,

wt

(
zt(i)

)
=
f
(
z
(i)
t |z̃

(i)
t−1,θ

)
g
(
yt|z̃(i)t ,θ

)
qt

(
z
(i)
t |z̃t−1(i)

) , W
(i)
t =

wt
(
zt(i)

)∑N
i=1wt

(
zt(i)

) ,
zt(i) =

(
z̃t−1(i), z

(i)
t

)
. Resample

(
W
(i)
t , zt(i)

)
to obtain new particles

(
1
N , z̃

t(i)
)
.

Step 3: Approximate the conditional distribution pθ
(
dzt|yt,θ

)
by its empirical mea-

sure

p̂
(
dzt|yt,θ

)
=

N∑
i=1

W
(i)
t δzt(i)

(
dzt
)
or p̃θ

(
dzt|yt,θ

)
=

1

N

N∑
i=1

δz̃t(i)
(
dzt
)
,
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and

p̂
(
yt|yt−1,θ

)
=

1

N

N∑
i=1

wt

(
zt(i)

)
,

where N is the number of particles and qt (·|·) is the proposal density.
With the empirical measures

{
p̂
(
dzt|yt,θ

)}
t=1:n

, we can approximate the integral

It =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt,

by

Ît =

∫
ϕt
(
zt
)
p̂
(
dzt|yt,θ

)
=

N∑
i=1

W
(i)
t ϕt

(
zt(i)

)
,

for t = 1, · · · , n, where ϕt
(
zt
)
is the target function. If one chooses ϕt

(
zt
)

= ∂ log p
(
zt,yt|θ

)
/∂θ,

then it is easy to show that

s(yt,θ) =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt.

Therefore, s(yt,θ) can be obtained recursively.

Based on the different proposal density qt (·|·), different particle filtering algorithms
have been proposed in the literature, including the bootstrap particle filters of Gordon et

al. (1993) and the auxiliary particle filters of Pitt and Shephard (1999). In this paper,

we use the auxiliary particle filter to compute s(yt,θ) and the proposed test statistic.

Appendix 5 gives the details about how to compute s(yt,θ) using particle filters.

6.4 Appendix 4: The derivation of BMT for the linear state-space model

Consider the state-space system

xt = Txt−1 +Rεt,

yt = D + Zxt + ξt,

where εt ∼ N (0, Q), ξt ∼ N (0, H). Let Ys = (y1, y2..., ys). We define

xt|s = E (xt|Ys) ,

Pt|s = E
[(
xt − xt|s

) (
xt − xt|s

)′ |Ys] .
With the initial condition x0|0 and P0|0, the Kalman Filter algorithm is as follows:

xt|t−1 = Txt−1|t−1,

Pt|t−1 = TPt−1|t−1T
′ +RQR′,
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with

xt|t = xt|t−1 +Kt

(
yt −D − Zxt|t−1

)
,

Pt|t = [Ins −KtZ]Pt|t−1,

where Kt = Pt|t−1Z
′ [ZPt|t−1Z ′ +H

]−1, for t = 1, 2...n.

From the Kalman filter, the observed data likelihood is as follows:

log ` = −
n∑
t=1

[
ny
2

log 2π +
1

2
log |Ft|+

1

2

(
yt −D − Zxt−1t

)′
F−1t

(
yt −D − Zxt−1t

)]

= −
n∑
t=1

[
ny
2

log 2π +
1

2
log |Ft|+

1

2
ω′tF

−1
t ωt

]
,

where

Ft = Z (θ)Pt|t−1Z (θ)′ +H (θ) ,

ωt = yt −D (θ)− Z (θ)xt|t−1.

Before we get the derivatives of the model, we first introduce some notations from

Magnus and Neudecker (2002) about the matrix derivative.

Definition 6.1 Let F = (fst) be an m×p matrix function of an n× q matrix of variables
X = (xij). Any mp× nq matrix A, that contains all the partial derivatives such that each
row contains the partial derivatives of one function with respect to all variables and each

column contains the partial derivatives of all functions with respect to one variable xij, is

called a derivative of F . We define the α-derivative as:

DF (X) =
∂vecF (X)

∂ (vecX)
′ .

In our case, ∂ (vecθ)
′

= ∂θ′ since θ is a vector.

Definition 6.2 Let A be an m× n matrix. There exists a unique mn×mn permutation
matrix Kmn which is defined as:

Kmn · vec (A) = vec
(
A
′
)
.

Since Kmn is a permutation matrix, it is orthogonal and K−1mn = K
′
mn.

To compute the first order derivative of the likelihood, we have the following

∂vec (ωt)

∂θ′
= −∂vec (D)

∂θ′
−
(
x′t|t−1 ⊗ Iny

) ∂vec (Z)

∂θ′
− (I1 ⊗ Z)

∂vec
(
zt|t−1

)
∂θ′

,
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∂vec (Ft)

∂θ′
=

((
Pt|t−1Z

′)′ ⊗ Iny +
(
Iny ⊗

(
ZPt|t−1

))
Knyns

) ∂vec (Z)

∂θ′

+ (Z ⊗ Z)
∂vec

(
Pt|t−1

)
∂θ′

+
∂vecH

∂θ′
,

∂vec
(
F−1t

)
∂θ′

= −
((
F−1t

)′ ⊗ F−1t ) ∂vec (Ft)

∂θ′
,

∂vec (log |Ft|)
∂θ′

=
(
vec

[(
F−1t

)′])′ ∂vec (Ft)

∂θ′
,

∂vec
(
ω′tF

−1
t ωt

)
∂θ′

=
[(
F−1t ωt

)′ ⊗ I1]Kny1
∂vec (ωt)

∂θ′
+
(
ω′t ⊗ ω′t

) ∂vec (F−1t )
∂θ′

+
[
I1 ⊗

(
ω′tF

−1
t

)] ∂vec (ωt)

∂θ′
.

In the above equations, the first order derivatives of the matrix D, Z, Q, H, R are easy

to get.

Given the initial conditions x0|0 and P0|0, we have the following recursions

∂vec
(
xt|t−1

)
∂θ′

= (I1 ⊗ T )
∂vec

(
xt−1|t−1

)
∂θ′

+
(
x′t−1|t−1 ⊗ Ins

) ∂vec (T )

∂θ′
,

∂vec
(
Pt|t−1

)
∂θ′

=
((
Pt−1|t−1T

′)′ ⊗ Ins) ∂vec (T )

∂θ′
+ (T ⊗ T )

∂vec
(
Pt−1|t−1

)
∂θ′

+
(
Ins ⊗ TPt−1|t−1

)
Knsns

∂vec (T )

∂θ′
+
∂vec (RQR′)

∂θ′
,

∂vec
(
xt|t
)

∂θ′
=

∂vec
(
xt|t−1

)
∂θ′

+
[(
yt −D − Zxt|t−1

)′ ⊗ Ins] ∂vec (Kt)

∂θ′

− (I1 ⊗Kt)
∂vec (D)

∂θ′
−
(
z′t|t−1 ⊗Kt

) ∂vec (Z)

∂θ′
− (I1 ⊗KtZ)

∂vec
(
zt|t−1

)
∂θ′

,

∂vec
(
Pt|t
)

∂θ′
= −

((
ZPt|t−1

)′ ⊗ Ins) ∂vec (Kt)

∂θ′
−
(
P ′t|t−1 ⊗Kt

) ∂vec (Z)

∂θ′

+ (Ins ⊗ (Ins −KtZ))
∂vec

(
Pt|t−1

)
∂θ′

,

where

∂vec (Kt)

∂θ′
=

[(
Z ′F−1t

)′ ⊗ Ins] ∂vec (Pt|t−1)∂θ′
+
[(
F−1t

)′ ⊗ P t−1t

]
Knyns

∂vec (Z)

∂θ′

+
[
Iny ⊗ Pt|t−1Z ′

] ∂vec (F−1t )
∂θ′

,
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and

∂vec (RQR′)

∂θ′
=
[(
RQ′ ⊗ Ins

)
+ (Ins ⊗RQ)Knsne

] ∂vecR
∂θ′

+ (R⊗R)
∂vecQ

∂θ′
.

The initial condition is given as

x0|0 = 0,

P0|0 = TP0|0T
′ +RQR′.

From the above, we have

vec
(
P0|0

)
=
(
In2s − T ⊗ T

)−1
vec

(
RQR′

)
.

Then

∂vec
(
P0|0

)
∂θ′

=
[(
TP0|0 ⊗ Ins

)
+
(
Ins ⊗ TP0|0

)
Knsns

] ∂vec (T )

∂θ′
+(T ⊗ T )

∂vec
(
P0|0

)
∂θ′

+
∂vec (RQR′)

∂θ′
.

6.5 Appendix 5: The derivation of BMT for the nonlinear non-Gaussian
state-space model with particle filters

Let ϕt
(
zt
)
be the first order derive of the complete likelihood function with respect to the

parameter θ. This is just the integrand in Fisher’s identity (Cappé et al., 2005)

∂ log p
(
yt|θ

)
∂θ

=

∫
∂ log p

(
zt,yt|θ

)
∂θ

p
(
zt|yt,θ

)
dzt.

Then we have the following recursion

ϕt
(
zt
)

= ϕt−1
(
zt−1

)
+ ut (zt, zt−1) ,

where

ϕt
(
zt
)

=
∂ log p

(
zt,yt|θ

)
∂θ

, ut (zt, zt−1) =
∂ log g (yt|zt,θ)

∂θ
+
∂ log fθ (zt|zt−1,θ)

∂θ
.

Hence, following Doucet and Shephard (2012), we get the sample score s(yt,θ) as

s(yt,θ) =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt

=

∫ ∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1p

(
zt|yt,θ

)
dzt

=

∫
St (zt) p

(
zt|yt,θ

)
dzt,

where

St (zt) =

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1
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=

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−2|zt−1,yt−2,θ

)
dzt−2p

(
zt−1|zt,yt−2,θ

)
dzt−1

=

∫
(St−1 (zt−1) + ut (zt, zt−1)) f (zt|zt−1,θ) p

(
zt−1|yt,θ

)
dzt−1∫

f (zt|zt−1,θ) p (zt−1|yt,θ) dzt−1
.

Then we have

Ŝt (zt) =

∑N
j=1W

(j)
t−1f

(
zt|z(i)t−1,θ

)
∑N

j=1 f
(
zt|z(i)t−1,θ

)
St−1 (z(i)t−1)+

∂ log g (yt|zt,θ)

∂θ
+
∂ log f

(
zt|z(i)t−1,θ

)
∂θ

 .

Let ϕt
(
zt
)
be the first order derive of the complete likelihood function with respect to

the parameter θ. This is just the integrand in Fisher’s identity (Cappé et al., 2005)

∂ log p
(
yt|θ

)
∂θ

=

∫
∂ log p

(
zt,yt|θ

)
∂θ

p
(
zt|yt,θ

)
dzt.

Then we have the following recursion

ϕt
(
zt
)

= ϕt−1
(
zt−1

)
+ ut (zt, zt−1) ,

where

ϕt
(
zt
)

=
∂ log p

(
zt,yt|θ

)
∂θ

, ut (zt, zt−1) =
∂ log g (yt|zt,θ)

∂θ
+
∂ log fθ (zt|zt−1,θ)

∂θ
.

Hence, following Doucet and Shephard (2012), we get the sample score s(yt,θ) as

s(yt,θ) =

∫
ϕt
(
zt
)
p
(
zt|yt,θ

)
dzt

=

∫ ∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1p

(
zt|yt,θ

)
dzt

=

∫
St (zt) p

(
zt|yt,θ

)
dzt,

where

St (zt) =

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−1|zt,yt−1,θ

)
dzt−1

=

∫ (
ϕt−1

(
zt−1

)
+ ut (zt, zt−1)

)
p
(
zt−2|zt−1,yt−2,θ

)
dzt−2p

(
zt−1|zt,yt−2,θ

)
dzt−1

=

∫
(St−1 (zt−1) + ut (zt, zt−1)) f (zt|zt−1,θ) p

(
zt−1|yt,θ

)
dzt−1∫

f (zt|zt−1,θ) p (zt−1|yt,θ) dzt−1
.

Then we have

Ŝt (zt) =

∑N
j=1W

(j)
t−1f

(
zt|z(i)t−1,θ

)
∑N

j=1 f
(
zt|z(i)t−1,θ

)
St−1 (z(i)t−1)+

∂ log g (yt|zt,θ)

∂θ
+
∂ log f

(
zt|z(i)t−1,θ

)
∂θ
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and

ŝ(yt,θ) =

N∑
j=1

W
(j)
t Ŝt

(
z
(j)
t

)
,

where
(
W
(j)
t , z

(i)
t

)
are the particles to approximate p

(
zt|yt

)
dzt. Then the individual

scores is estimated by

ŝt(θ) = ŝ(yt,θ)− ŝ(yt−1,θ).

For the asymptotic properties of ŝt(θ), see Poyiadjis (2011) and Doucet and Shephard

(2012).
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