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An Improved Bayesian Unit Root Test in Stochastic Volatility

Models*

Yong Li and Jun Yu†

A new posterior odds analysis is developed to test for a unit root in volatility
dynamics in the context of stochastic volatility models. Our analysis extends
the Bayesian unit root test of So and Li (1999) in two important ways. First,
a mixed informative prior distribution with a random weight is introduced
for the Bayesian unit root testing in volatility. Second, a numerically more
stable algorithm is introduced to compute Bayes factor, taking into account
the special structure of the competing models. It can be shown that the
approach introduced overcomes the problem of the diverging “size” in the
marginal likelihood approach by So and Li (1999) and improves the “power”
of the unit root test. A simulation study is used to investigate the finite sample
performance of the improved method and an empirical study implements the
proposed method and the unit root hypothesis in volatility is rejected.
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1. INTRODUCTION

Whether or not there is a unit root in volatility of financial assets has
been a long-standing topic of interest to econometricians and empirical
economists. There are several reasons for this attention. First, the prop-
erty of unit root has important implications for the risk premium and as-
set allocations. For example, compared to a stationary volatility, volatility
with a unit root implies a stronger negative relation between the return and
the volatility (Chou, 1988). When there is a unit root in volatility, a ra-
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tional investor should constantly and permanently change the weighting of
assets whenever a volatility shock arrives. Second, motivated from the fact
that volatility of financial assets is typically highly persistent, econometric
models which allow for a unit root in volatility have appeared. Leading
examples include the IGARCH model of Engle and Bollerslev (1986) and
the log-normal stochastic volatility (SV) model of Harvey et al. (1994).
However, there is mixed empirical evidence as to whether non-stationarity
exists in volatility. Third, if there is a unit root in volatility, the frequen-
tist’s inference, which is often based on asymptotic theory, is often more
much complicated; see, for example, Park and Phillips (2001) and Bandi
and Phillips (2003) for the development of asymptotic theory for nonlinear
models with a unit root.

In a log-normal SV model, the volatility is often assumed to follow an
AR(1) model with the autoregressive coefficient φ. The test of unit root
amounts to testing φ = 1. The estimation of φ is complicated by the fact
that volatility is latent. In recent years, numerous estimation methods have
been developed to estimate SV model; see, Shephard (2005) for a review.
It is possible to test for a unit root in volatility without estimating the
entire SV model, however. Harvey et al.(1994) suggested a classical unit
root test by estimating φ in the log-squared return process. There are two
problems with such a test. First, φ is less efficiently estimated. Second,
all the classical unit root tests suffer from large size distortions because
the log-squared return process follows an ARMA(1,1) model with a large
negative MA root. This problem is well known in the unit root literature;
see, for example, Schwert (1989). To overcome the second problem, Wright
(1999) proposed to use the unit root test of Perron and Ng (1996). The
severe distortion in size is nicely mitigated although there are still some
distortions left in some parameter settings.

To deal with the first problem, So and Li (1999, SL hereafter) proposed a
Bayesian unit root test approach based on the Bayes factor (BF). The test is
implemented in two stages. At stage 1, the two competing models are esti-
mated by the Bayesian MCMC method. As a full likelihood-based method,
MCMC provides a more efficient estimate of φ than the least squares esti-
mate and other estimates of φ in the log-squared return process, provided
the model is corrected specified, see Andersen et al. (1999). At stage 2,
the BF is obtained from the MCMC samples. The BF is an important
statistic in the Bayesian literature and has served as the gold standard for
Bayesian model testing and comparison for a long time (Kass and Raftery,
1995; Geweke, 2007). However, it is necessary to point out that the impact
of prior specifications on BF is different from that on estimation. For es-
timation, it is well-known that in large samples, prior distributions can be
picked for convenience because their effects on posterior distributions are
insignificant (Kass and Raftery, 1995). For BF, standard improper nonin-
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formative priors can not be applied since such priors are defined only up to
a constant, hence the resulting BF is a multiple of an arbitrary constant.
In fact, as pointed out by Kass and Raftery (1995), if a prior with a very
large spread is used on some parameter under a model to make it “nonin-
formative”, this behavior will force the BF to favor its competitive model.
This problem is well-known as Jeffreys-Lindley-Bartlett’s paradox in the
Bayesian literature. Consequently, it should be very careful to apply the
noninformative prior for a unit root testing problem.

To avoid the difficulty, the prior distributions are generally taken to be
proper and not have too big a spread. Moreover, it is often suggested that
for Bayesian model comparison, an equal model prior should be used. This
practice was followed by SL. However, it is now known in the unit root
literature that if a proper prior is adopted for parameters and an equal
weight is used to represent the prior model ignorance, there is a bias toward
stationary models; see, for example, Phillips (1991) and Ahking (2009). To
alleviate this problem, our main contribution of the paper is to propose a
mixed prior distribution with a random weight for the unit root test. The
main idea is that when the prior information is not available, we can obtain
an estimate for the random weight when a vague prior is assigned. If the
data are generated from a unit root process, it can be expected that a larger
weight is assigned to the unit root process. In other words, we use it to
adjust the bias towards stationarity in the posterior odds analysis for unit
root with the estimated weight. This idea is related to what was proposed
by Kalaylioglu and Ghosh (2009). However, a key difference between our
work and theirs is that we use the BF to compare the competing models
while Kalaylioglu and Ghosh used the Bayesian credible interval.

In the literature, the computation of the BF often involves high-dimensional
integration and hence numerically demanding. SL applied the marginal
likelihood approach proposed by Chib (1995) to estimate the BF for the
unit root test. This approach is very general and has a very wide applica-
bility. However, for the SV models, the dimension of the parameters and
the latent volatilities is very high, the marginalization of the joint probabil-
ity density over the parameters and the latent variable poses a formidable
computational challenge. In this paper, instead of calculating the marginal
likelihood, we derive a novel form for the BF by taking into account the
special structure of the competing models. In the new form, no marginal-
ization is needed and hence numerically it is more stable. It is shown that
this evaluation of the BF in the new form is a by-product of Bayesian
MCMC estimation and hence it is trivial to compute. This idea is related
to Jacquier et al. (2004), Kou et al. (2005), Nicholae et al.(2008), Liu and
Li (2014), etc.

The remainder of this paper is organized as follows. In Section 2, we
describe the simple log-normal SV model and the problem of the unit root
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test. In Section 3, the new approach for the posterior odds analysis of unit
root is discussed. The performance of the proposed unit root test procedure
is examined using simulation data in Section 4. Section 5 considers some
empirical applications. This paper is concluded in Section 6.

2. STOCHASTIC VOLATILITY MODELS

The simple log-normal SV model is of the form:

yt = exp(ht/2)ut, ut ∼ N(0, 1), (1)

ht = τ + φ(ht−1 − τ) + σvt, vt ∼ N(0, 1), (2)

where t = 1, 2, · · · , n, yt is the continuously compounded return, ht the

unobserved log-volatility, h0 ∼ N
(
τ, σ2

1−φ2

)
when |φ| < 1, h0 ∼ N(τ, σ2)

when φ = 1, and (ut, ηt) independently standard normal variables for all
t. This model can explain several important stylized facts in the financial
time series including volatility clustering, and its continuous time version
has been used to price options.

The primary concern of our paper is to test φ = 1 against |φ| < 1.
SL (1999) proposed a test by first estimating two competing models by
a powerful MCMC algorithm – Gibbs sampler. This Bayesian simulation
based method generates samples from the joint posterior distribution of the
parameters and the latent volatility (so the data augmentation technique
is adopted here). After that, the posterior odds ratio was calculated using
the marginal likelihood method of Chib (1995).

To fixed the idea, let p(θ) be the prior distribution of the unknown
parameter θ (:= (τ, σ, φ) or (τ, σ) in the unit root case), y = (y1, · · · , yn)
the observation vector, h = (h1, · · · , hn) the vector of the latent variables.
Exact maximum likelihood methods are not possible because the likelihood
p(y|θ) does not have a closed-form expression. Bayesian methods overcome
this difficulty by the data-augmentation strategy (Tanner and Wong, 1987),
namely, the parameter space is augmented from θ to (θ,h). By successive
conditioning and assuming prior independence in θ, the joint prior density
is

p(τ, σ, φ,h) = p(τ)p(σ)p(φ)p(h0)

n∏
t=1

p(ht|ht−1, θ). (3)

The likelihood function is

p(y|θ,h) =

n∏
t=1

p(yt|ht). (4)
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Obviously, both the joint prior density and the likelihood function are avail-
able analytically provided analytical expressions for the prior distributions
of θ are supplied. By Bayes’ theorem, the joint posterior distribution of
the unobservables given the data is given by,

p(τ, σ, φ,h|y) ∝ p(τ)p(σ)p(φ)p(h0)

n∏
t=1

p(ht|ht−1, θ)

n∏
t=1

p(xt|ht). (5)

Gibbs sampler was used by SL to generate correlated samples from the
joint posterior distribution (5). In particular, it samples each variate, one
at a time, from (5). When all the variates are sampled in a cycle, we
have one sweep. The algorithm is then repeated for many sweeps with
the variates being updated with the most recent samples, producing draws
from Markov chains. With regularity conditions, the draws converge to
the posterior distribution at a geometric rate. By the ergodic theorem
for Markov chains, the posterior moments and marginal densities may be
estimated by averaging the corresponding functions over the sample. For
example, one may estimate the posterior mean by the sample mean, and
obtain the credible interval from the marginal density. When the simulation
size is very large, the marginal densities can be regarded as the exact,
enabling exact finite sample inferences.

To explain the unit root test of SL, let M0 be the model formulated
in the null hypothesis (i.e. φ = 1), M1 the model formulated under the
alternative hypothesis (i.e. φ is an unknown parameter), π(Mk) the prior
model probability density, p(y|Mk) the marginal likelihood of model k,
and p(Mk|y) the posterior probability densities, where k = 0, 1. Under the
Bayesian framework, testing the null hypothesis versus the alternative is
equivalent to comparing the two competing models, M0 versus M1. Given
the prior model probability density π(M0) and π(M1) = 1−π(M0), the data
y produce a posterior model density, p(M0|y) and p(M1|y) = 1−p(M0|y).

Bayes’ theorem gives rise to

p(M0|y)

p(M1|y)
=
p(y|M0)

p(y|M1)
× π(M0)

π(M1)
(6)

that is

Posterior Odds Ratio (POR) = Bayes Factor (BF)× Prior Odds Ratio
(7)

or

log01 (POR) = log01 (BF) + log01 (Prior Odds Ratio), (8)

where the BF is defined as the ratio of the marginal likelihood of the com-
peting models. If the prior odds is set to 1, as it is done in much of the
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Bayesian literature, the posterior odds takes the same value as the BF.
When the posterior odds is larger than 1, M0 is favored over M1 and vice
versus. In SL, the sign of log01(BF) was checked. If it is positive, M0 is
favored over M1. In general, one has to check the sign of log01(POR).

The marginal likelihood, p(y|Mk), can be expressed as

p(y|Mk) =

∫
Ωk∪Ωh

p(y,h|θk,Mk)p(θk|Mk)dhdθk, (9)

where Ωk and Ωh are the support of θk and h, respectively. Alternatively,
the marginal likelihood can be expressed as

p(y|Mk) =

∫
Ωk

p(y|θk,Mk)p(θk|Mk)dθk. (10)

As solving the integrals in (9) and (10) requires high-dimensional numerical
integration, Chib (1995) suggested evaluating the marginal likelihood by
rearranging Bayes’ theorem

p(y|Mk) =
p(y|θk,Mk)p(θk|Mk)

p(θk|y,Mk)
.

Thus, the log-marginal likelihood may be calculated by

ln p(y|θk,Mk) + ln p(θk|Mk)− ln p(θk|y,Mk) (11)

where θk is an appropriately selected high density point in estimated Mk

and Chib suggested using the posterior mean, θk. The first term of Equa-
tion (11) is the log-likelihood evaluated at θk. Since it is marginalized over
the latent volatilities, h, it is computationally demanding and possibly nu-
merically unstable. The second term is the log prior density evaluated
at θk and has to be specified by the econometrician. The third quantity
involves the posterior density which is only known up to a normality con-
stant. The approximation can be obtained by using a multivariate kernel
density estimate based on the posterior MCMC sample of θk.

To estimate θ, SL used the flat normal prior for τ , an inverse Gamma
prior for σ2. For φ, four different priors were used – uniform on the in-
terval (0,1), truncated normal on (0,1), two truncated Beta on (0,1). For
the unit root test, the prior odds is set to 1. This choice was argued to
reflect prior ignorance. Simulation studies were conducted by SL to check
the performances of their Bayesian unit root test. While in general, their
test perform reasonably well, we identify some problems. It is noted that
the “size” diverges with the sample size. Namely, when the sample size
gets larger, the probability for the test to pick M0 when the data are simu-
lated from M0 is getting smaller. Since their empirical results suggest that
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M1 is favored over M0, concerns about the diverged “size” are especially
important. Second, when φ is very close to 1, the test does not seem to
have good “power” properties.

We argue that there is an obvious inconsistency between the choice of the
prior of φ and the choice of the prior odds. On the one hand, using a prior
density whose support exclude φ = 1 means that the researcher has no prior
confidence about M0. On the other hand, setting the prior odds to 1 implies
that the researcher is equally confident about the two competing model. It
is well known in the unit root literature that the posterior distribution is
sensitive to the prior specification; see, for example, Phillips (1991), and
the discussion and the rejoinder in the same issue. From Equation (6) it
is obvious that the prior odds is important. As a result, it is reasonable to
believe that the diverged “size” may be due to the choice of the priors.

Consequently, we suggest two ways to improve the unit root test of SL.
First, a computationally easier and numerically more stable algorithm is
introduced to compute the BF, taking into account the special structure
of the competing models. Our method completely avoids the calculation
of marginal likelihood. Second, different priors for φ and the model speci-
fication are employed. Our priors of φ allow for a positive mass at unity.
More important, a mixed model prior with random weights is used.1

3. IMPROVED BAYESIAN UNIT ROOT TESTING

3.1. A Set of Hierarchial Priors

Since we are concerned about the suitability of a prior for φ over (−1, 1)
for the unit root test, we first broaden the support of the prior distribution.
In particular, we consider the prior densities that assign a positive mass at
unity. To be more specific, the prior is set to

f(φ) = πI(φ = 1) + (1− π)fC(φ)I(−1 < φ < 1), (12)

where I(x) is indicator function such that I(x) = 1 if x is true and 0
otherwise, π the weight that represents the prior probability for model M0,
and fC(φ) a proper distribution that will be specified later. When π > 0, a

1We need point out that approaches that serve as alternatives to BF have been pro-
posed for hypothesis testing in the literature. For example, Bernardo and Rueda (2002)
demonstrated that for the point null hypothesis testing, the BF can be regarded as a
decision problem with a simple zero-one loss function. The idea was followed by Li and
Yu (2012), Li, Zeng and Yu (2014) and Li, Liu and Yu (2015) where different continuous
loss functions or net loss functions were proposed. The justification of these extensions
is made by large sample theory under repeated sampling. However, these approaches are
difficult to apply because the traditional large sample theory are not held in the model
under the null hypothesis due to the presence of unit root.
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positive mass is assignment to model M0.2The mixed prior of this kind has
been widely used in the unit root literature; see, for example, Sim (1988)
and Schotman and van Dijk (1991). In the SV literature, the same prior
was used in Kalayliglu and Ghosh (2009).

As discussed before, when π(M0) = π(M1) = 0.5, POR takes the same
value as the BF, justifying the use of the BF for Bayesian model compari-
son. However, since we assign probability π to model M0, when we specify
the prior for φ, we have to assign π(M0) = π to be logically consistent. In
this case, the prior odds is π/(1 − π). One choice for π is to set π = 1/2.
If so, POR is the same as the BF and we cannot improve the power of the
unit root test of SL. It is known in the unit root literature this prior tends
favor stationary or trend-stationary hypothesis; see, for example, Ahking
(2009).

Alternatively, a uniform distribution over [0, 1] may be used for the hi-
erarchical specification of π to represent the prior ignorance. Based on
the mixture prior specification, Kalaylioglu and Ghosh (2009) used the
posterior confidence interval for unit root testing. Although the credible
interval approach is simple to implement, it has some practical difficul-
ties, as pointed out in Robert (2002). First, the confidence interval is not
unique. Second, the credible interval approach typically does not have good
test behavior. Kalaylioglu and Ghosh used the 95% symmetric posterior
confidence interval for unit root testing. Under the uniform hierarchical
prior specification, it can be found that, when the sample size was 500 and
1000, the “size” of the test is 0.21 and 0.11, suggesting the test is seri-
ously distorted. Perhaps a better choice for credible intervals is the highest
posterior density (HPD) credible region. The computation of the HPD
credible region is usually more demanding; see Chen et al. (2000). In this
paper, we deviate from Kalaylioglu and Ghosh by using the posterior odds
for unit root testing.

Ideally, a training sample should be selected to help determine the mean
of π (denoted by π), that may be used to compute the prior odds π/(1−π).

2In the unit root literature, for the autoregressive coefficient, an “objective” igno-
rance prior is the so-called Jeffreys or reference prior of Jeffreys (1961) and Berger and
Bernardo (1992). As shown in Phillips (1991) these priors are intended to represent a
state ignorance about the value of the autoregression coefficient and are very different
from flat priors in the unit root testing problem. Unfortunately, these priors are im-
proper and p(θk|Mk) = Ckf(θk) where f(θk) is a nonintegrable function and Ck is an
arbitrary positive constant. As a result the posterior odds can be rewritten as:

POR = BF =
C0

C1

∫
Ω0∪Ωh

p(y,h|θ0,M0)f(θ0)dhdθ0∫
Ω1∪Ωh

p(y,h|θ1,M1)f(θ1)dhdθ1
(13)

Thus, the posterior odds and the BF are not well defined since they both depend on
the arbitrary constants C0/C1. This is the reason why we decide not to use the Jeffrey’s
prior to do the posterior odds analysis for unit root.
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When π 6= 0.5, the POR no longer takes the same value as the BF. If
π > 0.5, log01(π/(1 − π)) > 0 and more weight will be assigned to the
positive mass at unity. In this case, compared with the BF, the POR will
be more in favor of the unit root hypothesis. It is expected that this feature
should improve the power of the test because if data indeed come from a
unit root model, it is expected that π > 0.5. When data are generated
from a stationary model, it is expected that π < 0.5. Instead of splitting
the entire sample into the training sample and the sample for estimation,
we estimate π from the entire sample in order to get a precise estimate of
π. By using the same data to estimate π and the prior odds ratio as well
as calculate the BF, strictly speaking, our approach is not a full Bayesian
method. Our idea of estimating π, however, was partly inspired by Aitkin
(1991) and Schotman and van Dijk (1991). In Aitkin (1991) the data are
re-used to get the prior distributions for the parameters while in Schotman
and van Dijk (1991) the threshold parameter of the defined interval for φ
is dependent on the data.

3.2. Computing Posterior Odds

Although the marginal likelihood approach proposed by Chib (1995) is
very general and has been applied in various studies (Kim, et al 1998; Chib
et al, 2002; Berg et al, 2004), it requires one to calculate the log-likelihood
functions ln p(y|θk,Mk), k = 0, 1. For the SV models, this is a challenging
task. In this paper, we acknowledge that unit root testing is a special model
comparison problem which has the special structure to link the competing
models. The structure is that the two marginal likelihood functions have
the common latent variable which may be exploited to facilitate the com-
putation of BF. Instead of calculating the two marginal likelihood functions
as suggested in Chib (1995), in our method we only need to compute BF
directly.

In the literature, Jacquier et al. (2004) proposed an efficient method
to compute BF for comparing the basic SV model with the fat-tailed SV
model. They showed that in the case the BF can be written as the expec-
tation of the ratio of un-normalized posteriors with respect to the posterior
under the fat-tailed SV model. In addition, Kou et al. (2005) and Nicolae
et al. (2008) showed that for nested models, BF can be written as the
posterior mean of the likelihood ratio between the two competing models.
Liu and Li (2014) also generalize these ideas by showing that the BF for
unit rooting testing also can be written as the complete likelihood ratio of
posterior quantities by introducing an appropriate weight function for SV
models with jumps. More details about BF for unit root testing, one can
refer to Liu and Li (2014) and reference therein.
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Following their idea, let θ0 = (µ, σ2),θ1 = (µ, φ, σ2) and note that

B01 =

∫
Ω0∪Ωh

p(θ0|M0)p(y,h|θ0,M0)

p(y|M1)
dθ0dh

=

∫
Ω1∪Ωh

p(θ0|M0)p(y,h|θ0,M0)w(φ|θ0)

p(y|M1)
dφdθ0dh

=

∫
Ω1∪Ωh

p(θ0|M0)p(y,h|θ0,M0)w(φ|θ0)
p(h,θ1|y,M1)

p(y,h,θ1|M1)
dφdθ1dh

=

∫
Ω1∪Ωh

p(θ0|M0)w(φ|θ0)p(y,h|θ0,M0)

p(θ1|M1)p(y,h|θ1,M1)
p(h,θ1|y,M1)dφdθ1dh

where w(φ|θ0) is the an arbitrary weight function of φ conditional on θ0

such that ∫
w(φ|θ0)dφ = 1

In practice, the prior distribution of the common parameter vector θ0 un-
der two models is often specified as the same, that is p(θ0|M0) = p(θ0|M1).
Furthermore, for the purpose of the posterior odds analysis, p(φ|θ0,M1) is
required to be a proper conditional prior distribution. This distribution can
be regarded as a weight function, then, p(φ|θ0,M1)p(θ0|M1) = p(θ1|M1),
hence,

B01 =

∫
Ω1∪Ωh

p(θ0|M0)p(φ|θ0,M1)p(y,h|θ0,M0)

p(θ1|M1)p(y,h|θ1,M1)
p(h,θ1|y,M1)dφdθ1dh

=

∫
Ω1∪Ωh

p(θ0|M1)p(φ|θ0,M1)p(y,h|θ0,M0)

p(θ1|M1)p(y,h|θ1,M1)
p(h,θ1|y,M1)dφdθ1dh

=

∫
Ω1∪Ωh

p(y,h|θ0,M0)

p(y,h|θ1,M1)
p(h,θ1|y,M1)dφdθ1dh

= E

{
p(y,h|θ0,M0)

p(y,h|θ1,M1)

}
(14)

where the expectation is with respect to the posterior distribution p(h,θ1|y,M1).
From (14), it can be seen that the BF is only a by-product of Bayesian

estimation of the SV model in the alternative hypothesis, namely, under
the stationary case. Once draws from Markov chains are available, the
BF can be approximated conveniently and efficiently by averaging over the
MCMC draws. In fact, only one line of code is needed to compute the BF.

In detail, let {h(s),θ
(s)
1 }, s = 1, 2, · · · , S, be the draws, generated by the

MCMC technique, from the posterior distribution p(h,θ1|y,M1). The BF
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is approximated by:

B̂01 =
1

S

S∑
s=1

{
p(y,h(s)|θ(s)

0 ,M0)

p(y,h(s)|θ(s)
1 ,M1)

}

When the prior odds ratio is known, one can easily obtain the posterior
odds ratio as in (6) for the unit root test.

In the context of the simple log-normal SV model, suppose θ(1), ..., θ(S)

and h(1), ..., h(S) are the MCMC draws, then

B̂01 =
1

S

S∑
s=1

exp

{
−
∑n
t=2(1− φ(s))(µ(s) − h(s)

t−1)(2h
(s)
t − h

(s)
t−1(1 + φ(s))− µ(s)(1− φ(s)))

2
(
τ (s)

)2
}
.

(15)
Hence, the posterior odds can be given by

p(M0|y)

p(M1|y)
≈ B̂01 ×

π̂

1− π̂
(16)

where π̂ is the plug-in estimate using the uniform hierarchical prior speci-
fication.

4. A SIMULATION STUDY

In this section, we check the reliability of the proposed Bayesian unit
root test procedure using simulated data. For the purposes of comparison,
the same design as in SL is adopted. In particular, for φ, three true values
are considered, 1, 0.98, 0.95, corresponding to the nonstationary case, the
nearly nonstationary case, and the stationary case. The other two param-
eters are set at τ = −9, σ2 = 0.1. These values are empirically reasonable
for daily equity returns. Three different sample sizes have been considered,
500, 1000 and 1500. The number of replications is always fixed at 100.

For the mixed prior of φ, three distributions have been considered for
fC(φ) in (12), namely, U(0, 1), Beta(10, 1), Beta (20, 2).3 These three
distributions were used as the priors for φ in SL. A key difference is that we
mix them with a point mass at unity with probability π and estimate π from
actual data. Both the pure priors and the mixed prior are implemented in
combination with our new way of computing the posterior odds. Denote
the Bayesian estimator in association with a pure prior by φ̃ and that in
association with the mixed prior of the form (12) by φ̂.

3SL used four prior distributions for φ. When implementing them in WinBUGS,
unfortunately, we found there was a trap error with the truncated normal prior. As a
result, the truncated normal is not considered here.
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It is important to emphasize that our proposed unit root approach in-
volves two steps. In the first step, the uniform prior defined in the interval
(0,1) is assigned to the weight π and a MCMC algorithm is implemented
to fit the stationary model and to produce a Bayesian estimate for π. In
the second step, based on the estimated weight, we compute log01(POR)
for the unit root test using the same MCMC output.

TABLE 1.

Posterior mean of π and φ and log01(POR) from simulated data. π̂,

φ̂, and SE(φ) are obtained using the mixed prior with fC being
U(0, 1). φ̃, SE(φ̃) are obtained using the pure prior U(0, 1).

n φ = 1 φ = 0.98 φ = 0.95

500 π̂ 0.660398 0.594336 0.453336

SE(π̂) 0.239676 0.263729 0.269372

φ̂ 0.999672 0.992187 0.957713

SE(φ̂) 0.001221 0.011537 0.029694

log01(POR) 0.660653 −0.465388 −1.767029

500 φ̃ 0.994510 0.972956 0.942451

SE(φ̃) 0.003729 0.013400 0.026063

1000 π̂ 0.657433 0.489338 0.354721

SE(π̂) 0.239337 0.271226 0.244838

φ̂ 0.999496 0.985573 0.952437

SE(φ̂) 0.000821 0.010954 0.017481

log01(POR) 0.571005 −1.552973 −3.679288

1000 φ̃ 0.996557 0.977271 0.949703

SE(φ̃) 0.002026 0.008692 0.016123

1500 π̂ 0.659380 0.410694 0.335646

SE(π̂) 0.238388 0.259901 0.236373

φ̂ 0.999708 0.982465 0.951085

SE(φ̂) 0.000428 0.008408 0.012562

log01(POR) 0.621857 −2.522120 −5.839594

1500 φ̃ 0.997878 0.978930 0.950531

SE(φ̃) 0.001234 0.006725 0.012459

Following the suggestion of Meyer and Yu (2000), we make the use of a
freely available Bayesian software, WinBUGS, to do the Gibbs sampling.
WinBUGS provides an easy and efficient implementation of the Gibbs sam-
pler. It has been extensively used to estimate various univariate and multi-
variate SV models in the literature; see for example, Yu (2005) and Yu and
Meyer (2006). In each case, we simulated 15000 samples with 10000 dis-
carded as burn-in samples. The simulation studies are implemented using
R2WinBUGS (Sturtz, Ligges, and Gelman, 2005).
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TABLE 2.

Posterior mean of π and φ and log01(POR) from simulated data. π̂, φ̂, and
SE(φ) are obtained using the mixed prior with fC being Beta(10, 1).

φ̃, SE(φ̃) are obtained using the pure prior Beta(10, 1).

n φ = 1 φ = 0.98 φ = 0.95

500 π̂ 0.613521 0.462330 0.368495

SE(π̂) 0.257304 0.273583 0.253513

φ̂ 0.997468 0.978772 0.952226

SE(φ̂) 0.003738 0.015827 0.025402

log01(POR) 0.436139 −0.870776 −1.798431

500 φ̃ 0.992543 0.971148 0.947974

SE(φ̃) 0.004852 0.014535 0.023358

1000 π̂ 0.632616 0.393827 0.336252

SE(π̂) 0.251075 0.260068 0.237112

φ̂ 0.999229 0.980816 0.948146

SE(φ̂) 0.001390 0.010063 0.016493

log01(POR) 0.496278 −1.646592 −3.905835

1000 φ̃ 0.996644 0.978345 0.948466

SE(φ̃) 0.002078 0.008649 0.016126

1500 π̂ 0.645280 0.361362 0.333793

SE(π̂) 0.246506 0.249318 0.235888

φ̂ 0.999686 0.981888 0.948119

SE(φ̂) 0.000668 0.007208 0.012976

log01(POR) 0.578791 −2.339415 −6.285648

1500 φ̃ 0.998080 0.980844 0.947987

SE(φ̃) 0.001183 0.006389 0.013045

Tables 1-3 report the estimates of φ (obtained as the posterior mean
of φ), the standard errors of φ (SE hereafter, defined as the mean of the
standard errors of φ, averaged across the replications), the estimate of π,
and the mean values of log01(POR) when the mixed priors are used. When
the pure priors are used, we reports the estimates of φ and the SE of φ. The
three tables correspond to the three different priors, respectively, and are
compared to Table 1 in SL where the BF is calculated using the marginal
likelihood method.

The following conclusions may be drawn after we examine the three ta-
bles and compare them to Table 1 in SL. First, the estimates of φ are always
close to the true value and the SEs are always small, suggesting MCMC
provides reliable estimates on φ with both sets of priors. Furthermore, the
behavior of estimates improves (smaller bias and SE) when the sample size
increases. Second, when data are generated from a unit root model, using
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TABLE 3.

Posterior mean of π and φ and log01(POR) from simulated data. π̂, φ̂, and
SE(φ) are obtained using the mixed prior with fC being Beta(20, 2).

φ̃, SE(φ̃) are obtained using the pure prior Beta(20, 2).

n φ = 1 φ = 0.98 φ = 0.95

500 π̂ 0.637654 0.504941 0.376864

SE(π̂) 0.247124 0.273527 0.253784

φ̂ 0.997752 0.983746 0.947044

SE(φ̂) 0.003408 0.014309 0.025526

log01(POR) 0.773400 −0.551413 −1.960837

500 φ̃ 0.989874 0.972451 0.942477

SE(φ̃) 0.005208 0.012176 0.022994

1000 π̂ 0.653888 0.425385 0.336909

SE(π̂) 0.241840 0.264469 0.238225

φ̂ 0.999518 0.981596 0.948867

SE(φ̂) 0.001055 0.010266 0.015704
ˆlog01(POR) 0.954405 −1.579565 −3.945060

1000 φ̃ 0.995418 0.976659 0.948180

SE(φ̃) 0.002178 0.008084 0.015282

1500 π̂ 0.656273 0.366009 0.333473

SE(π̂) 0.239154 0.249150 0.235813

φ̂ 0.999561 0.979079 0.949505

SE(φ̂) 0.000560 0.007606 0.012501

log01(POR) 0.999422 −2.668887 −6.001346

1500 φ̃ 0.997143 0.977704 0.949588

SE(φ̃) 0.001303 0.006501 0.012410

a mixed prior always leads to better estimates of φ than using a pure prior.
The bias is smaller and the SE is also reduced. Third, in the two sta-
tionary cases, no prior dominates the other although the pure priors tend
to lead to a slightly smaller SE. There is no pattern in the bias, however.
Fourth, when 500 observations are generated from a stationary model with
φ = 0.98 and a pure uniform prior is used, SL found that log01(POR)
took a wrong sign, suggesting that on average a unit root model cannot be
rejected even though data are simulated from the stationary model. When
the mixed priors are used, the sign of log01(POR) becomes negative which
is the correct sign. This piece of evidence suggests that the mixed priors
improve the power of the test. Fifth, when data are generated from a unit
root model, our estimate of π is always larger than 0.5. This result is
encouraging and, as it will be shown below, helps improve the “size” and
“power” performances of our test relative to the test of SL.
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TABLE 4.

Proportion of correct decisions by the two methods

φ Prior n = 500 n = 1000 n = 1500

1 Uniform 83 (96) 83 (90) 82 (84)

Mixed Uniform 96 91 91

Beta1 70 (86) 78 (75) 84 (73)

Mixed Beta1 76 87 90

Beta2 82 (85) 86 (84) 89 (82)

Mixed Beta2 88 90 92

0.98 Uniform 91 (36) 99 (64) 100 (73)

Mixed Uniform 79 97 100

Beta1 92 (60) 98 (66) 100 (89)

Mixed Beta1 90 97 100

Beta2 86 (50) 99 (80) 100 (85)

Mixed Beta2 77 96 100

0.95 Uniform 100 (82) 100 (98) 100 (100)

Mixed Uniform 100 100 100

Beta1 100 (89) 100 (97) 100 (100)

Mixed Beta1 100 100 100

Beta2 100 (93) 100 (100) 100 (100)

Mixed Beta2 98 100 100

Both the pure priors and mixed priors are used in conjunction
with the proposed method of computing the BF. The numbers
are obtained from 100 replications. The numbers in parentheses
are extracted from Table 2 of SL where the marginal likelihood
method is used to compute the BF.

Table 4 reports the proportion of the correct decision over the 100 repli-
cations when both the mixed priors and the pure priors are used in con-
junction with the BF (15). The results for the pure priors are compared to
those reported in Table 2 of SL where the marginal likelihood method was
used. Several results emerge from Table 4 and the comparison of Table 4
with Table 2 of SL. First, when the marginal likelihood method is used to
compute the BF, the “size” of the unit root test diverges. For example, the
test of SL chooses the correct model 96%, 86% and 85% of the time when
500 observations are used but only 84%, 73% and 82% of the time when
1500 observations are used for the three priors, respectively. This result
is no way satisfactory because it suggests that more data does one have,
less reliable the unit root test is. When the BF is computed using (15),
without changing the priors of SL, we find the “size” does not diverge any
more. The correct model is chosen 83%, 70%, and 82% of the time when
500 observations are used and 82%, 84%, and 89% of the time when 1500
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observations are used. However, the “type I” errors are not in acceptable
range.

Second, comparing the performance of the pure priors and the mixed
priors, the pure priors seem to be have higher “power” than the mixed
priors. However, when the sample size is large or φ is not so close to unity,
the difference in power disappear. Moreover, the gain in “power” comes
with the cost of lower “size”. This is true even when the sample size is
1500. Third, formula (15) not only ensures an converged size, but also
increases the power of the unit root tests, when either the pure priors or
the mixed priors are used. For example, when φ = 0.98 and the sample
size is 1000, the marginal likelihood approach of SL has a power of 66%
while the pure and the mixed Beta1 priors have a power of 98% and 97%,
respectively. The gain is remarkable because there is also substantial gain
in “size” at this sample size.

5. AN EMPIRICAL STUDY

In the empirical study, a direct comparison is done between this paper
and SL. The data used by SL is also used for this paper.4 To preserve
space, however, we only report the empirical results for the Taiwan Stock
Exchange Weighted Stock Index (TWSI). The empirical results for the
other indices are qualitatively the same. In this case, we only use one
common mixed prior for φ in which fC(φ∗) is assumed to be Beta(20, 1.5)
where φ = 2φ∗−1. We always simulated 35000 random samples with 10000
discarded as burn-in samples.

In addition to test for a unit root in the simple log-normal SV model, we
also estimate the following SV-t model

yt = exp(ht/2)ut, ut ∼ t(k), (17)

ht = τ + φ(ht−1 − τ) + σvt, vt ∼ N(0, 1), (18)

and test for a unit root under the more general setting. It is well known in
the literature that the simple log-normal SV model cannot produce enough
kurtosis as it is observed in actual data. This is the main motivation for
introducing a fat-tailed conditional distribution of the error term ut. Here
we use a t distribution with k degrees of freedom that allows for Levy jumps
in return process. The empirical importance of Levy jumps was shown in
a recent study by Li, et al. (2009). Relative to the normal distribution,
the t distribution will absorb some abnormal behavior in ht, as a result,
we expect that the volatility process, ht, is smoother, making the unit root
model more difficult to reject. Following much of the literature, we rewrite

4We wish to thank Mike So to share the data with us.
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the t distribution with a normal scale mixture representation, namely,

ut|wt ∼ N(0, w−1
t ), wt ∼ Γ(k/2, k/2).

It is easy to show that for the SV-t model, the BF has the same expression
as in (15).

Table 5 report the posterior mean of φ, π, log01(BF) and log01(POR) for
TWSI used by SL. The empirical results based on the simple log-normal
SV model suggest that although the posterior mean of φ is so close to
unity and the estimate of π is large than 0.5, we still reject the unit root
hypothesis. The marginal likelihood of the estimated stationary model
is so much larger than that of the estimated unit root model so that the
adjustment from the estimated π is not able to change the sign of log01(BF)
in log01(POR). This result perhaps explain why SL got the conflicting
empirical results when different priors are used. Interestingly, when the
SV-t model is estimated, the estimated degrees of freedom parameter is
very large (29.17), suggesting that the t-distribution does not make much
contribution to the model. Not surprisingly, the results for the unit root
test remain nearly the same. However, the estimated volatility process is
smoother in the SV-t model.

TABLE 5.

Empirical results from TWSI

Model φ π k log01(BF) log01(POR)

SV 0.9994 0.6204 NA −0.9335 −0.7109

SV-t 0.9997 0.6358 29.17 −0.7688 −0.5268

6. CONCLUSION

The main purpose of this paper is to provide an improved Bayesian
approach for testing the unit root hypothesis in volatility in the context of
SV models. The test procedure is based on the posterior odds. Unlike the
parameter estimation which permits the use of objective and uninformative
priors, the BF is ill-defined because it depends on the arbitrary constants.
As a result, an informative prior has to be used in order to do the posterior
odds analysis.

To overcome this difficulty, one simple method suggested in Kass and
Raftery (1995) is to use part of the data as a training sample which is com-
bined with the noninformative prior distribution to produce an informa-
tive prior distribution. The BF is then computed from the remainder of the
data. However, the selection of the training sample may be arbitrary. Other
empirical measures, such as intrinsic BF of Berger and Pericchi (1996) and
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fractional BF of O’Hagan (1995), also involve with theoretical or practical
problems. To the best of our knowledge, there is no satisfactory method
to solve this Jeffreys-Lindley-Bartlett’s paradox. In this paper, we intro-
duce a mixed informative prior distribution with a random weight for the
Bayesian unit root testing. The improved method for computing the BF
is numerically stable and easy to implement. We illustrate the method us-
ing both simulated data and real data. Simulations show that our method
improve the performance of the unit root test of So and Li (1999) in terms
of both the “size” and the “power”. Empirical analysis, based the equity
data of TWSI, shows that the unit root hypothesis is also rejected when
our method is used.

Although we use the unit root in volatility to describe high volatility
persistency, no mean the unit root model is the only way to produce high
persistency in volatility. Other models, which can potentially explain high
persistency in volatility, include the fractionally integrated SV models and
the SV model with a shift in mean and/or a shift in persistency. Although
we do not pursuit this direction of research here, our method can be adopted
and modified to compare some of these alternative models.
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