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Abstract: Vector Autoregression (VAR) has been a standard empirical tool used in

macroeconomics and finance. In this paper we discuss how to compare alternative VAR

models after they are estimated by Bayesian MCMC methods. In particular we apply a

robust version of deviance information criterion (RDIC) recently developed in Li et al.

(2014b) to determine the best candidate model. RDIC is a better information criterion

than the widely used deviance information criterion (DIC) when latent variables are in-

volved in candidate models. Empirical analysis using US data shows that the optimal

model selected by RDIC can be different from that by DIC.
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1 Introduction

In the past thirty years, Vector Autoregression (VAR) has been widely used to capture

the linear interdependencies among multiple time series of macroeconomic variables and
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financial variables. Consequently, VAR models have evolved as a standard tool for evalu-

ating the monetary policy, for predicting macroeconomic variables and financial variables,

and for the impulse response analysis. In VAR, each variable has an equation explaining

its evolution based on its own lags and the lags of the other variables. Unfortunately,

typically economic theory is silent about the choice of the lag length and hence such a

choice must be determined by data at hand. When the lag length is not small and when

the system is of moderate size, there is a large number of parameters in VAR and, hence,

the identification and the estimation of VAR may be a formidable task; see for example,

Ni and Sun (2003).

In large cross-sections of time series, factor models, with a small number of common

latent factors, have been employed to alleviate the problem of a large number of parame-

ters; see, for example, Forni et al. (2003), Stock and Watson (2002a,b), Bernanke and

Boivin (2003), Bovin and Ng (2005). Obviously, an important choice is the number of

common factors. More often than not, the common factors are assumed to follow a VAR

model. In this case, another important choice is the lag length. As in the case of the basic

VAR models, usually economic theory does not offer guidance to choose the lag length in

the factor VAR models. Once again, how many lags to be used is an important empirical

question.

Frequentist’s inferential approaches have proven diffi cult for estimating some VAR

models. Consequently, Bayesian approaches have been increasingly popular for estimating

VAR models; see, for example, Koop and Korobilis (2009), Otrok and Whiteman (1998),

Kose et al. (2003, 2008), Bernanke et al. (2005), Bai and Wang (2012). In particular,

with the advance of MCMC algorithms and expanded computing facility, Bayesian MCMC

methods have been routinely used for estimating VAR.

The question we ask in this paper is the following. After a set of candidate VAR

models have been estimated by MCMC, with some candidate models involving latent

common factors, how should one select the optimal model? Model comparison is one of

the most important statistical inferences that one has to face; see, for example, Phillips

(2005, 2006). In the Bayesian literature, Bayes factor (BF) (Kass and Raftery (1995)) is

arguably the most popular tool for Bayesian model comparison. However, BF is subject

to some theoretical drawbacks as well as some computational limitations. For instance, it

suffers from the well-known Jeffreys-Lindley paradox; see Robert (2001), Li and Yu (2012).

For another example, calculation of BF requires the evaluation of marginal likelihood. For

some VAR models, marginal likelihood involves high-dimensional integrations numerically.

This is the case for the factor VAR models when factors are latent. Consequently, the
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implementation of BF entails high computational cost.

As an alternative approach to BF, a recent contribution to Bayesian model comparison

is the Deviance information criterion (DIC) of Spiegelhalter et al. (2002). DIC can

be understood as the Bayesian version of the Akaike information criterion (AIC, Akaike

(1973)). As shown in Spiegelhalter et al. (2002), DIC is relatively simple to compute from

the MCMC output, compared with BF. Moreover, it is immune to the Jeffreys-Lindley

paradox.

However, as pointed out by Li et al. (2014b), the original DIC, developed by Spiegelhal-

ter et al. (2002) and implemented in a Bayesian software WinBUGS, is not asymptotically

justified for models that involve latent variables. Consequently, Li et al. (2014b) advo-

cated the use of a robust version of DIC (RDIC) for comparing models involving latent

variables. In this paper, we examine the performance of DIC and RDIC for comparing

VAR models, with and without latent variables.

The paper is organized as follows. In Section 2, we introduce the VAR models and

review the Bayesian MCMC methods. Section 3 reviews DIC and RDIC and shows how to

calculate RDIC for the VAR models. Section 4 compares DIC and RDIC using real data.

Section 5 concludes the paper. Appendix collects the derivations needed for computing

RDIC.

2 Bayesian Analysis of VAR Models

In this section, we first give a simple description of the VAR models. The basic VAR(p)

model is of the form

yt = a0 +

p∑
j=1

Ajyt−j + εt, (1)

where yt is an N × 1 vector containing T observations, εt an N × 1 vector of errors which

is i.i.d. N (0,Σ), a0 an N ×1 vector of intercepts, Aj an N ×N matrix of coeffi cients, and

p the lag length.

The above VAR model can also be written in the matrix form

y = XA+ E,

or

Y = (IM ⊗X)α+ ε,

where y is a T × N matrix which stacks the T observations on each dependent variable

in columns next to one another, E = (ε1, ε2, ..., εT )′, xt =
(
1, y′t−1, ..., y

′
t−p
)′ and X =

3



(x′1, ..., x
′
T )′, a T ×K matrix, K = 1 +Np, A = (a0, A1, ..., Ap)

′, Y = vec(y), α = vec(A),

ε = vec(E) ∼ N (0,Σ⊗ IT ).

VAR may not be parsimonious since there may be a great many coeffi cients in it.

With the typical sample size for macroeconomic variables, it is not easy to obtain reliable

estimates when the dimension of the parameter space is very large. Bayesian estimation is

attractive because the prior information provides a logical and formally consistent way of

introducing shrinkage to reduce the over-parametrizations problem (Koop and Korobilis

(2009)).

Following Koop and Korobilis (2009), for a given lag length p, we implement Bayesian

analysis with the natural conjugate priors:

α|Σ ∼ N (0,Σ⊗ V ) ,

and

Σ−1 ∼Wishart
(
S−1, v

)
,

where

α = vec (A) , V = 10× IK , S−1 = IN , v = N + 1.

As a result, the posterior distribution is

α|Σ,y ∼ N
(
α̂,Σ⊗

(
X ′X

)−1
)
,

and

Σ−1|y ∼Wishart
(
S−1, T −K −N − 1

)
,

where Â = (X ′X)−1X ′y, α̂ = vec
(
Â
)
and S =

(
y −XÂ

)′ (
y −XÂ

)
.

To reduce the dimensionality of the parameter space in (1), one may consider intro-

ducing a smaller number of dynamic factors, ft, so that

yt = Lf t + et, (2)

f t = Φ1f t−1 + · · ·+ Φhf t−h + εt, (3)

where f t is the q×1 (q < N) latent dynamic factor which follows a VAR specification, L the

N × q dynamic factor loading, Φj the q× q matrix, et i.i.d. N (0,Σ), and εt i.i.d. N (0, Q).

We assume {et}Tt=1 is independent of {εt}
T
t=1. Following Bai and Wang (2012), we assume

the number of dynamic factors q does not depend on h. To achieve the identification of

the factor VAR model, we set the upper q × q block of L to an identity matrix, that is

L =

[
Iq
∗

]
.
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This identification restriction was also used in Bernanke et al. (2005).

For the basic VAR models, the likelihood function, p(y|θ), has an analytical form,

where the observed data is denoted as y = (y1, · · · , yT )′ and θ contains the model para-

meters. Hence, the posterior distribution p(θ|y) is easy to obtain, that is,

p(θ|y) ∝ p(y|θ)p(θ).

For the factor VAR model, denote the latent factors f = (f1,f2, · · · ,fT )′. In this

case, the likelihood function involves unobserved dynamic factors, that is,

p(y|θ) =

∫
p(y,f |θ)df ,

where p(y,f |θ) is the so-called complete data likelihood function. Not surprisingly, the

estimation of the factor VAR model is more diffi cult by the classical estimation procedures.

However, with the help of the data-augmentation strategy of Tanner and Wang (1987)

and the MCMC techniques, Bayesian approach can easily provide the full likelihood in-

ference of the factor VAR model. The idea is to augment the parameter space from θ to

(θ,f). As a result, given p, h, and q, the new posterior distribution is

p(θ,f |y) ∝ p(θ,f ,y) = p(y|θ,f)p(f |θ)p(θ), (4)

where

p(y|θ,f) =

T∏
t=1

p(yt|θ,f),

p(f |θ) =p(f0|θ)
T∏
t=1

p(f t|f t−1,θ).

MCMC techniques may be used to obtain random samples from the posterior distrib-

ution (4). Bayesian estimates of θ and the latent volatilities f can be obtained easily via

the corresponding means of random samples. Specifically, let {θ(j),f (j), j = 1, 2, · · · , J}
be the effi cient random samples generated from the joint posterior distribution p(θ,f |y)

after discarding the burn-in samples. Then the posterior mean of θ,f can be obtained by

θ̂ =
1

J

J∑
j=1

θ(j), f̂ =
1

J

J∑
j=1

f (j). (5)

Similarly, the posterior variance of θ can be obtained by

V̂ ar(θ|y) =
1

J − 1

J∑
j=1

(
θ(j) − θ̂

)(
θ(j) − θ̂

)′
.
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3 Deviance Information Criterion for VAR Models

In the Bayesian literature, there are two popular tools for model comparison. The first

one is BF (Kass and Raftery, 1995), while the other is DIC (Spiegelhalter et al. (2002)).

Given two candidate models M1 and M2, BF is given by

B12 =
p(y|M1)

p(y|M2)
, (6)

where p(y|Mk), k = 1, 2 is the marginal likelihood of Mk, and can be obtained by inte-

grating over the support of the parameters and latent states, that is,

p(y|Mk) =

∫
Ωk∪Ωω

p(y,f |θk,Mk)p(θk|Mk)dfdθk, θk ∈ Ωk, k = 1, 2.

However, if a vague prior is adopted, BF suffers from the Jeffreys-Lindley paradox. As

pointed out by Kass and Raftery (1995), when a proper prior with a very large spread is

used to represent the prior ignorance, this behavior will force the BF to favor its compet-

itive model; see Example 1 in Li et al. (2014a) for an illustration of this problem.

Moreover, calculation of BF in general necessitates the evaluation of marginal like-

lihood which is a marginalization over the parameter vectors in each candidate model.

When the dimension of the parameter space is large, the high-dimensional integration

entails high computational cost.

DIC was recently proposed and heuristically justified by Spiegelhalter et al. (2002)

based on the classical asymptotic theory.1 It is calculated in a Bayesian software WinBUGS

and widely used in the Bayesian community to compare alternative models. The basic

form of DIC can be expressed as follows:

DIC = D(θ̄) + 2PD = D(θ) + PD, (7)

D(θ̄) = −2 log p(y|θ̄), D(θ) = −2

∫
log p(y|θ)p(θ|y)dθ, (8)

PD = −2

∫
[log p(y|θ)− log p(y|θ̄)]p(θ|y)dθ = D(θ)−D(θ̄), (9)

where θ̄ is the Bayesian estimator, D(θ) a Bayesian measure of fit which may be better

considered as a measure of ‘adequacy’, and PD a Bayesian measure of model complexity.

One advantage of DIC is that it is immune to Jeffreys-Lindley paradox. However, it is

1The rigorous asymptotical justification of DIC is given in Li et al (2014b). let yrep =
(y1,rep,y2,rep, · · · ,yn,rep) be the independent replicate data generated by the same mechanism that gives
rise to the observed data y. Spiegelhalter, et al (2002, Page 604) proposed to choose the loss function
L (yrep,y) = −2 log p

(
yrep|θ̄(y)

)
. Li et al (2014b) showed that such a loss function cannot be used to

justify DIC. By choosing the loss function as L (yrep,y) = −2 log p (yrep|y), under regular conditions, Li
et al (2014b) asymptotically justified DIC in Theorem 3.2.

6



important to point out that DIC addresses how well the posterior might predict future

data generated by the same mechanism that gave rise to the observed data. This is

different from BF which addresses how observed data are predicted by the priors. Perhaps

this difference makes DIC more suitable for comparing alternative VAR models when the

primary objective of VAR is forecasting.

When the likelihood function p(y|θ) is available in closed-form, MCMC is easy to

implement and DIC is easy to calculate. For a VAR model with latent variables, to

facilitate MCMC simulations, the data augmentation strategy is often used, as shown in

Section 2. With data augmentation, Spiegelhalter et al. (2002) suggested the following

way to compute DIC:

DIC∗ = D∗(θ̄,f) + 2P ∗D = D∗(θ,f) + P ∗D, (10)

D∗(θ̄,f) = −2 log p(y|θ̄,f), (11)

D∗(θ,f) = −2

∫
log p(y|θ,f)p(θ,f |y)dθdf , (12)

P ∗D = −2

∫
[log p(y|θ,f)− log p(y|θ̄,f)]p(θ,f |y)dθdf , (13)

where f the Bayesian estimator of f . Obviously, the latent variables f are treated in the

same way as θ. This treatment greatly facilitates the calculation of DIC∗ from an MCMC

output when the new likelihood function, p(y|θ,f), is available in closed-form, a case for

the factor VAR model.

While computationally tractable, unfortunately, data augmentation invalidates the

theoretical underpinnings of DIC∗ since it makes the likelihood function, p(y|θ,f), non-

regular. This is because the dimension of the parameter space (θ,f) increases as the

sample size increases. In particular, the non-regular likelihood problem does not lead to

the asymptotic normality in the posterior distribution of (θ,f). Moreover, DIC∗ can be

highly sensitive to nonlinear transformations of latent variables and distributional repre-

sentations of model specification. In a recent study, Chan and Grant (2014) showed that

DIC∗ has a larger variability than DIC in the context of latent variable models.

To overcome this problem, Li et al. (2014b) proposed a robust version of DIC (RDIC)

for comparing latent variable models. RDIC is easy to compute and robust to nonlinear

transformations of latent variables and distributional representations of model specifica-

tion. The RDIC is given by:

RDIC = D(θ̄) + 2tr
{
I(θ̄)V (θ̄)

}
= D(θ̄) + 2PRD, (14)

where

PRD = tr
{
I(θ̄)V (θ̄)

}
, (15)
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with tr denoting the trace of a matrix,

I(θ) = −∂
2 log p(y|θ)

∂θ∂θ′
, V (θ̄) = E

[(
θ − θ̄

) (
θ − θ̄

)′ |y] .
Under regular conditions, Li et al. (2014b) showed that PRD = PD+op(1), RDIC=DIC+op(1),

where DIC, RDIC, PD and PRD are defined in (7), (14), (9), and (15), respectively. The

conditions include the regular conditions to the Bayesian large sample theory; see for

example, Chen (1985). In addition, it is required that the data generating process is sta-

tionary and that the model is regular so that the standard maximum likelihood theory

can be applied.

We should point out that RDIC is different from Takeuchi Information Criterion (TIC,

Takeuchi (1976)) which is defined as

TIC = −2 log p(y|θ̂ML) + 2tr
{

J(θ̂ML)I−1(θ̂ML)
}

where yt−1 = (y1, y2, · · · , yt−1),θ̂ML is the ML estimator of θ, J(θ̂ML) is a consistent

estimate of the long run variance. TIC can be equivalently written as

TIC = −2 log p(y|θ̂ML) + 2tr
{

I(θ̂ML)Σ̂(θ̂ML)
}
,

where

Σ̂(θ̂ML) = I−1(θ̂ML)J(θ̂ML)I−1(θ̂ML),

is the so-called sandwich covariance matrix for θ̂ML. Although tr
{
I(θ̄)V (θ̄)

}
and

tr
{

I(θ̂ML)Σ̂(θ̂ML)
}
are similar, a closer comparison of them shows important differ-

ences. First, tr
{

I(θ̂ML)Σ̂(θ̂ML)
}
in TIC is based on the ML estimation, whereas

tr
{
I(θ̄)V (θ̄)

}
in RDIC is based on the Bayesian estimation. Second, Σ̂(θ̂ML) in TIC

requires the inversion of the matrix I(θ). When the dimension of θ is high, I(θ) may be

diffi cult to invert. However, in RDIC, there is no need to invert any matrix. Third, like

AIC, RDIC requires the model be correctly specified, but TIC relaxes this assumption.

It should be pointed out that, like AIC, RDIC does not have the consistent property

for the true model. This is different from the Bayesian information criterion such as

BIC (Schwarz, 1978) that approximates BF in large sample (Kass and Raftery, 1995).

Compared to BF, hence, we expect RDIC tends to choose less parsimonious models. This

comparison is similar to between of AIC and BIC.

The RDIC clearly requires the evaluation of the observed information matrix and

the second derivative of the observed-data likelihood function. For most latent variable

models, the observed-data likelihood function does not have a closed-from expression so
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that the second derivatives are diffi cult to evaluate. However, with the help of the EM

algorithm, the second derivatives can be easily approximated. In particular, under the

mild regularity conditions, Louis (1982) derived the observed information matrix as:

I(θ) = Ef |y,θ

{
−∂

2 log p(y,f |θ)

∂θ∂θ′

}
− V arf |y,θ

{
∂ log p(y,f |θ)

∂θ

}
= Ef |y,θ

{
−∂

2 log p(y,f |θ)

∂θ∂θ′
− ∂ log p(y,f |θ)

∂θ

∂ log p(y,f |θ)

∂θ′

}
+Ef |y,θ

(
∂ log p(y,f |θ)

∂θ

)
Ef |y,θ

(
∂ log p(y,f |θ)

∂θ′

)
,

where the expectations are taken with respect to the conditional distribution of f given

y and θ. Hence, the information matrix can be approximated by:

Ef |y,θ

{
−∂

2 log p(y,f |θ)

∂θ∂θ′
− ∂ log p(y,f |θ)

∂θ

∂ log p(y,f |θ)

∂θ′

}
≈ − 1

M

M∑
m=1

{
∂2 log p(y,f (m)|θ)

∂θ∂θ′
+
∂ log p(y,f (m)|θ)

∂θ

∂ log p(y,f (m)|θ)

∂θ′

}
,

Ef |y,θ

(
∂ log p(y,f |θ)

∂θ

)
≈ 1

M

M∑
m=1

∂ log p(y,f (m)|θ)

∂θ
,

For more details, one can refer to Li et al. (2014b).

In this paper, we calculate DIC, DIC∗ and RDIC for the basic VAR models and the

VAR models with latent variables. For the basic VAR model, all three statistics are easy to

compute and PD = P ∗D, DIC=DIC∗. For the factor VAR models, DIC is computationally

much more demanding than DIC∗ and RDIC. DIC∗ is routinely reported in the literature.

4 Empirical Study

In this section, we will determine the optimal lag length in the basic VAR model (q)

and optimal lag length in the factor VAR model (h) using real data. In particular, we

fit both the basic VAR models and the factor VAR models to the quarterly U.S. data

on the inflation rate πt (the annual percentage change in a chain-weighted price index),

the unemployment rate ut (the seasonally adjusted unemployment rate) and the interest

rate rt (the yield on the three month Treasury bill rate). The data have been previously

used by Koop and Korobilis (2009), Koop and Potter (2011). The sample period is from

1953Q1 to 2006Q3.

We first use DIC, DIC∗ and RDIC to select the optimal lag in the basic VAR model.

In the empirical analysis, yt = (πt, ut, rt) and N = 3. The prior is set at

V = 10× IK , S−1 = IM , v = N + 1.
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For the basic VAR models, we allow nine different lag lengths, i.e., p = 1, ..., 9. Without

latent variables in the models, DIC=DIC∗.

To compute DIC, we draw 12, 000 samples from the posterior distribution and discard

the first 2, 000 draws. Since both the posterior distribution and the second order derivatives

have the analytical form, we can easily compute RDIC using the posterior mean of the

parameters. Table 1 reports DIC, PD, RDIC and PRD for the candidate models. Several

conclusions can be drawn from Table 1. First, both RDIC and DIC suggest that p = 6 is

the best model. Second, RDIC and DIC take nearly identical values in all the candidate

models. This is not surprising since there is no latent variable in the basic VAR models.

P 1 2 3 4 5 6 7 8 9
PD 17.53 26.53 35.75 45.24 54.93 64.78 75.23 85.92 96.77
DIC 857.72 730.86 725.17 725.87 680.3 672.15 676.15 687.11 681.88
PRD 17.31 26.13 35.17 44.47 53.99 63.58 73.91 84.64 95.01
RDIC 857.28 730.06 724.06 724.34 678.41 669.76 673.5 684.53 679.01

Table 1: Model selection results for the basic VAR models

We then fit the data to the one-factor VAR model for h = 1, 2, 3, 4. With the latent

variables involved, DIC is no longer the same as DIC∗. To select the optimal lag length,

we use DIC, DIC∗ and RDIC. For simplicity, we assume R to be a diagonal matrix. The

priors are similar to those used in Bernanke et al. (2005), namely,

Σii ∼ IG (3, 0.001) , Li ∼ N (0,Σii × Iq) ,

vec (Φ) |Q ∼ N (0, Q⊗ Ω0) , Q ∼ Inverse−Wishart (Q0, q + 2) ,

where Σii is the ith diagonal element ofR and Li is the ith row of L (i > q), Φ = (Φ1, ...,Φh).

See Bernanke et al. (2005) for the construction of Ω0 and Q0.

Although DIC is in general diffi cult to calculate for latent variable models, in this

particular case, it can be obtained by using the Kalman filter. Of course, DIC is computa-

tionally much more expensive to compute than DIC∗ and RDIC. Using the Gibbs sampler,

we sample 22,000 random observations from the corresponding posterior distributions. We

discard the first 2,000 observations and keep the following 20,000 as the effective samples

from the posterior distribution of the parameters.

Table 2 reports DIC, PD, DIC∗, P ∗D, RDIC and PRD. Some findings arise from Table

2. First, both RDIC and DIC suggest that h = 2 is the best model, whereas DIC∗ selects

h = 3. Second, RDIC and DIC take nearly identical values in all the candidate models.

However, they take quite different values from DIC∗. This difference arises because the
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latent variables are included into the parameter space in DIC∗. As previously explained,

such an expansion of the parameter space undermines the theoretical justification of DIC∗

and should not be used to compare alternative models. In this particular case, the use of

DIC∗ will select too big a model although it is not clear if this is the common feature of

DIC∗ in general. Li et al (2014b) also report evidence that DIC∗ ranks the same models

with different representations differently.

h 1 2 3 4
P ∗D 216 243 233 238
DIC∗ 2294 1966 1941 1942
PRD 5.34 4.65 6.06 6.2
RDIC 2120.68 1879.1 1882.12 1880.1
PD 5.8131 5.9328 6.8114 7.3254
DIC 2121.9 1881.7 1884 1882.3

Table 2: Model selection results for the factor VAR models

5 Conclusion

This paper uses a robust deviance information criteria (RDIC) to determine the optimal

lag length in the basic VAR models and in the factor VAR models. When the latent

variable is treated as parameters to facilitate Bayesian parameter estimation, the widely

used DIC lacks of theoretical justification. This is because that the justification of DIC

relies on the validity of the standard Bayesian asymptotic theory. In particular, when

the latent variable is treated as parameters, the number of parameters increases with the

number of observations, making the likelihood nonregular. In the empirical analysis, we

show that in the basic VAR model where there is no latent variable, DIC and RDIC select

the same optimal model. However, in the factor VAR model where the factors are latent,

DIC and RDIC select the different optimal model.

6 Appendix

6.1 Appendix 1: The derivation of RDIC for the basic VAR(p) models

The log-likelihood function for VAR(p) model is:

log p (y|Σ, A) = −TN
2

ln 2π − T

2
ln |Σ| − 1

2
tr
[
Σ−1 (y −XA)′ (y −XA)

]
.
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Using the matrix differentiation rules of Magnus and Neudecker (1999), the first order

derivative is:

DA log p (y|Σ, A) =

[
vec

((
1

2

(
Σ−1′ + Σ−1

)
(y −XA)′X

)′)]′
,

DΣ log p (y|Σ, A) =

[
vec

((
−T

2
Σ−1 +

1

2
Σ−1 (y −XA)′ (y −XA) Σ−1

)′)]
,

and the second order derivatives are

DAA log p (y|Σ, A) = −1

2

((
Σ−1′ + Σ−1

)
⊗X ′X

)
,

DAΣ log p (y|Σ, A) = −1

2
KNK

([
(y −XA)′X

]′ ⊗ IN) (KNN + INN )
(
Σ−1 ⊗ Σ−1

)
,

DΣA log p (y|Σ, A) = DAΣ log p (y|Σ, A) ,

DΣΣ log p (y|Σ, A) = KNN


T
2

1
2

((
Σ−1

)′ ⊗ Σ−1 +
(
Σ−1

)′ ⊗ Σ−1
)

−1
2

( (
Σ−1 (y −XA)′ (y −XA) Σ−1

)′ ⊗ Σ−1

+
(
Σ−1

)′ ⊗ (Σ−1 (y −XA)′ (y −XA) Σ−1
) )

 ,

where where KNN is the commutation matrix for a matrix with N rows and N columns.

Since Σ is symmetric, define V Σ = vech (Σ) and we have an index matrix DV Σ (Σ) which

is defined as

DV Σ (Σ) = diag (R1, R2, ...Rm, ..., RN ) .

where

Rk =

[
0(m−1)×(N−m+1)

IN−m+1

]
N×(N−m+1)

.

Hence, the derivatives are

DA log p (y|Σ, A) =

[
vec

((
1

2

(
Σ−1′ + Σ−1

)
(y −XA)′X

)′)]′
DV Σ log p (y|Σ, A) = DΣ log p (y|Σ, A)×DV Σ (Σ)

DAA log p (y|Σ, A) = −1

2

((
Σ−1′ + Σ−1

)
⊗X ′X

)
,

DAV Σ log p (y|Σ, A) = DAΣ log p (y|Σ, A)×DV Σ (Σ) ,

DV ΣA log p (y|Σ, A) = D′AV Σ log p (y|Σ, A) ,

DV ΣV Σ log p (y|Σ, A) =
(
DV Σ (Σ)′ ⊗ I1

)
×DΣΣ log p (y|Σ, A)×DV Σ (Σ)

= DV Σ (Σ)′ ×DΣΣ log p (y|Σ, A)×DV Σ (Σ) .
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6.2 Appendix 2: The derivation of RDIC for the factor VAR model

The model can be written in matrix form

yt = Lf t + et,

f t = ΦFt−1 + εt,

where Φ = (Φ1,Φ2, ...,Φh), F t =
(
f ′t, ...,f

′
t−h+1

)′.
The complete data log-likelihood function is:

log f (y,f |L,Σ,Φ, Q) = −NT + q (T − h)

2
log 2π − T

2
log |Σ|

−1

2
tr
[
Σ−1

(
y − fL′

)′ (
y − fL′

)]
−T − h

2
log |Q| − 1

2
tr
[
Q−1

(
f+1 − f−1Φ′

)′ (
f+1 − f−1Φ′

)]
,

where f+1 =
[
fh+1,fh+2, ...,fT

]′, f−1 = [F h,F h+1, ...,F T−1]′. Denote this function by

ϕ(L,Σ,Φ, Q). We now derive the first and second derivative of it.

The first order derivatives of ϕ(L,Σ,Φ, Q):

Whenever there is no confusion, we denote ϕ(L,Σ,Φ, Q) simply by ϕ. The derivative

of ϕ(L,Σ,Φ, Q) with respect to L is

dL(ϕ) = d

(
−1

2
tr
[
Σ−1

(
y − fL′

)′ (
y − fL′

)])
= −1

2
tr
{
−Σ−1 (dL)f

′ (
y − fL′

)
+ Σ−1

(
y − fL′

)′ (
−f (dL)′

)}
=

1

2
tr
{

Σ−1dLf
′ (
y − fL′

)
+ Σ−1

(
y − fL′

)′
f (dL)′

}
=

1

2
tr
{
f
′ (
y − fL′

)
Σ−1dL+ dLf ′

(
y − fL′

) (
Σ−1

)′}
=

1

2
tr
{
f
′ (
y − fL′

) ((
Σ−1

)′
+ Σ−1

)
dL
}

= tr (c̃dL) ,

where

c̃ =
1

2
f
′ (
y − fL′

) ((
Σ−1

)′
+ Σ−1

)
.

Taking the vec operation, we get

d

(
vec

(
−1

2
tr
[
Σ−1(y − fL′)′(y − fL′)

]))
= d(vec(ϕ)) =

(
vec(c̃)′

)′
d(vec(L)).

The first derivative of ϕ (L,Σ,Φ, Q) is

DL (ϕ) =

(
vec

([
1

2
f
′ (
y − fL′

) ((
Σ−1

)′
+ Σ−1

)]′))′
.
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Similarly, we have

DΣ (ϕ) =

(
vec

(
−T − s

2
Σ−1 +

1

2
Σ−1

(
y − fL′

)′ (
y − fL′

)
Σ−1

)′)′
,

DΦ (ϕ) =

(
vec

([
1

2
f ′−1

(
f+1 − f−1Φ′

) ((
Q−1

)′
+Q−1

)]′))′
,

DQ (ϕ) =

(
vec

(
−T − h

2
Q−1 +

1

2
Q−1

(
f+1 − f−1Φ′

)′ (
f+1 − f−1Φ′

)
Q−1

)′)′
.

The second order derivatives of ϕ (L,Σ,Φ, Q):

The first order derivative of c̃ is

dc̃ = d

(
1

2
f
′ (
y − fL′

) ((
Σ−1

)′
+ Σ−1

))
= −1

2
f
′
f (dL)

′
((

Σ−1
)′

+ Σ−1
)
.

And the second order derivative is

d2
Lϕ = tr (dc̃ ∗ dL)

= tr

(
−1

2
f
′
f (dL)

′
((

Σ−1
)′

+ Σ−1
)
dL

)
.

Then, we have,

DL,L (ϕ) = −1

2

(
f
′
f ⊗

((
Σ−1

)′
+ Σ−1

))
,

H = G (T ) = T
′
, T = S (Σ) =

1

2
f
′ (
y − fL′

) ((
Σ−1

)′
+ Σ−1

)
,

D (G (T )) = KqN ,

D (S (Σ)) = IN ⊗
(
f
′ (
y − fL′

))
·
(
−1

2
(KNN + INN )

)
·
((

Σ−1
)′
⊗ Σ−1

)
,

DH (Σ) = (DG (T )) (DS (Σ)) ,

where KqM is the commutation matrix for a matrix with q rows and N columns. Thus,

we have

DL,Σ (ϕ) =
∂DL (ϕ)

(∂vecΣ)
′ = (DG (T )) (DS (Σ))

= KqN · IN ⊗
(
f
′ (
y − fL′

))
·
(
−1

2
(KNN + INN )

)
·
((

Σ−1
)′
⊗ Σ−1

)
,

DL,Φ (ϕ) = 0,

DL,Q (ϕ) = 0,

14



DΣ,Σ (ϕ) = KNN ·


T−s

2 ·
1
2

((
Σ−1

)′
⊗ Σ−1 +

(
Σ−1

)′
⊗ Σ−1

)
−1

2

 (
Σ−1 (y − fL′)

′
(y − fL′) Σ−1

)′
⊗ Σ−1

+
(
Σ−1

)′
⊗
(

Σ−1 (y − fL′)
′
(y − fL′) Σ−1

)

 ,

DΣ,Φ (ϕ) = 0,

DΣ,Q (ϕ) = 0,

DΦ,Q (ϕ)

= Kqq ·
(
IK ⊗ f ′−1

(
f+1 − f−1Φ′

))
·
(
−1

2
(Kqq + Iqq)

)
·
((
Q−1

)′
⊗Q−1

)
,

DΦ,Φ (ϕ) = −1

2

(
f
′
−1f−1 ⊗

((
Q−1

)′
+Q−1

))
,

DQ,Q (ϕ) = KKK

(
T − s

4

((
Q−1

)′
⊗Q−1 +

(
Q−1

)′
⊗Q−1

)
− 1

2
M

)
,

where

M = Q−1
(
f+1 − f−1Φ′

)′ (
f+1 − f−1Φ′

)
Q−1′ ⊗Q−1 +(

Q−1
)′
⊗
(

Σ−1
(
f+1 − f−1Φ′

)′ (
f+1 − f−1Φ′

)
Q−1

)
.

The special structure of the parameter matrices:

Let

L∗ = vec
(
L
)
,Σ∗ = diag (Σ) , Φ∗ = vec (Φ) , Q∗ = vech (Q) ,

where L is the last (N − q)×q block of L. We now obtain the derivative of these parameter
matrices.

The first order derivatives are as follows:

DL∗ (ϕ) = DL (ϕ) ·DL∗ (L (L∗)) = DL (ϕ) · İL∗ ,

DΣ∗ (ϕ) = DΣ (ϕ) ·DΣ∗ (Σ (Σ∗)) = DΣ (ϕ) · İΣ∗ ,

DΦ∗ (ϕ) = DΦ (ϕ) · İΦ∗ ,

DQ∗ (ϕ) = DQ (ϕ) · İQ∗ .
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The second order derivatives are as follows:

DL∗,L∗ (ϕ) = DL∗ (DL∗ (ϕ)) = DL∗
(
DL (ϕ) · İL∗

)
=

(
İ
′
L∗ ⊗ I1

)
·DL∗ (DL (ϕ))

=
(
İ
′
L∗ ⊗ I1

)
·DL,L (ϕ) · İL∗ ,

DL∗,Σ∗ (ϕ) = DΣ∗ (DL∗ (ϕ)) = DΣ∗

(
DL (ϕ) · İL∗

)
=

(
İ
′
L∗ ⊗ I1

)
·DΣ∗ (DL (ϕ))

=
(
İ
′
L∗ ⊗ I1

)
·DΣ (DL (ϕ)) ·DΣ∗ (Σ (Σ∗))

= İ
′
L∗ ·DL,Σ (ϕ) · İΣ∗ ,

DL∗,Φ∗ (ϕ) = 0,

DL∗,Q∗ (ϕ) = 0,

DΣ∗,Σ∗ (ϕ) = DΣ∗ (DΣ∗ (ϕ)) = DΣ∗

(
DΣ (ϕ) · İΣ∗

)
= İ

′
Σ∗ ⊗ I1 ·DΣ∗ (DΣ (ϕ))

= İ
′
Σ∗ ·DΣ (DΣ (ϕ)) · İΣ∗ ,

DΣ∗,Φ∗ (ϕ) = 0,

DΣ∗,Q∗ (ϕ) = 0.

DΦ∗,Φ∗ (ϕ) = İ
′
Φ∗ · (DΦ,Φ (ϕ)) · İΦ∗ ,

DΦ∗,Q∗ (ϕ) = İ
′
Φ∗ · (DΦ,Q (ϕ)) · İQ∗ ,

DQ∗,Q∗ (ϕ) = İ
′
Q∗ ·DQ,Q (ϕ) · İQ∗ ,

where DL∗ (L (L∗)) = İL∗ , DΣ∗ (Σ (Σ∗)) = İΣ∗ .

For İL∗ which is a block diagonal matrix, we have

İL∗ = diag (P1, P2, ..., Pq) ,

where

Pi =

[
0q×(N−q)
IN−q

]
.

And for İΣ∗ , which is an N2×N matrix whose nth column has 1 in the ((n− 1)×N + n)th

row and other elements are all zeros. For İΦ∗ , we have

İΦ∗ = Iq∗q.
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For İQ∗ , we have

İQ∗ = diag (R1, R2, ...Rk, ..., Rq) .

where

Rk =

[
0(k−1)×(q−k+1)

Iq−k+1

]
q×(q−k+1)

,

since Q is symmetric.

The first order derivative matrix of the complete-data likelihood with respect to L∗,Σ∗,Φ∗, Q∗

is:

vec
([

DL∗ (ϕ) DΣ∗ (ϕ) DΦ∗ (ϕ) DQ∗ (ϕ)
])
.

The second order derivative matrix of the complete data likelihood with respect to L∗,Σ∗,Φ∗, Q∗

is: 

DL∗,L∗ (ϕ) DL∗,Σ∗ (ϕ)
0 0

DΣ∗,L∗ (ϕ) DΣ∗,Σ∗ (ϕ)
0 0

0 0
DΦ∗,Φ∗ (ϕ) DΦ∗,Q∗ (ϕ)

0 0
DQ∗,Φ∗ (ϕ) DQ∗,Q∗ (ϕ)


.
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