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Abstract
Deviance information criterion (DIC) is a widely used information criterion for Bayesian

model comparison. In this paper a rigorous decision-theoretic justification of DIC is pro-
vided for models without latent variables or incidental parameters. For models with latent
variables, however, it is shown that the data augmentation technique undermines the the-
oretical underpinnings of DIC, although it facilitates parameter estimation via Markov
chain Monte Carlo (MCMC) simulation. Data augmentation invalidates the standard
asymptotic arguments and conventional estimators of latent variables may be inconsis-
tent. In this paper, a robust form of DIC, denoted as RDIC, is advocated for Bayesian
comparison of latent variable models. RDIC is shown to be a good approximation to
DIC without data augmentation. While the later quantity is diffi cult to compute, the
expectation —maximization (EM) algorithm facilitates the computation of RDIC when
the MCMC output is available. Moreover, RDIC is robust to nonlinear transformations of
latent variables and distributional representations of model specification. The proposed
approach is applied to several popular models in economics and finance.

JEL classification: C11, C12, G12
Keywords: AIC; DIC; EM Algorithm; Latent variable models; Markov Chain Monte Carlo.

1 Introduction

One of the most important developments in the Bayesian literature in recent years is arguably

the deviance information criterion (DIC) of Spiegelhalter, et al (2002). DIC is a Bayesian
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version of the well known Akaike Information Criterion (AIC) (Akaike, 1973). Like AIC, it

trades off a measure of model adequacy against a measure of complexity and is concerned

with how replicate data predict the observed data. DIC is constructed based on the posterior

distribution of the log-likelihood or the deviance, and has several desirable features. Firstly,

DIC is simple to calculate when the likelihood function is available in closed-form and the

posterior distributions of the models are obtained by Markov chain Monte Carlo (MCMC)

simulation. Secondly, it is applicable to a wide range of statistical models. Third, unlike

Bayes factors (BFs), it is not subject to Jeffery-Lindley’s paradox. However, as acknowledged

by Spiegelhalter, et al (2002, 2014), so far there is no rigorous decision-theoretic justification

of DIC in the literature. The first contribution of the present paper is to provide a rigorous

justification when the standard Bayesian large sample theory is valid.

An important class of models in economics and finance involves latent variables. Latent

variables have figured prominently in consumption decision, investment decision, labor force

participation, conduct of monetary policy, indices of economic activity, inflation dynamics

and other economic, business and financial activities and decisions. Not surprisingly, latent

variable models have been widely used in financial econometrics, macroeconometrics and mi-

croeconometrics. For example, in financial econometrics it is often found that the values of

stocks, bonds, options, futures, and derivatives are often determined by a small number of

factors. These factors, such as the level, the slope and the curvature in the term structure of

interest rates, are latent. In macroeconomics, a well-known recent example of latent variable

models is the dynamic stochastic general equilibrium (DSGE) model. On the basis of macro-

economic theory, the DSGE model attempts to explain aggregate economic phenomena by

taking into account the fact that the economy is affected by some structural innovations. The

DSGE model can be solved as a rational expectation system in the percentage deviation of

variables from their steady-states which are latent, see An and Schorfheide (2007) and Dejong

and Dave (2007). In microeconometrics, many discrete choice models and panel data mod-

els involve unobserved variables in order to capture observed heterogeneity across economic

entities (Stern, 1997).

For latent variable models, Bayesian methods via MCMC simulation have proven to be a

powerful alternative to frequentist methods for estimating model parameters. In particular,

the data augmentation strategy proposed by Tanner and Wong (1987), that expands the

parameter space by treating the latent variables as additional model parameters, has been

found very useful for simplifying the MCMC computation of posterior distributions. This

simplification is achieved because data augmentation leads to a closed-form expression for the

likelihood function.

Comparing alternative latent variable models in the Bayesian paradigm is a daunting

and yet important task. The gold standard to carry out Bayesian model comparison is to

compute BFs, which basically compare marginal likelihood of alternative models (Kass and
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Raftery, 1995). Several interesting developments have been made in recent years for computing

marginal likelihood from the MCMC output; see for example, Chib (1995), Chib and Jeliazkov

(2001). While these methods are very general and widely applicable, for latent variable models,

they are diffi cult to use because the marginal likelihood may be hard to calculate. In addition,

BFs cannot be used under improper priors and are subject to the Jeffrey-Lindley paradox.

Given that DIC is simple to calculate from the MCMC output with the data augmentation

technique and also that data augmentation is often used for Bayesian parameter estimation,

DIC has been widely used for comparing alternative latent variable models; see for example,

Berg, Meyer and Yu (2004), Huang and Yu (2010).

The second contribution of the present paper is that we argue that DIC has to be used

with care in the context of latent variable models. In particular, we believe DIC, in the way

in which it is commonly implemented, has some conceptual and practical problems. Firstly,

when the latent variables are treated as parameters, the standard Bayesian large sample

theory is not applicable and hence DIC is not asymptotically justified. Secondly, DIC is

not robust to apparently innocuous transformations and distributional representations. This

problem is made worse by the data augmentation technique for latent variable models. Data

augmentation greatly inflates the number of parameters and hence the “effective”number of

parameters used in DIC is very sensitive to transformations and distributional representations.

Without data augmentation, however, the likelihood function that is based on observed data

only, does not have a closed-form expression and hence the corresponding DIC is much harder

to compute for latent variable models.

The third contribution of the present paper is that we advocate the use of a robust version

of DIC, denoted by RDIC, to make Bayesian comparison of latent variable models. It is

shown that RDIC is a good approximation to DIC without data augmentation and both are

asymptotically justified. We then show that the expectation —maximization (EM) algorithm

facilitates the computation of RDIC for latent variable models when the MCMC output is

available. Moreover, RDIC is robust to nonlinear transformations of latent variables and to

distributional representations of model specification.

The advantages of the proposed approach are illustrated using two popular models in

economics and finance, including a class of dynamic factor models and a class of stochastic

volatility models. It is shown that if the latent variables are treated as parameters, DIC is very

sensitive to the nonlinear transformations of latent variables in these models, whereas RDIC

is robust to these transformations. As a result, substantial discrepancy is found between DIC

and RDIC.

The paper is organized as follows. In Section 2, the latent variable models are introduced.

The Bayesian estimation method with data augmentation and the EM algorithm are also

reviewed. Section 3 provides a rigorous decision-theoretic justification of DIC for models

without latent variable under a set of regularity conditions. In Section 4, we show that the
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commonly used version of DIC is not justified for models with latent variable models. We

also introduce RDIC to compare latent variable model and discuss how to compute RDIC

from the MCMC output. Section 5 illustrates the method using models from economics and

finance. Section 6 concludes the paper. The Appendix collects the proof of the theoretical

results in the paper.

2 Latent Variable Models, EM Algorithm and MCMC

Let y = (y1, y2, · · · , yn)′ denote observed variables and z = (z1, z2, · · · , zn)′ the latent vari-

ables. The latent variable model is indexed by the a set of P parameters, θ = (θ1, . . . , θP )′ ∈
Θ ⊆ RP . Let p(y|θ) be the likelihood function of the observed data (denoted the observed-

data likelihood), and p(y, z|θ) be the complete-data likelihood function. The relationship

between the two functions is:

p(y|θ) =

∫
p(y, z|θ)dz. (1)

In many cases, the integral does not have a closed-form solution. Consequently, statistical

inferences, such as estimation and model comparison, are diffi cult to make. In the litera-

ture, maximum likelihood (ML) analysis using the EM algorithm and Bayesian analysis using

MCMC are two popular approaches for carrying out statistical inference of the latent variable

models.

2.1 Maximum likelihood via the EM algorithm

The EM algorithm is an iterative numerical method for finding the ML estimates of θ in the

latent variable models. It has been widely used in applications since Dempster, et al (1977)

gave its name and did the convergence analysis. In this subsection, we briefly review the main

idea of the EM algorithm. For more details, one can refer to McLachlan and Krishnan (2008).

Let x = (y, z) be the complete data with a density p(x|θ). The observed-data log-

likelihood Lo(y|θ) = ln p(y|θ) often involves some intractable integral, preventing researchers

from directly optimizing Lo(y|θ) with respect to θ. In many cases, however, the complete-

data log-likelihood Lc(x|θ) = ln p(x|θ) has a closed-form expression. Instead of maximizing

Lo(y|θ) directly, the EM algorithm maximizes Q(θ|θ(r)), the conditional expectation of the

complete-data log-likelihood function Lc(x|θ) given the observed data y and a current fit θ(r)

of the parameter.

Generally, a standard EM algorithm has two steps: the expectation (E) step and the

maximization (M) step. The E-step evaluates

Q(θ|θ(r)) = Ez{Lc(x|θ)|y, θ(r)}, (2)

where the expectation is taken with respect to the conditional distribution p(z|y,θ(r)). The M-

step determines a θ(r+1) that maximizes Q(θ|θ(r)). Under some mild regularity conditions,
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the sequence {θ(r)} obtained from the EM iterations converges to the ML estimate θ̂; see

Dempster, et al (1977) and Wu (1983) for details on the convergence properties of {θ(r)}.

2.2 Bayesian analysis using MCMC

Although the EM algorithm is a reasonable statistical approach for analyzing latent variable

models, the numerical optimization in the M -step is often unstable. This numerical problem

worsens as the dimension of θ increases. It is well recognized that Bayesian methods using

MCMC provide a powerful tool to analyze the latent variables models. However, if the poste-

rior analysis is conducted from the observed-data likelihood, p(y|θ), one would end up with

the same problem as in the ML method since p(y|θ) does not have a closed-form expression.

The novelty in the Bayesian methods is to treat the latent variable model as a hierarchical

structure of conditional distributions, namely, p(y|z,θ), p(z|θ), and p(θ). In other words, one

can use the data augmentation strategy of Tanner and Wong (1987) to expand the parameter

space from θ to (θ,z). The advantage of data augmentation is that the Bayesian analysis is

now based on the new likelihood function, p(y|θ,z) which often has a closed-form expression.

Then the Gibbs sampler and other MCMC samplers can be used to generate random samples

from the joint posterior distribution p(θ, z|y). After a suffi ciently long period for a burning-

in phase, the simulated random samples can be regarded as random observations from the

joint distribution. The statistical analysis can be established on the basis of these simulated

posterior random observations. As a by-product to the Bayesian analysis, one also obtains

Markov chains for the latent variables z and hence statistical inference can be made about

z. For further details on Bayesian analysis of latent variable models via MCMC, including

algorithms, examples and references, see Geweke, et al (2011). From the above discussion,

it can be seen that data augmentation is the key technique for Bayesian estimation of latent

variable models.

Two observations are in order. First, with data augmentation, the parameter space is

much bigger. More often than not, the dimension of the space increases as the number of

observations increases and is larger than the number of observations. In this case, the new

likelihood function is not regular. Second, it is diffi cult to argue that the latent variables

can be always treated as model parameters. Models parameters are typically fixed but the

latent variables are often time varying. Consequently, the same treatment of these two types

of variables does not seem to be justifiable from the perspective of model selection.

5



3 Decision-theoretic Justification of DIC

3.1 DIC

We first review DIC for models without latent variables. Spiegelhalter, et al (2002) proposed

DIC for Bayesian model comparison. The criterion is based on the deviance

D(θ) = −2 ln p(y|θ),

and takes the form of1

DIC1 = D(θ) + PD. (3)

The first term, used as a Bayesian measure of model fit, is defined as the posterior expectation

of the deviance, that is,

D(θ) = Eθ|y[D(θ)] = Eθ|y[−2 ln p(y|θ)].

The better the model fits the data, the larger the log-likelihood value and hence the smaller

the value for D(θ). The second term, used to measure the model complexity and also known

as “effective number of parameters”, is defined as the difference between the posterior mean

of the deviance and the deviance evaluated at the posterior mean of the parameters:

PD = D(θ)−D(θ̄) = −2

∫
[ln p(y|θ)− ln p(y|θ̄)]p(θ|y)dθ, (4)

where θ̄ is the Bayesian estimator, and more precisely the posterior mean, of the parameter

θ. Here, PD can be explained as the expected excess of the true over the estimated residual

information conditional on data y. In other words, PD can be interpreted as the expected

reduction in uncertainty due to estimation.

DIC can be rewritten by two equivalent forms:

DIC1 = D(θ̄) + 2PD, (5)

and

DIC1 = 2D(θ)−D(θ̄) = −4Eθ|y[ln p(y|θ)] + 2 ln p(y|θ̄). (6)

DIC1 defined in Equation (5) bears similarity to AIC of Akaike (1973) and can be inter-

preted as a classical “plug-in”measure of fit plus a measure of complexity (i.e., 2PD, also

known as the penalty term). In Equation (3) the Bayesian measure, D(θ), is the same as

D(θ̄) + PD which already includes a penalty term for model complexity and thus could be

better thought of as a measure of model adequacy rather than pure goodness of fit.

To calculate DIC, one needs to determine the likelihood, p(y|θ), and hence the parameters,

θ. In some cases, a clear definition of parameters may not be obvious. Taking a hierarchical
1We use DIC1 instead of DIC because for latent variable models other forms of DIC are possible and will

be discussed later.
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model as an example. Let p(y|θ) be a hierarchical model with a prior distribution p(θ|ψ)

where ψ is assigned with another prior distribution. In this case, there are two ways to de-

fine parameters and the likelihood. The idea may be explained using an important concept,

namely, focus. Spiegelhalter et al. (2002, pages 584-585) introduced focus to help deter-

mine the parameters, the likelihood function and DIC. They showed that if θ is identified as

parameters in focus in the hierarchical model, we should use p(y|θ) to construct DIC, i.e.,

D(θ̄) = −2 ln p(y|θ̄), PD = −2

∫ [
ln p(y|θ)− ln p(y|θ̄)

]
p(θ|y)dθ,

DIC1 = D(θ̄) + 2PD.

The prior distribution p(θ) can be obtained from,

p(θ) =

∫
p(θ|ψ)p(ψ)dψ.

If ψ is identified as parameters in focus, we should then use p(y|ψ) to construct DIC, i.e.,

D(θ̄) = −2 ln p(y|ψ̄), PD = −2

∫ [
ln p(y|ψ)− ln p(y|ψ̄)

]
p(ψ|y)dψ,

DIC1 = D(ψ̄) + 2PD.

The likelihood p(y|ψ) can be obtained from,

p(y|ψ) =

∫
p(y|θ)p(θ|ψ)dθ.

Clearly, parameters in focus are different in these two cases, leading to different likelihood

functions for constructing DIC.

Parameters in focus bear some similarity to parameters of interest in statistical inference

for a model that involve two types of parameters, parameters of interest (say θ) and nuisance

parameters (say ψ). To remove the influence of nuisance parameters under the Bayesian

framework, ψ is integrated out to get a marginal likelihood on θ. This marginal likelihood is

often called the integrated likelihood, that is,

p(y|θ) =

∫
p(y|θ,ψ)p(ψ)dψ.

Berger et al (1999) discussed the use of integrated likelihood for statistical inference.

It is useful to point out that Claeskens and Hjort (2003) also defined the concept, focus.

However, their definition is different from that in the Spiegelhalter et al. (2002). In Claeskens

and Hjort (2003) the focus φ is a single parameter that is defined as a real-value function of

parameters θ, say φ = g(θ). Given a loss function about the focus, such as the mean-squared

error (MSE), Claeskens and Hjort (2003) proposes a focused information criterion under the

frequentist framework. Clearly, the focus in Claeskens and Hjort (2003) is determined by a

single parameter related to the purpose of selecting the optimal model whereas in Spiegelhalter

et al. (2002) the focus refers to the parameters of interest for the purpose of determining the

likelihood.

7



3.2 Decision-theoretic justification of DIC

As acknowledged in Spiegelhalter et al. (2002) (Section 7.3 on Page 603 and the first paragraph

on Page 605), the justification of DIC is informal and heuristic. In this section we provide a

rigorous decision-theoretic justification of DIC, in the same spirit as the justification of AIC.

In our view, the lack of rigorous justification of DIC lies in the inappropriate specification of

loss function. When a proper loss function is selected, DIC can be justified asymptotically.

Given that DIC is a Bayesian version of AIC, before we justify DIC, it is useful to review

AIC and its decision-theoretic justification. Let the true data generating process (DGP) be

g(y), yrep = (y1,rep,y2,rep, · · · ,yn,rep) be the independent replicate data generated by the
same mechanism that gives rise to the observed data y. Consider a candidate parametric

model, M , denoted by p(y|M,θ) to fit the data, where θ is the parameter with P dimensions

and θ ∈ Θ ⊆ RP . When there is no confusion, we simply write p(y|M,θ) as p(y|θ). In the

literature, the KL divergence is used to describe the difference between two models and given

by:

KL[p(x), q(x)] =

∫
p(x) ln

p(x)

q(x)
dx.

The quantity that measures the quality of the candidate model in terms of its ability to

make predictions is given by the KL divergence between g(yrep) and p(yrep|θ),

KL [g(yrep), p(yrep|θ)] = Eyrep

[
ln

g(yrep)

p(yrep|θ)

]
(7)

= Eyrep(ln g(yrep)− Eyrep(ln p(yrep|θ)),

where the expectation is about g(yrep). Since g(yrep) is the true DGP and thus Eyrep (ln g(yrep))

is independent with the candidate models, it is dropped from the above equation. The smaller

this KL divergence, the better the candidate model in predicting g(yrep).

Let θ̂(y) be the ML estimate of θ obtained from y. Since θ is unknown, it is replaced

by θ̂(y) and p(yrep|θ̂ (y)) is the plug-in predictive distribution. Thus, up to a constant,

Eyrep(−2 ln p(yrep|θ̂(y)) represents the KL divergence between the predictive distribution of

the candidate model and the true DGP. Although a natural estimate of Eyrep(−2 ln p(yrep|θ̂(y))

is −2 ln p(y|θ̂(y)), it is asymptotically biased. Let

c(y) = Eyrep

(
−2 ln p(yrep|θ̂(y)

)
−
(
−2 ln p(y|θ̂(y))

)
. (8)

Under a set of regularity conditions and the dominated convergence theorem, one can show

that Ey (c(y)) → 2P where the expectation is about g(y); see for example, Burnham and

Anderson (2002). Hence, if we let AIC = −2 ln p(y|θ̂(y)) + 2P , as n→∞,

Ey (AIC)−EyEyrep(−2 ln p(yrep|θ̂(y)))→ 0.
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To see why a penalty term, 2P , is needed in AIC, let θt := arg minθKL[g(y), p(y|θ)] be

the pseudo-true parameter value (Sawa, 1978; Gourieroux, et al, 1984), θ̂(yrep) be the ML

estimate of θ obtained from yrep. Note that

EyEyrep(−2 ln p(yrep|θ̂(y))) =
[
EyEyrep(−2 ln p(yrep|θ̂(yrep)))

]
(T1)

+
[
EyEyrep(−2 ln p(yrep|θt))− EyEyrep(−2 ln p(yrep|θ̂(yrep)))

]
(T2)

+
[
EyEyrep(−2 ln p(yrep|θ̂(y)))− EyEyrep(−2 ln p(yrep|θt))

]
(T3)

.

Clearly, the term in T1 is the same as Ey(−2 ln p(y|θ̂(y)). The term in T2 is the expec-

tation of the likelihood ratio statistic based on the replicate data. Under a set of regularity

conditions that ensure
√
n-consistency and asymptotic normality of the ML estimates and a

dominated condition, T2 is approximately the same as the expectation of χ2
(P )which is P . To

approximate the term in T3, if θ̂(y) is a consistent estimate of θt, we have

T3 = Ey

{
−2Eyrep

[
∂ ln p(yrep|θt)

∂θ

(
θ̂(y)− θt

)]}
+Ey

{
Eyrep

[
−
(
θ̂(y)− θt

)′ ∂2 ln p(yrep|θt)
∂θ∂θ′

(
θ̂(y)− θt

)]}
+ o(1).

By the definition of θt, Eyrep
[
∂ ln p(yrep|θt)/∂θ

]
= 0, implying that

Ey

{
−2Eyrep

[
∂ ln p(yrep|θt)

∂θ

(
θ̂(y)− θt

)]}
= −2Eyrep

(
∂ ln p(yrep|θt)

∂θ

)
Ey

(
θ̂(y)− θt

)
= 0.

Consequently, under the same regularity conditions for approximating T2, we have

T3 = tr

{
Eyrep

[
∂2 ln p(yrep|θt)

∂θ∂θ′

]
Ey

[
−
(
θ̂(y)− θt

)′ (
θ̂(y)− θt

)]}
+ o(1) = P + o(1),

where tr denotes the trace of a matrix.

It is clear that the decision-theoretic justification of AIC requires a careful choice of the

KL loss function, the use of ML estimation and the a set of regularity conditions for ensuring
√
n-consistency and asymptotic normality of the ML estimates. The penalty term in AIC

arises from two sources. First, the pseudo-true value has to be estimated. Second, the

estimate obtained from the observed data is not the same as that from the replicate data. It

is important to point out that the justification of AIC requires the true DGP be nested by

the candidate model.

In practice, empirical researchers may have prior information about model parameters

which may in turn reduce the model complexity. However, AIC does not work in models with

informative prior information. DIC intends to take account of prior information.
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To our surprise, Spiegelhalter, et al (2002) did not explicitly specify the KL function

when developing DIC. However, from Equation (33) and Equation (40) in their paper and the

loss function defined in the first paragraph on Page 603, namely, −2 ln p
(
yrep|θ̄(y)

)
, one can

deduce that the following KL function

KL
[
p(yrep|θ), p

(
yrep|θ̄(y)

)]
= Eyrep|θ

[
ln

p(yrep|θ)

p
(
yrep|θ̄(y)

)] , (9)

was used where θ̄(y) is the posterior mean of θ for a candidate model. Hence,

KL
[
p(yrep|θ), p

(
yrep|θ̄(y)

)]
= Eyrep|θ (ln p(yrep|θ))− Eyrep|θ

(
ln p

(
yrep|θ̄(y)

))
. (10)

In Equation (33), Spiegelhalter, et al (2002) dealt with Eyrep|θ
(
ln p

(
yrep|θ̄(y)

))
directly and

ignored the first term in the right hand side of Equation (10). On Page 604, they argued that,

if

c
(
y,θ, θ̄(y)

)
:= Eyrep|θ

[(
−2 ln p(yrep|θ̄(y)

)
−
(
−2 ln p(y|θ̄(y))

)]
,

then ∫ {
Eθ|y

[
c
(
y,θ, θ̄(y)

)]
− 2PD

}
p(y)dy→ 0, (11)

where p(y) =
∫
p(y|θ)p(θ)dθ. This leads to DIC1 = D(θ̄) + 2PD. The convergence in (11)

was proved without any conditions being specified. Clearly, an implicit assumption made in

this heuristic argument is that the first term in the right hand side of Equation (10) is constant

across candidate models and thus dropped from (10). While the treatment mimics Equation

(7) in the development of AIC, unfortunately, one cannot claim that Eyrep|θ (ln p(yrep|θ)) is

the same across all candidate models. This is because, as Spiegelhalter, et al (2002) said in

the second paragraph on Page 604, “we are taking a Bayesian perspective”and “we replace

the pseudo-true value by a random quantity”. As a result, θ in the first term in the right

hand side of Equation (10) is model dependent and in general Eyrep|θ (ln p(yrep|θ)) takes a

different value for each candidate model.

From the discussion above, clearly KL
[
p(yrep|θ), p

(
yrep|θ̄(y)

)]
is not the proper KL

loss function to justify DIC. A new KL loss function is needed. To do so, let p(yrep|y) be

the Bayesian predictive distribution where p(yrep|y) =
∫
p(yrep|θ)p(θ|y)dθ. By mimicking

the development of AIC, we propose the following KL loss function based on the Bayesian

predictive distribution,

KL [g(yrep), p(yrep|y)] = Eyrep (ln g (yrep))− Eyrep (ln p (yrep|y)) . (12)

A better model is expected to yield a smaller value for the KL function. Since g(yrep) is

the true DGP and yrep is an independent replication as in AIC, Eyrep (ln g (yrep)) is model-

independent. Therefore, it is the same across all candidate models and can be dropped from
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(12) when comparing models. As a result, we propose to choose a model that gives the

smallest value of

EyEyrep (−2 ln p (yrep|y)) =

∫ ∫
−2 ln p (yrep|y) g(yrep)g(y)dyrepdy,

which is equivalent to minimizing the following expectation of the KL loss function

EyKL [g(yrep), p(yrep|y)] =

∫ ∫
KL [g(yrep), p(yrep|y)] g(y)dy.

We are now in the position to provide a rigorous decision-theoretic justification of DIC1

based on a set of regularity conditions. Let Ln(θ) = ln p(θ|y), L(1)
n (θ) = ∂ ln p(θ|y)/∂θ,

L
(2)
n (θ) = ∂2 ln p(θ|y)/∂θθ′. In this paper, we impose the following regularity conditions.

Assumption 1: There exists a finite sample size n∗, for n > n∗, there is a local maximum

at θ̂m so that L(1)
n

(
θ̂m

)
= 0 and L(2)

n

(
θ̂m

)
is a negative definite matrix. Obviously, θ̂m is

the posterior mode and L(2)
n (θ̂m)/n = Op(1).

Assumption 2: The largest eigenvalue of
[
−L(2)

n (θ̂m)
]−1

, σ2
n, goes to zero when n→∞.

Assumption 3: For any ε > 0, there exists an integer n∗∗ and some δ > 0 such that for

any n > max{n∗, n∗∗} and θ ∈ H
(
θ̂m, δ

)
=
{
θ : ||θ − θ̂m|| ≤ δ

}
, L(2)

n (θ) exists and satisfies

−A(ε) ≤ L(2)
n (θ)L−(2)

n

(
θ̂m

)
− IP ≤ A(ε),

where IP is a P × P identity matrix, A(ε) a P × P positive semi-definite symmetric matrix

whose largest eigenvalue goes to zero as ε→ 0. A ≤ B means that Aij ≤ Bij for all i, j.
Assumption 4: For any δ > 0, as n→∞,∫

Θ−H(θ̂m,δ)
p(θ|y)dθ → 0,

where Θ is the support of θ.

Assumption 5: For any two θi, θj , i, j = 1, 2, · · · , P , we have∫
|θi| p(θi|y)dθi <∞,

∫
|θiθj | p(θi, θj |y)dθidθj <∞.

Assumption 6: Assume the standard ML theory, such as
√
n-consistency, asymptotic

normality, and asymptotic effi ciency, is applicable. Furthermore, for any replicate data yrep,

let the Hessian information matrix, H(θ), and Fisher information matrix, J(θ), be

H(θ) =

∫
− 1

n

[
∂2 ln p(yrep|θ)

∂θ∂θ′

]
g(yrep)dyrep = 0,

J(θ) = E

{[
1√
n

ln p(yrep|θ)

∂θ

] [
1√
n

ln p(yrep|θ)

∂θ

]′}
=

∫
1

n

∂ ln p(yrep|θ)

∂θ

∂ ln p(yrep|θ)

∂θ′

′
g(yrep)dy.
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For any null sequence kn, it is assumed that

sup
||θ−θt||≤kn

∥∥∥∥− 1

n

[
∂2 ln p(yrep|θ)

∂θ∂θ′

]
−H(θt)

∥∥∥∥ p−→ 0.

sup
||θ−θt||≤kn

∥∥∥∥ 1

n

∂ ln p(yrep|θ)

∂θ

∂ ln p(yrep|θ)

∂θ′

′
− J(θt)

∥∥∥∥ p−→ 0.

Lemma 3.1 Under Assumptions 1-5, conditional on the observed data y, we have

θ̄ = E [θ|y] = θ̂m + op(n
−1/2),

V
(
θ̂m

)
= E

[(
θ − θ̂m

)(
θ − θ̂m

)′
|y
]

= −L−(2)
n

(
θ̂m

)
+ op(n

−1).

Remark 3.1 Assumptions 1-4 have been used in the literature to develop the standard Bayesian

large sample theory for dynamic models and non-dynamic models; see, for example, Chen

(1985), Kim (1994, 1998), Geweke (2005). Under the different regularity conditions, the

Bernstein-von Mises theorem shows that the posterior distribution converges to a normal dis-

tribution with the ML estimator as its mean and the inverse of the second derivative of the

log-likelihood evaluated at the ML estimator as its covariance. Based on Bernstein-von Mises

theorem, Ghosh and Ramamoorthi (2003) developed the same results in Lemma 3.1 for the iid

case. Under Assumptions 1-4, Chen (1985) shows that the posterior distribution converges

to a normal distribution with the posterior mode as its mean and the inverse of the second

derivative of the log-posterior evaluated at mode as its covariance. Based on the results of

Chen (1985), in Lemma 3.1 we extend the results of Ghosh and Ramamoorthi (2003) to more

general cases. Assumption 6 is useful to establish the equivalence of H(θ0) and J(θ0).

Theorem 3.1 Under Assumptions 1-6, when the prior p(θ) = Op(1), it can be shown that,

EyEyrep [−2 ln p (yrep|y)] = Ey [DIC1 + op(1)] = Ey
[
D(θ̄) + 2PD + op(1)

]
,

where PD is defined in (4).

Remark 3.2 If, in addition, there exists Z(y) such that Ey[Z(y)] <∞ and∣∣Eyrep [−2 ln p (yrep|y)]−DIC1

∣∣ ≤ Z(y),

for all n, the dominated convergence theorem holds. In this case we have,

EyEyrep [−2 ln p (yrep|y)] = Ey [DIC1 + op(1)] = Ey [DIC1] + o(1).

Hence, DIC1 is an asymptotic unbiased estimator of the proposed KL loss function.
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The asymptotic justification of DIC1 requires that the candidate model nest the true

model, and that the posterior distribution is approximately normal with the posterior mean

converging to posterior mode and the posterior variance converging to zero. These require-

ments parallel to those in AIC where the candidate models nest the true model and the ML

estimator is
√
n-consistent and asymptotically normally distributed. To see the importance

of the asymptotic normality, Spiegelhalter, et al (2002) show that, when the prior is nonin-

formative, PD is approximately the same as the number of parameters, P . In this case DIC1

is the Bayesian version of AIC.

In AIC, the degrees of freedom are used to measure the model complexity. In the Bayesian

framework, the prior information often imposes additional restrictions on the parameter space

and hence the degrees of freedom may be reduced by the prior information. In this case, PD
may not be close to P . A useful contribution of DIC1 is to provide a way to measure the

model complexity when the prior information is incorporated; see Brooks (2002).

If p(y|θ) has a closed-form expression, DIC1 is trivially computable from the MCMC

output. The computational tractability, together with the versatility of MCMC and the fact

that DIC1 is incorporated into a Bayesian software, WinBUGS, allows DIC1 to enjoy a very

wide range of applications.2 However, if p(y|θ) is not available in closed-form, such as in

random effects models and state space models, computing DIC1 may become infeasible, or at

least, very time consuming.

4 Bayesian Comparison of Latent Variable Models

4.1 DIC for latent variable models

As described in Section 2, in latent variable models, there are three types of variables, the

observed data y, the latent variables z, and the parameters θ. In the frequentist framework,

the likelihood, p(y|θ) =
∫
p(y, z|θ)dz, is clearly defined. In this case, only θ is treated as

parameters and there is no confusion in defining AIC. In the Bayesian framework, however,

depending on whether the latent variables z are treated as parameters or variables, three

likelihood functions may be used,

p(y|θ), p(y, z|θ), and p(y|z,θ),

termed as the observed-data, complete-data, conditional likelihood functions, respectively.

Obviously, DIC1 is based on the observed-data likelihood function, which is computationally

demanding for many latent variable models. With these three likelihood functions, Celeux

et al (2006) considered and compared eight versions of DIC. Based on the observed-data

2According to, Spiegelhalter et al. (2014), Spiegelhalter et al. (2002) was the third most cited paper
in international mathematical sciences between 1998 and 2008, and up to November 2013 it had over 2500
citations on the Web of Knowledge and over 4600 on Google Scholar.
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likelihood p(y|θ), the first category includes

DIC1 = −4Eθ|y [ln p(y|θ))] + 2 ln p
(
y|θ̄(y)

)
,

DIC2 = −4Eθ|y [ln p(y|θ)] + 2 ln p
(
y|θ̂(y)

)
,

DIC3 = −4Eθ|y [ln p(y|θ)] + 2 ln
{
Eθ|y [p(y|θ)]

}
,

where θ̂(y) is the posterior mode.

Based on the complete-data likelihood p(y, z|θ), the second category includes

DIC4 = −4Eθ,z|y[ln p(y, z|θ)] + 2Ez|y ln p
(
y, z|Eθ|y,z [θ|y, z]

)
,

DIC5 = −4Eθ,z|y [ln p(y, z|θ)] + 2 ln p
(
y, ẑ(y)|θ̂(y)

)
,

DIC6 = −4Eθ,z|y [ln p(y, z|θ)] + 2E
z|y,θ̂(y)

[
ln p

(
y, z|θ̂(y)

)]
,

where in DIC5, ẑ(y) and θ̂(y) are the joint Bayesian estimators, such as the joint maximum

a posteriori (MAP) estimators of (z,θ); in DIC6, θ̂(y) is an estimator of θ based on the

posterior distribution p(θ|y).

Based on the conditional likelihood p(y|z,θ), the third category includes

DIC7 = −4Eθ,z|y [ln p(y|z,θ)] + 2 ln p
(
y|ẑ(y), θ̂(y)

)
,

DIC8 = −4Eθ,z|y [ln p(y|z,θ)] + 2Ez|y

[
ln p

(
y|z, θ̂(y, z)

)]
,

where in DIC7, z is treated as parameters so that ẑ(y) and θ̂(y) are the joint Bayesian

estimator, such as the posterior mean or the MAP estimator of (z,θ); in DIC8, θ̂(y, z) is an

estimator of θ based on p(y, z|θ).

When constructing DIC, one needs to define parameters in focus. If θ is the parameters in

focus, the observed-data likelihood p(y|θ) is used to construct DIC. This choice of focus leads

to DIC1 and DIC2. If the latent variables z and the parameters θ are in focus, the conditional

likelihood p(y|z,θ) is used for constructing DIC. This choice of focus leads to DIC7 and DIC8.

Clearly, the other three versions, DIC4, DIC5 and DIC6, are logically incoherent as far as the

focus is concerned. This is because the latent variables z are treated as both variables and

parameters. Similarly, DIC8 is logically incoherent because parameters in focus are (z,θ) in

the first term, but they are z in the second term. As pointed out by Plummer (2006), DIC3

does not have an unambiguous focus corresponding to it and it is not clear which likelihood

is used to construct DIC3. Therefore, only DIC1, DIC2, and DIC7 are logically coherent.

Although Celeux et al (2006) recommended DIC3 and DIC4 based on a real example, neither

DIC3 nor DIC4 is logically coherent.

Celeux et al (2006) compared DIC1 with DIC2 and found the evidence that DIC2 is better

than DIC1 since the posterior mode can ensure that PD is positive, but the posterior mean
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cannot. However, DIC1 and DIC2 are asymptotically equivalent following Lemma 3.1. In

practice, the posterior mode is more diffi cult to compute than the posterior mean.

For many latent variable models, such as state-space models, including linear Gaussian

state space models, the observed-data likelihood p(y|θ) is not available in closed-form.3 In

this case, both DIC1 and DIC2 are very diffi cult to compute because it needs to evaluate the

observed-data likelihood at each MCMC iteration.

DIC1 is monitored and reported in WinBUGS when there is no latent variable. To compute

DIC1, it is generally required the observed likelihood p(y|θ) be available in closed-form because

we need to evaluate Eθ|y [ln p(y|θ))] ≈ 1
M

∑M
m=1 ln p

(
y|θ(m)

)
. Given that M is usually very

large, computing 1
M

∑M
m=1 ln p

(
y|θ(m)

)
without knowing the analytical form of ln p(y|θ))

is very costly. In DIC7, the latent variables are regarded as parameters and ln p(y|z,θ) has

an analytical expression. Hence, it is easy to compute 1
M

∑M
m=1 ln p

(
y|z(m),θ(m)

)
. That is

why, when there are latent variables, DIC7 is monitored and reported in WinBUGS, following

the suggestion of Spiegelhalter, et al (2002). Clearly the use of DIC7 is for computational

convenience, as explained in Spiegelhalter, et al (2002).

4.2 RDIC for latent variable models

From a theoretical viewpoint, DIC7 has a few problems. Firstly, due to the data augmenta-

tion, the number of the latent variables often increases with the sample size in latent variable

models. This may lead to the well-known incidental parameter problem where information

about these incidental parameters stops accumulating after a finite number of observations,

often one, have been taken; see for example Neyman and Scott (1948) and Lancaster (2000).

A consequence of the incidental parameter problem is that the ML estimator is inconsistent.

Similarly, the Bayesian large sample theory becomes invalid; see Page 89-90 of Gelman, et

al (2013) for examples. The failure of the standard asymptotic theory invalidates the as-

ymptotic justification of DIC. Secondly, if the latent variable can be treated as parameters,

an incoherent inference problem will result. That is, when one model can be rewritten as

distributional representation of another model with latent variables and the same prior is

used in the two models, the different DIC values can be obtained. A simple example is the

student-t distribution which can be rewritten as a normal-gamma scale mixture representa-

tion. In Section 8.2 of Spiegelhalter, et al (2002), Models 4 and 5 are predictively identical

but their DIC values are quite different. The same diffi culty also shows up in Model 8 of Berg,

et al (2004). Thirdly, when the latent variables are discrete, such as component indicators

in Markov switching models, generally, Bayesian estimator is not a discrete value which can

cause some logic problems. Fourthly, due to the data augmentation, the dimension of the pa-

3For linear Gaussian state space models, to do ML, the Kalman filter can be used to obtain the likelihood
function numerically. Numerically more effi cient algorithms have been developed in the recent literature; see
for example, Chan and Jeliazkov (2009).

15



rameter space becomes larger and hence we expect DIC7 be very sensitive to transformations

of latent variables.

To illustrate the first problem, consider the following example: Let yi|αi, σ2 ∼ N(αi, σ
2),

αi ∼ N(0, 1) for i = 1, ..., n. Clearly yi|σ2 ∼ N(0, σ2 + 1) and thus the ML estimate of σ2

is σ̂2 = 1
n

∑n
i=1 y

2
i − 1. It is straightforward to show σ̂2 is

√
n-consistent and asymptotically

normal. However, if {αi}ni=1 are treated as parameters, they are incidental in the sense of

Neyman and Scott (1948). As a result, the incidental parameter problem arises. The ML

estimate of αi is α̂i = yi ∼ N(αi, σ
2). So α̂i is unbiased but inconsistent. Similarly, in the

case when σ2 = 1, the posterior distribution αi|yi ∼ N (0.5yi, 0.5). The posterior mean (which

is also the posterior mode) is not close to the ML estimate and the posterior variance does

not go to zero as n grows. Both the standard ML theory and Bayesian large sample theory

fail to hold. These results are not surprising as only one observation (yi) contains information

about αi. Lancaster (2000) surveys the problem in the statistics and econometrics literature.

To illustrate the last problem, we consider a simple transformation of latent variables in

the well-known Clark model ( Clark, 1973) which is given by,

Model 1 : yt ∼ N(µ, exp(ht)), ht ∼ N(0, σ2), t = 1, · · · , n. (13)

An equivalent representation of the model is

Model 2 : yt ∼ N(µ, σ2
t ), σ

2
t ∼ LN(0, σ2), t = 1, · · · , n, (14)

where LN denotes the log-normal distribution. In Model 2 the latent variable is the volatility

σ2
t while the latent variable is the logarithmic volatility ht = lnσ2

t in Model 1. Suppose

the parameters of interest are µ and σ2. With the same focus, the two models are identical

and hence are expected to have the same DIC and PD. To calculate the PD component in

DIC7, we simulate 1000 observations from the model with µ = 0, σ2 = 0.5. Vague priors are

selected for the two parameters, namely, µ ∼ N(0, 100), σ−2 ∼ Γ(0.001, 0.001). We run Gibbs

sampler to make 240,000 simulated draws from the posterior distributions. The first 40,000

are discarded as burn-in samples. The remaining observations with every 10th observation

are collected as effective observations for statistical inference. With the data augmentation,

the latent variables, ht and σ2
t are regarded as parameters, and we find that PD = 89.806 for

Model 1 but PD = 59.366 for Model 2. The difference is very large. Given that we have the

identical models and priors, and use the same dataset, the vast difference suggests that DIC7

and the corresponding PD are very sensitive to transformations of latent variables.

To summarize the problems with DIC in the context of latent variable models, while DIC7

is trivial to calculate and has been used widely in practice but does not have a decision-

theoretic justification, DIC1 is theoretically justified but infeasible to compute from the

MCMC output since p(y|θ) is not available in closed-form.
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In this section we introduce a robust version of DIC, denoted as RDIC, to approximate

DIC1 and then show how to compute RDIC from the MCMC output. RDIC is defined as

RDIC = D(θ̄) + 2tr
{
I(θ̄)V (θ̄)

}
= D(θ̄) + 2P ∗D, (15)

where

P ∗D = tr
{
I(θ̄)V (θ̄)

}
, (16)

and

I(θ) = −∂
2 ln p(y|θ)

∂θ∂θ′
, V (θ̄) = E

[(
θ − θ̄

) (
θ − θ̄

)′ |y] .
Interestingly, in Equation (15) on Page 590, Spiegelhalter, et al. (2002) obtained the ex-

pression for P ∗D and claimed that P
∗
D approximates the PD component in DIC1. Unfortunately,

to the best of our knowledge, P ∗D has never been implemented in practice and WinBUGS does

not report P ∗D. Moreover, the conditions under which P
∗
D ≈ PD holds true were not specified

in Spiegelhalter, et al (2002). The order of the approximation error is unknown. To justify

the choice of RDIC, we will show that RDIC approximates DIC1 and P ∗D approximates the

PD component in DIC1 and obtain the order for the approximation error.

Theorem 4.1 Under Assumptions 1-6, assume the prior p(θ) = Op(1), it can be shown that,

P ∗D = PD + op(1), DIC1 = RDIC+ op(1),

Corollary 4.2 Assume the prior p(θ) = Op(1). It can be shown that

P ∗D = PD + op(1) = P + op(1), RDIC = DIC1 + op(1) = AIC+ op(1).

and

EyEyrep (−2 ln p (yrep|y)) = Ey [RDIC+ op(1)] .

Theorem 4.1 extends the result in Equation (15) of Spiegelhalter, et al (2002) by specifying

the conditions under which PD approximates P ∗D and P, and DIC1 approximates RDIC.

Corollary 4.2 shows that the order of difference between AIC and RDIC/DIC1 is op(1). For this

reason, both RDIC and DIC1 can be regarded as the Bayesian version of AIC. Furthermore,

Corollary 4.2 justifies RDIC by showing that RDIC is asymptotically unbiased estimator of

EyEyrep (−2 ln p (yrep|y)) if the dominated convergence theorem holds. As DIC1, RDIC is

defined from the observed-data likelihood p(y|θ) where the focus is on θ only. Unlike DIC7,

the latent variables are not parameters in focus in RDIC.

To understand how the prior information can affect P ∗D in finite sample, a higher order

approximation than what has been stated in Theorem 4.1 and Corollary 4.2 is needed. Fol-

lowing the literature on the finite sample theory, such as in Rilstone, Srivatsava and Ullah

(1996), Bester and Hansen (2008) and Li et al. (2015), let ∇j denote the jth derivative,
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ψn (θ) = 1
n∇θ ln p (y|θ), γθ (θ) = ∇θ ln p (θ). Let the bar over a function indicate its

expectation so that A (θ) = E [A (θ)]. Further let Hj (θ) = ∇jψn (θ), Q (θ) = H
−1
1 (θ),

%−1 (θ) = 1
2n

[
[vec (Q (θ))]′ ⊗Q (θ)

]
vec

(
H2 (θ)

)
and C (θ) be a continuous bounded function

of θ. For notational convenience, we suppress the argument of a function when it is evaluated

at θ0. A higher order approximation for P ∗D is given in the following Corollary.

Corollary 4.3 Under Assumption 1-6 and other regularity conditions as stated in Li et al.

(2015), if the prior p (θ) = Op (1), we have

P ∗D = P − 1

n
tr
[
∇γθQ

]
− 1

n
tr
[
Q−1C

]
− tr

[
H2

(
IP ⊗ %−1

)
Q
]

+ op
(
n−1

)
, (17)

where %−1 has the order Op(n
−1).

The second term in the right hand side of Equation (17) explicitly depends on ∇γθ, the
second order derivative of the prior. The third term and the fourth term are dependent on

the likelihood function evaluated at θ0 but independent on the prior. All these three terms

are of order Op(n−1). Hence, the effect of the prior on P ∗D is through ∇γθ and has the order
of Op(n−1). Equation (17) shows how P ∗D incorporates prior information in finite sample.

For latent variable models, while the number of model parameters (P ) is fixed, the number

of latent variables may increase as the sample size increases. In the definition of RDIC, the

latent variables are not regarded as parameters. Consequently, there is no incidental parameter

problem. Also, the problem of parameter transformation is less serious. For example, in the

Clark model, with the same setting as before, we get P ∗D = 1.75 for Model 1 and P ∗D = 1.80

for Model 2. There is no significant difference between them. Moreover, these two values are

close to 2, that is the actual number of parameters. This is what we expected given that the

vague priors are used and hence P ∗D ≈ P = 2. The small difference between P ∗D and P arises

due to the simulation error and the priors.

To compute P ∗D we only need to evaluate ln p(y|θ) once and ∂2 ln p(y|θ)/∂θ∂θ′ once. This

is in sharp contrast to PD = D(θ)−D(θ̄) where the observed-data likelihood p(y|θ) needs to

be evaluated M times with M being the number of MCMC iterations.

Like AIC, both DIC1 and RDIC require the true model be nested by the candidate model.

This is of course a strong assumption. Under the iid case, Ando (2010) relaxed this assump-

tion and obtained a predictive likelihood information criterion (BPIC) that minimizes the

loss function η = EyEyf [− ln p(yf |y)] where p(yf |y) =
∫
p(yf |θ)p(θ|y)dθ is the predictive

distribution, yf is some future value. The estimator of η is given by

η̂ = − 1

n
ln p(y|y) +

1

2n
tr
[
I−1(θ̂)J(θ̂)

]
,

where I(θ) and J(θ) are the Hessian matrix and the Fisher information matrix. In Ando

(2007), under the iid case, another BPIC was given as

BPIC = −2 ln p(y|θ̂) + 2tr[I−1(θ̂)J(θ̂)] + P.
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Ando (2007) showed that BPIC is an estimator of the loss function

nEyEyf

[
−2

∫
ln p(yf |θ)p(θ|y)dθ

]
.

Like TIC of Takeuchi (1976), these two information criteria involve the inverse of Hessian

matrix which is numerically challenging when the dimension of the parameter space is large.

This is one of the reasons why TIC has not been widely used in practice. Furthermore, the

derivation of these two information criteria requires the data be iid. For data in economics

and finance, this requirement is often too restrictive. In addition, for many latent variable

models, the ML estimator, the Hessian matrix and the Fisher information matrix are diffi cult

to obtain.

For unit root models, Kim (1994, 1998) showed that the asymptotic normality of posterior

distribution can be established under Assumptions 1-4. Hence, Lemma 3.1 holds true for

unit root models. However, to develop Theorem 4.1, the standard ML asymptotic theory

is required. Hence, Theorem 4.1 may not be applicable to models with a unit root or an

explosive root. Based on asymptotic arguments, Phillips (1996) and Phillips and Ploberger

(1996) have proposed model selection criteria for models without latent variables.

4.3 Computing RDIC by the EM algorithm

The definition of RDIC clearly requires the evaluation of observed-data likelihood at the

posterior mean, p(y|θ̄), as well as the information matrix and the second derivative of the

observed-data likelihood function. For most latent variable models, the observed-data like-

lihood function does not have a closed-from expression. In this section we show how the

EM algorithm may be used to evaluate p(y|θ̄), the second derivative of the observed-data

likelihood function, and hence RDIC for the latent variable models. It is important to point

out that we do not need to numerically optimize any function here as in the EM algorithm

for computing the ML estimates. Consequently, our method is not subject to the instability

problem found in the M -step.

As argued in Section 2.1, the main idea of EM algorithm is to replace the observed-data

log-likelihood ln p(y|θ) with the complete-data log-likelihood ln p(y, z|θ). Note that

ln p(y, z|θ) = ln p(z|y,θ) + ln p(y|θ).

For any θ and θ
∗
in Θ, it was shown in Dempster, et al (1977) that∫

ln p(y, z|θ)p(z|y,θ∗)dz =

∫
ln p(z|y,θ)p(z|y,θ∗)dz + ln p(y|θ),

and that

Lo(y,θ) = Q
(
θ|θ∗

)
−H

(
θ|θ∗

)
, (18)
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where H(θ|θ∗) =
∫

ln p(z|y,θ)p(z|y,θ∗)dz is the so-called H function, Q is defined in Equa-
tion (2).

Following Equation (18), the Bayesian plug-in model fit, ln p(y|θ̄), may be obtained as

ln p(y|θ̄) = Q(θ̄|θ̄)−H(θ̄|θ̄). (19)

It can be seen that even when Q(θ̄|θ̄) is not available in closed-form, it is easy to evaluate

from the MCMC output because

Q(θ̄|θ̄) =

∫
ln p(y, z|θ̄)p(z|y, θ̄)dz ≈ 1

M

M∑
m=1

ln p
(
y, z(m)|θ̄

)
.

where {z(m),m = 1, 2, · · · ,M} are random observations drawn from the posterior distribution
p(z|y, θ̄).

For the second term in (19), if p(z|y, θ̄) is a standard distribution, H(θ̄|θ̄) can be easily

evaluated from the MCMC output as

H(θ̄|θ̄) =

∫
ln p(z|y, θ̄)p(z|y, θ̄)dz ≈ 1

M

M∑
m=1

ln p
(
z(m)|y, θ̄

)
.

However, if p(z|y, θ̄) is not a standard distribution, an alternative approach has to be used,

depending on the specific model in consideration. We now consider two situations.

First, if the complete-data (yi, zi) are independent with i 6= j, and zi is of low-dimension,

say≤ 5, then a nonparametric approach may be used to approximate the posterior distribution

p(z|y,θ). Note that

H(θ|θ) =

∫
ln p(z|y,θ)π(z|y,θ)dz =

n∑
i=1

∫
ln p(zi|yi,θ)π(zi|y,θ)dzi =

n∑
i=1

Hi(θ|θ).

The computation of Hi(θ|θ) requires an analytic approximation to p(zi|yi,θ) which can be

constructed using a nonparametric method. In particular, MCMC allows one to draw some

effective samples from p (zi|yi,θ). Using these random samples, one can then use nonpara-

metric techniques such as the kernel-based methods to approximate p (zi|yi,θ). In a recent

study, Ibrahim, et al (2008) suggested using a truncated Hermite expansion to approximate

p(zi|yi,θ).

As a simple illustration, we apply this method to the Clark model. When the Gaussian ker-

nel method is used, we get ln p(y|θ̄) = −1448.97, RDIC= 2901.46 for Model 1 and ln p(y|θ̄) =

−1449.41, RDIC= 2902.42 for Model 2. These two sets of numbers are nearly identical. How-

ever, if the latent variable models are regarded as parameters, we get DIC7 = 2884.37 for

Model 1 and DIC7 = 2852.85 for Model 2. The highly distinctive difference between them

suggests that DIC7 is not a reliable model selection criterion. Note that DIC1 is not really

feasible to compute in this case.
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Second, for some latent variable models, the latent variables z follow a multivariate normal

distribution and the observed variables y are independent, conditional on z. This class of

models is referred to as the Gaussian latent variable models in the literature. In economics

and finance, many latent variable models belong to this class, including dynamic linear models,

dynamic factor models, various forms of stochastic volatility models, and credit risk models.

In these models, the observed-data likelihood is non-Gaussian but has a Gaussian flavor in

the sense that the posterior distribution, p(z|y,θ), can be expressed as,

p(z|y,θ) ∝ exp

(
−1

2
z′V (θ)z +

n∑
i=1

ln p(yi|zi,θ)

)
.

Rue, et al (2004) and Rue, et al (2009) showed that this type of posterior distribution can be

well approximated by a Gaussian distribution that matches the mode and the curvature at

the mode. The resulting approximation is known as the Laplace approximation and can be

expressed as,

p(z|y,θ) ∝ exp

(
−1

2
z′(V (θ) + diag(c))z

)
,

where c comes from the second order term in the Taylor expansion of
∑n

i=1 ln p(yi|zi) at the
mode of p(z|y,θ). The Laplace approximation may be employed to compute H(θ̄|θ̄). After

p(y|θ̄) is obtained, it is easy to obtain D(θ̄). It is important to point out that the numerical

evaluation of p(y|θ̄) is needed only once, i.e., at the posterior mean.

To compute P ∗D, we have to calculate the second derivative of the observed-data likelihood

function. The following two methods can be used. First, if the Q function is available in

closed-form, we can use the following formula given in Oakes (1999),

∂2Lo(y|θ)

∂θ∂θ
′ =

{
∂2Q(θ|θ∗)
∂θ∂θ′

+
∂2Q(θ|θ∗)
∂θ∂θ∗

′

}
θ
∗

=θ

. (20)

Second, if the Q function does not have an analytic form, Louis (1982) showed that that

∂2Lo(y|θ)

∂θ∂θ
′ = Ez|y,θ

{
∂2Lc(x|θ)

∂θ∂θ
′

}
+ V arz|y,θ {S(x|θ)} (21)

= Ez|y,θ

{
∂2Lc(x|θ)

∂θ∂θ′
+ S(x|θ)S(x|θ)

′
}
− Ez|y,θ{S(x|θ)}Ez|y,θ{S(x|θ)}′,

where S(x|θ) = ∂Lc(x|θ)/∂θ and all the expectations are taken with respect to the conditional

distribution of z given y and θ. Hence, we can use the following formula to calculate the second

derivative of the observed-data likelihood function,

Ez|y,θ

{
∂2Lc(x|θ)

∂θ∂θ
′ + S(x|θ)S(x|θ)

′
}
≈ 1

M

M∑
m=1

{
∂2Lc(y, z(m)|θ)

∂θ∂θ
′ + S(y, z(m)|θ)S(y, z(m)|θ)

′

}
,

Ez|y,θ{S(x|θ)} ≈ 1

M

M∑
m=1

S(y, z(m)|θ), (22)
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where {z(m),m = 1, 2, · · · ,M} are random observations drawn from the posterior distribution
p(z|y,θ).

5 Examples

We now illustrate the proposed method in two applications. In the first example, while p(y|θ̄)

is not available in closed-form, the Kalman filter provides a recursive algorithm to evaluate it.

Hence, Q(θ|θ) and H(θ|θ) can be calculated in the same manner, facilitating the computation

of RDIC. In the second example, p(y|θ̄) is not available in closed-form and the Kalman filter

cannot be applied. To compute RDIC, we use the Laplace approximation and the technique

suggested in (22).

5.1 Comparing high dimensional dynamic factor models

For many countries, there exists a rich array of macroeconomic time series and financial

time series. To reduce the dimensionality and to extract the information from the large

number of time series, factor analysis has been widely used in the empirical macroeconomic

literature and in the empirical finance literature. For example, by extending the static factor

models previously developed for cross-sectional data, Geweke (1977) proposed the dynamic

factor model for time series data. Many empirical studies, such as Sargent and Sims (1977),

Giannone, et al (2004), have reported evidence that a large fraction of the variance of many

macroeconomic series can be explained by a small number of dynamic factors. Stock and

Watson (1999) and Stock and Watson (2002) showed that dynamic factors extracted from a

large number of predictors lead to improvement in predicting macroeconomic variables. Not

surprisingly, high dimensional dynamic factor models have become a popular tool under a

data rich environment for macroeconomists and policy makers. An excellent review on the

dynamic factor models is given by Stock and Watson (2011).

Following Bernanke, et al (2005) (BBE hereafter), the present paper considers the following

fundamental dynamic factor model:

Yt = FtL
′ + ε′t,

Ft = Ft−1Φ′ + ηt,

where Yt is a 1×N vector of time series variables, Ft a 1×K vector of unobserved latent factors

which contains the information extracted from all the N time series variables, L an N ×K
factor loading matrix, Φ the K × K autoregressive parameter matrix of unobserved latent

factors. It is assumed that εt ∼ N (0,Σ) and ηt ∼ N (0, Q). For the purpose of identification,

Σ is assume to be diagonal and εt and ηt are assumed to be independent with each other.

Following BBE (2005), we set the first K×K block in the loading matrix L to be the identity

matrix.
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In this dynamic factor model, the observed variable Yt consists of a balanced panel of 120

US monthly macroeconomic time series. These series were transformed to induce stationarity

by BBE (2005). The description of the series and the transformation is provided in BBE

(2005). The sample period is from January 1959 to August 2001. Because the data are of

high dimension, the analysis of the dynamic factor models via a frequentist method is diffi cult;

see the discussion in Stock and Watson (2011). In the literature, the Bayesian inference via

the MCMC techniques has been popular for analyzing the dynamic factor models; see Otrok

and Whiteman (1998), Kose, et al (2003, 2008), BBE (2005).

Following BBE (2005), we specify the following prior distributions:

Σii ∼ Inverse− Γ (3, 0.001) , Li ∼ N
(
0,ΣiiM

−1
0

)
,

vec (Φ) |Q ∼ N (0, Q⊗ Ω0) , Q ∼ Inverse− Γ (Q0,K + 2) ,

where M0 is a K×K identity matrix, Li the ith (i > K) column of L. The diagonal elements

of Q0 are set to be the residual variances of the corresponding AR(1) model,
{
σ̂2
i

}
. The

diagonal elements of Ω0 are constructed so that the prior variance of the parameter on the

jth variable in the ith equation is σ̂2
i /σ̂

2
j .

In this example, we aim to determine the number of factors in the dynamic factor models

using model selection criteria. In BBE (2005) model comparison is achieved by graphic meth-

ods. Our approach can be regarded as a formal statistical alternative to graphic methods.

It is well documented that the determination of number of factors in dynamic factor models

is important; see Stock and Watson (1999). As in the previous example, we use DIC7 and

RDIC to compare models with different numbers of factors, namely K = 1, 2 and 3, which

are denoted by M1, M2, M3 respectively. Using the Gibbs sampler, we sample 22,000 random

observations from the corresponding posterior distributions. We discard the first 2,000 obser-

vations and keep the following 20,000 as the effective samples from the posterior distribution

of the parameters.

Following a suggestion of a referee, we also compare alternative models using the mar-

ginal likelihood approach. Unfortunately, the prior distributions of Φ and Q of BBE (2005)

depend on the latent variables which lead to implicit joint prior distributions of L,R,Φ and

Q. Consequently, it is diffi cult to calculate the joint prior density of L,R,Φ and Q. To avoid

the evaluation of the joint prior density, we calculate the marginal likelihood by the harmonic

mean method (Newton and Raftery, 1994), which only needs to calculate the reciprocal of the

likelihood for each posterior draw of parameters.

Based on the 20,000 samples, we compute DIC7, RDIC, and the marginal likelihood for

all three models. Equation (18) is used to approximate the observed-data likelihood at the

posterior mean. Table 1 reports the simple count of the number of parameters (including the

latent variables), DIC7, the PD component of DIC7, (i.e. when the data augmentation tech-

nique is used), the simple count of the number of parameters (excluding the latent variables),

23



Table 1: Model selection results for dynamic factor models

Model M1 M2 M3

Number of Parameters 752 1385 2019
PD 354 971 1404
DIC7 -23288 -37851 -44568

Number of Parameters 241 363 486
P ∗D 88 203 316
D
(
θ
)

-22594 -35248 -41015
RDIC -22418 -34842 -40383

Log MargLik 10733 16978 19842

RDIC, the P ∗D component and the D
(
θ
)
component of RDIC (i.e. when the data augmenta-

tion technique is not used), and the marginal likelihood. Several conclusions may be drawn

from Table 1. First, DIC7, RDIC and the marginal likelihood all suggest that M3 is the best

model, followed by Model 2 and then by Model 1. Model 3 has a higher effective number of

parameters than the other two models. However, the gain in the fit to data is greater. The

conclusion is that at least 3 factors are needed to describe the joint movement of the 120

macroeconomic time series. Second, since very informative priors have been used, neither PD
nor P ∗D is close to the actual number of parameters. While it is cheap to compute RDIC, it

is much harder to compute DIC1. This is because the observed-data likelihood p(y|θ) is not

available in closed-form and the Kalman filter is used to numerically calculate p(y|θ) which

involves the computation of 1
J

∑J
j=1 ln p(y|θ(j)), for J = 20, 000. We have to run the Kalman

filter 20,000 times, which takes more than 4 hours to compute in Matlab.4 In sharp contrast,

it only took less than 80 seconds to compute RDIC. Obviously, the discrepancy in CPU time

increases with J .

5.2 Comparing stochastic volatility models

Stochastic volatility (SV) models have been found very useful for pricing derivative securities.

In the discrete time log-normal SV models, the logarithmic volatility is the state variable

which is often assumed to follow an AR(1) model. The basic log-normal SV model is of the

form:

yt = α+ exp(ht/2)ut, ut ∼ N(0, 1),

ht = µ+ φ(ht−1 − µ) + vt, vt ∼ N(0, τ2),

where t = 1, 2, · · · , n, yt is the continuously compounded return, ht the unobserved log-
volatility, h0 = µ, ut and vt are independent for all t. In this paper, we denote this model by

4Numerically more effi cient algorithms, such as the one proposed by Chan and Jeliazkov (2009) may be
used to evaluate ln p(y|θ(j)).
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M1.

To carry out Bayesian analysis of M1, following Meyer and Yu (2000), the prior distribu-

tions are specified as follows:

α ∼ N (0, 100) , µ ∼ N (0, 100) ,

φ ∼ Beta (1, 1) , 1/τ2 ∼ Γ (0.001, 0.001) .

An important and well documented empirical feature in many financial time series is the

leverage effect (Black, 1976). Following Yu (2005), we define the leverage effect SV model as:

yt = α+ exp (ht/2)ut, ut ∼ N (0, 1)

ht+1 = µ+ φ (ht − µ) + vt+1, vt+1 ∼ N
(
0, τ2

)
with (

ut
vt+1

)
i.i.d∼ N

{(
0
0

)
,

(
1 ρ
ρ 1

)}
and h0 = µ. In this model, ρ captures the leverage effect if ρ < 0. In this case, there is

a negative relationship between the expected future volatility and the current return. We

denote this model as M2 and specify the prior distribution of ρ as:

ρ ∼ Unif (−1, 1) .

Our goal here is to compare the two models using DIC7, RDIC and the Bayes factor

BF21. In all cases, p(y|θ) is not available in closed-form. Since the models are of a nonlinear

non-Gaussian form, the Kalman filter cannot be applied and DIC1 is infeasible to compute.

Specifically, for nested models, the Bayes factor can be calculated using the Savage Dickey

density ratio (Verdinelli and Wasserman, 1995).

The dataset consists of 945 daily mean-corrected returns on Pound/Dollar exchange rates,

covering the period between 01/10/81 and 28/06/85. For MCMC, after a burn-in period of

10,000 iterations, we save every 20th value for the next 100,000 iterations to get 5,000 effective

draws. The same dataset was used in Kim, Shephard and Chib (1998) and Meyer and Yu

(2000). The posterior mean and standard error of parameters in the two competing model

are reported in Table 2. Note that the in M2, the posterior mean of ρ is very close to zero,

relative to its posterior standard error.

Table 3 reports DIC7, RDIC, PD, P ∗D and the Savage-Dickey density ratio for the two

models. Since the Q function does not have a closed-form expression, we employ Equations

(21) and (22) to compute the second order derivative of the observed-data likelihood. To com-

pute RDIC, we use the Laplace approximation of Rue, Martino and Chopin (2009). Equation

(18) is used to approximate the observed-data likelihood at the posterior mean. In particular,

we run the Gibbs sampling twice, one for the parameters and the latent variables, another
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Table 2: Posterior mean and standard error of parameters in M1 and M2

M1 M2

Parameter Mean SE Mean SE
µ -0.6733 0.3282 -0.6485 0.3377
φ 0.9733 0.0127 0.9802 0.0138
ρ - - -0.0575 0.1570
τ 0.1698 0.0378 0.1661 0.0391

Table 3: Model selection results for M1 and M2

Model M1 M2

PD 53.60 31.33
D(θ̄) 1695.40 1693.36
DIC7 1802.52 1756.21
P ∗D 2.32 3.24
D(θ̄) 1837.81 1837.78
RDIC 1842.50 1844.30
BF21 0.2174

for the latent variables given the parameters at the posterior mean obtained from the earlier

Gibbs sampler.

The following findings can be obtained from Table 3. First and foremost, DIC7 and RDIC

suggest different rankings of the competing models. In particular, by dropping the value by

43.3, DIC7 suggests that M2 is better that M1. According to DIC7, M1 and M2 perform

nearly the same judged by D(θ̄). However, M2 reduces PD by 22.3 over M1. This reduction

of the model complexity is the reason why DIC7 prefers M2. This result is surprising as the

posterior mean of the leverage effect is nearly zero as reported in Table 2. On the other hand,

RDIC suggests that M1 is slightly better that M2 although the difference is not worth to

mention. In RDIC, P ∗D is 2.32 in M1 and 3.24 in M2. These values are very close to the

actual numbers of parameters in the two models. Given that M2 has one extra parameter,

this difference is reasonable. Moreover, M1 and M2 perform nearly the same judged by D(θ̄).

These two observations explain whyM1 is slightly better thatM2. Third, Bayes factor suggest

that M1 is the better model, consistent with the ranking of RDIC. This empirical example

clearly demonstrates that RDIC is a more reliable model selection criterion that DIC7.
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6 Conclusion

This paper provides a rigorous decision-theoretic justification of DIC when there is no latent

variable in candidate models. Although latent variable models can be conveniently estimated

in the Bayesian framework via MCMC if the data augmentation technique is used, we argue

that data augmentation cannot be used in connection to DIC. This is because the justification

of DIC rests on the validity of the standard Bayesian asymptotic theory. With data augmen-

tation, the number of parameters increases with the number of observations, invalidating the

standard Bayesian large sample theory. In addition, the use of the data augmentation makes

DIC very sensitive to transformations and distributional representations.

While in principle one can use the standard DIC (i.e. DIC1) without resorting to the

data augmentation technique, in practice this standard DIC is very diffi cult to use because

the observed-data likelihood is not available in closed-form for many latent variable models

and the standard DIC1 has to numerically evaluate the observed-data likelihood at each

MCMC iteration. These two observations make the implementation of DIC1 practically non-

operational for latent variable models.

We introduces a robust deviance information criteria (RDIC) for comparing models with

latent variables. RDIC is defined without augmenting the parameter space and hence can be

justified by the standard Bayesian asymptotic theory. We then show how the EM algorithm

can facilitate the computation of RDIC in different contexts. Since the latent variables are

not treated as parameters in our approach, RDIC is robust to nonlinear transformations of

the latent variables and distributional representations of the model specification. Asymptotic

justification, computational tractability and robustness to transformation and specification

are the three main advantages of the proposed approach. These advantages are illustrated

using two popular models in economics and finance.

Both DIC1 and RDIC require that the DGP be nested by the candidate model and that the

standard ML theory holds true. How to develop a good information criterion for comparing

latent variable models, with the possibility that the candidate model is misspecified, will be

pursued in future research. Also, the topic on comparing models for which the standard ML

theory fails will be pursued in future studies.
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Appendix

Proof of Lemma 3.1

Under Assumptions 1-5, for any ε > 0, let n > max{n∗, n∗∗} and δ > 0, for any θ ∈
H
(
θ̂m, δ

)
=
{
θ : ||θ − θ̂m|| ≤ δ

}
, we have

ln p(θ|y) = ln p(θ̂m|y) + L(1)
n (θ̂m)′(θ − θ̂m) +

1

2
(θ − θ̂m)

′
L(2)
n (θ̃)(θ − θ̂m)

= ln p(θ̂m|y) +
1

2
(θ − θ̂m)

′
L(2)
n (θ̃)(θ − θ̂m),

where θ̃ lies on the segment between θ and θ̂m. It follows that

p(θ|y) = p(θ̂m|y) exp

[
1

2
(θ − θ̂m)

′
L(2)
n (θ̃)(θ − θ̂m)

]
.

Let ω =
√
n(θ − θ̂m), J(θ) = − 1

nL
(2)
n (θ). For given ε and δ such that Ω = {ω : ||ω|| <

√
nδ}, we have θ ∈ H(θ̂m, δ). It can be shown that

p(ω|y) ∝ exp

[
1

2
(θ − θ̂m)

′
L(2)
n (θ̃)(θ − θ̂m)

]
= exp

{
−1

2
ω
′
J(θ̃)ω

}
.

Let c∗n =
∫

Ω exp[−1
2ω
′
J(θ̃)ω]dω, cn =

∫
Ω exp[−1

2ω
′
J(θ̂m)ω]dω, we have

Pn :=

∫
Ω

∣∣∣∣p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω
=

∫
Ω

∣∣∣∣ 1

c∗n
exp

[
−1

2
ω
′
J(θ̃)ω

]
− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω
=

1

cn

∫
Ω

∣∣∣∣cnc∗n exp

[
−1

2
ω
′
J(θ̃)ω

]
− exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω
=

1

cn

∫
Ω

∣∣∣∣cn − c∗nc∗n
exp

[
−1

2
ω
′
J(θ̃)ω

]
+ exp

[
−1

2
ω
′
J(θ̃)ω

]
− exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω
≤ 1

cn

{∫
Ω

∣∣∣∣cn − c∗nc∗n

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̃)ω

]
dω +

∫
Ω

∣∣∣∣exp

[
−1

2
ω
′
J(θ̃)ω

]
− exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω}
≤ |cn − c∗n|

cn
+

1

cn

∫
Ω

∣∣∣∣exp

[
−1

2
ω
′
J(θ̃)ω

]
− exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω
≤ 2

cn

∫
Ω

∣∣∣∣exp

[
−1

2
ω
′
J(θ̃)ω

]
− exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω
≤ 2

cn

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)− J(θ̂m)

]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω.

When Ω = {ω : ||ω|| <
√
nδ}, we have θ ∈ H(θ̂m, δ) and −A(ε) ≤ [J(θ̃)J−1(θ̂m)−IP ] ≤ A(ε).
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By the Hölder inequality, we have

lim
n→∞

Qn := lim
n→∞

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)− J(θ̂m)

]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

= lim
n→∞

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)− J(θ̂m)

]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

= lim
n→∞

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

≤
{

lim
n→∞

∫
Ω

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
− 1

∣∣∣∣2 exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

}1/2

= (D1 − 2D2 +D3)1/2,

where

D1 = lim
n→∞

∫
Ω

exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω,

D2 = lim
n→∞

∫
Ω

exp

{
−1

2
ω
′
[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

= lim
n→∞

∫
Ω

exp

[
−1

2
ω
′
J(θ̃)ω

]
dω,

D3 = lim
n→∞

∫
Ω

exp
{
−ω′

[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω.

It can be shown that D1 = (2π)P/2|J(θ̂m)|−1/2. Following the proof of Lemma 2.1 and

Theorem 2.1 of Chen (1985), we have D−2 ≤ D2 ≤ D+
2 , D

−
3 ≤ D3 ≤ D+

3 and

D+
2 =

∣∣∣J(θ̂m)
∣∣∣−1/2

|IP −A(ε)|−1/2
∫
||Z||<sn

exp

[
−1

2
Z ′Z

]
dZ,

D−2 =
∣∣∣J(θ̂m)

∣∣∣−1/2
|IP +A(ε)|−1/2

∫
||Z||<tn

exp

[
−1

2
Z ′Z

]
dZ,

D+
3 =

∣∣∣J(θ̂m)
∣∣∣−1/2

|IP − 2A(ε)|−1/2

∫
||Z||<s′n

exp

[
−1

2
Z ′Z

]
dZ,

D−3 =
∣∣∣J(θ̂m)

∣∣∣−1/2
|IP + 2A(ε)|−1/2

∫
||Z||<t′n

exp

[
−1

2
Z ′Z

]
dZ,

where sn = δ(1 − e∗(ε))1/2/σ∗n, tn = δ(1 + e∗(ε))1/2/σn, s′n = δ(1 − 2e∗(ε))1/2/σ∗n and t
′
n =

δ(1 + 2e∗(ε))1/2/σn, σ2
n and σ

∗2
n is the largest and smallest eigenvalue of {J(θ̂m)}−1, e(ε) and

e∗(ε) is the largest and smallest eigenvalue of A(ε). Under the regularity conditions, when

n→∞, sn →∞, tn →∞, s′n →∞, t′n →∞, then if ε→ 0, we get

lim
n→∞

|IP ±A(ε)| = 1, lim
n→∞

|IP ± 2A(ε)| = 1,

lim
n→∞

∫
||Z||<sn

exp

[
−1

2
Z ′Z

]
dZ = (2π)P/2,

lim
n→∞

∫
||Z||<tn

exp

[
−1

2
Z ′Z

]
dZ = (2π)P/2.
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Then, we can show that D1 = D2 = D3 = (2π)P/2|J(θ̂m)|−1/2 which implies that

limn→∞Qn = 0 and limn→∞ Pn = 0.

For i, j = 1, 2, · · · , P , it can be shown that

lim
n→∞

∣∣∣∣∫
Ω
ωi

{
p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}
dω

∣∣∣∣
≤ lim

n→∞

∫
Ω

∣∣∣∣ωi{p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}∣∣∣∣ dω
≤ lim

n→∞
|cn − c∗n|

cn

∫
|ωi|p(ω|y)dω

+ lim
n→∞

1

cn

∫
Ω
|ωi|

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)− J(θ̂m)

]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

By Assumption 5, it can be shown that

|cn − c∗n|
cn

∫
|ωi|p(ω|y)dω −→ 0

By using the Hölder’s inequality, it also can be shown that∫
Ω
|ωi|

∣∣∣∣exp

{
−1

2
ω
′
[
J(θ̃)− J(θ̂m)

]
ω

}
− 1

∣∣∣∣ exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

≤


∫

Ω

∣∣∣∣∣∣exp

−ω
′
[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

2

− 1

∣∣∣∣∣∣
2

exp

[
−ω

′
J(θ̂m)ω

2

]
dω


1
2

×
{∫

Ω
ω2
i exp

[
−ω

′
J(θ̂m)ω

2

]
dω

} 1
2

=
√
E(ω2

i )(ED1 − 2ED2 + ED3)1/2 −→ 0

where

ED1 =

∫
Ω

exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω,

ED2 =

∫
Ω

exp

{
−1

2
ω
′
[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

=

∫
Ω

exp

[
−1

2
ω
′
J(θ̃)ω

]
dω,

ED3 =

∫
Ω
ω2
i exp

{
−ω′

[
J(θ̃)J−1(θ̂m)− IP

]
J(θ̂m)ω

}
exp

[
−1

2
ω
′
J(θ̂m)ω

]
dω

=

∫
Ω
ω2
i exp

{
−1

2
ω
′
[
2J(θ̃)− J(θ̂m)

]
J(θ̂m)ω

}
dω

and ED1 − 2ED2 + ED3 −→ 0

Hence, we have ∣∣∣∣∫
Ω
ωi

{
p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}
dω

∣∣∣∣
≤

∫
Ω
|ωi|

∣∣∣∣p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω −→ 0,
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Similarly, we also can show that∣∣∣∣∫
Ω
ωiωj

{
p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}
dω

∣∣∣∣
≤

∫
Ω
|ωiωj |

∣∣∣∣p(ω|y)− 1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]∣∣∣∣ dω −→ 0.

Note that

lim
n→∞

∫
Ω
ωi

{
1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}
dω = 0,

lim
n→∞

∫
Ω
ωiωj

{
1

cn
exp

[
−1

2
ω
′
J(θ̂m)ω

]}
dω = J−1

ij (θ̂m),

where J−1
ij (θ̂m) is the (i, j)th element of J−1(θ̂m). Hence, given the observed data y, E(ω|y) =

0 + o(1) and E(ωω
′ |y) = J−1(θ̂m) + o(1) which imply that

E[(θ − θ̂m)|y] = op(n
−1/2), E[(θ − θ̂m)(θ − θ̂m)

′ |y] = −L−(2)
n (θ̂m) + op(n

−1).

Proof of Theorem 3.1

Under Assumption 1, we know that −L(2)
n (θ̂m) = Op(n). Under Assumption 3, for any ε > 0,

let n > max{n∗, n∗∗}, there exists an integer δ > 0, for any θ ∈ H
(
θ̂m, δ

)
, we have

−A(ε) ≤ L(2)
n (θ)L−(2)

n (θ̂m)− IP ≤ A(ε).

As n → ∞, when ε → 0 and A(ε) → 0, we get L(2)
n (θ)L

−(2)
n (θ̂m)− IP = op(1). Furthermore,

for any θ ∈ H
(
θ̂m, δ

)
, we get

−L(2)
n (θ) + L(2)

n (θ̂m) =
[
L(2)
n (θ)L−(2)

n (θ̂m)− IP

] [
−L(2)

n (θ̂m)
]

= op(1)Op(n) = op(n),

L(2)
n (θ) = L(2)

n (θ̂m) + op(n) = Op(n).

Since, p(θ) = Op(1), hence, we can get that

∂2 ln p(y|θ)

∂θ∂θ′
= L(2)

n (θ)− ∂2 ln p(θ)

∂θ∂θ′
= Op(n)−OP (1) = Op(n).

For any ε > 0, let n > max{n∗, n∗∗} and δ > 0, for any θ ∈ H
(
θ̂m, δ

)
=
{
θ : ||θ − θ̂m|| ≤ δ

}
,

using the Taylor expansion, we can get

p(yrep|θ) = p(yrep|θ̂m) +
∂p(yrep|θ̂m)

∂θ
(θ − θ̂m) +

1

2
(θ − θ̂m)

′ ∂2p(yrep|θ̃m)

∂θ∂θ′
(θ − θ̂m),
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where θ̃m lies on the segment between θ and θ̂m. Hence, we can show that

p(yrep|y) =

∫
p(yrep|θ)p(θ|y)dθ

= p(yrep|θ̂m) +
∂p(yrep|θ̂m)

∂θ

∫
(θ − θ̂m)p(θ|y)dθ

+
1

2

∫ [
(θ − θ̂m)

′ ∂2p(yrep|θ̃m)

∂θ∂θ′
(θ − θ̂m)

]
p(θ|y)dθ

= p(yrep|θ̂m) + p(yrep|θ̂m)
∂ ln p(yrep|θ̂m)

∂θ
(θ̄ − θ̂m)

+
1

2
p(yrep|θ̂m)

∫ [
(θ − θ̂m)

′ 1

p(yrep|θ̂m)

∂2p(yrep|θ̃m)

∂θ∂θ′
(θ − θ̂m)

]
p(θ|y)dθ

= p(yrep|θ̂m)(1 + c1 + c2),

where

c1 =
∂ ln p(yrep|θ̂m)

∂θ
(θ̄ − θ̂m),

c2 =
1

2

∫ [
(θ − θ̂m)

′ 1

p(yrep|θ̂m)

∂2p(yrep|θ̃m)

∂θ∂θ′
(θ − θ̂m)

]
p(θ|y)dθ.

Next we will show that c1 = op(1) and c2 = op(1). When the model is correctly specified,

the quasi-true value θt is the true value denoted by θ0. Since yrep is the replicate data, under

Assumption 6, it can be shown that

1√
n

∂ ln p(yrep|θ0)

∂θ
∼ N [0,J (θ0)] ,

Thus,
1√
n

∂ ln p(yrep|θ0)

∂θ
= Op(1)

Since θ̂m is the consistent estimator of θ0, using continuous mapping theorem, we get

1√
n

∂ ln p(yrep|θ̂m)

∂θ
=

1√
n

∂ ln p(yrep|θ0)

∂θ
+ op(1) = Op(1).

Using Lemma 3.1, we get

c1 =
∂ ln p(yrep|θ̂m)

∂θ
(θ̄ − θ̂m) = Op(n

1/2)op(n
−1/2) = op(1).

According to the information matrix equality for the correctly specified model and As-

sumption 6, we have H(θ0) = J(θ0). Using the standard Bayesian and ML large sample

theory, we can have θ̃m = θ̂m + op(1) and θ̂m = θ0 + op(1) so that θ̃m is also a consistent

estimator of θ0. Hence, using the continuous mapping theorem, we can get

H(θ̃m) = H(θ0) + op(1), J(θ̃m) = J(θ0) + op(1).
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Furthermore, we can show

− 1

n

∂2 ln p(yrep|θ̃m)

∂θ∂θ′
= H(θ̃m) + op(1) = H(θ0) + op(1),

1

n

∂ ln p(yrep|θ̃m)

∂θ

∂ ln p(yrep|θ̃m)

∂θ′
= J(θ̃m) + op(1) = J(θ0) + op(1).

Note that

1

p(yrep|θ)

∂2p(yrep|θ)

∂θ∂θ′
=
∂2 ln p(yrep|θ)

∂θ∂θ′
+
∂ ln p(yrep|θ)

∂θ

∂ ln p(yrep|θ)

∂θ′

Hence, we can get

1

n

1

p(yrep|θ̃m)

∂2p(yrep|θ̃m)

∂θ∂θ′
=

1

n

∂2 ln p(yrep|θ̃m)

∂θ∂θ′
+

1

n

∂ ln p(yrep|θ̃m)

∂θ

∂ ln p(yrep|θ̃m)

∂θ′

= −H(θ0) + J(θ0) + op(1) = op(1).

There exists some null sequence kn, let

an = sup
||θ−θt||≤kn

|| − 1

n

[
∂2 ln p(y|θ)

∂θ∂θ′

]
−H(θ0)||

bn = sup
||θ−θt||≤kn

|||| 1
n

∂ ln p(y|θ)

∂θ

∂ ln p(y|θ)

∂θ′

′
− J(θ0)||

Furthermore, since θ̃m is also a consistent estimator of θ0, by assumption 6, we can get that∣∣∣∣∣ 1n ∂2 ln p(yrep|θ̃m)

∂θ∂θ′
− (−H(θ0))

∣∣∣∣∣ ≤ an1P p−→ 0∣∣∣∣∣ 1n ∂ ln p(yrep|θ̃m)

∂θ

∂ ln p(yrep|θ̃m)

∂θ′
− J(θ0)

∣∣∣∣∣ ≤ bn1P p−→ 0

where 1P is a P × P matrix with one as every component. Hence, we can get that∣∣∣∣∣ 1n 1

p(yrep|θ̃m)

∂2p(yrep|θ̃m)

∂θ∂θ′
− 0× 1P

∣∣∣∣∣∣∣∣∣∣ 1n ∂2 ln p(yrep|θ̃m)

∂θ∂θ′
+

1

n

∂ ln p(yrep|θ̃m)

∂θ

∂ ln p(yrep|θ̃m)

∂θ′
+ H(θ0)− J(θ0)

∣∣∣∣∣
≤
∣∣∣∣∣ 1n ∂2 ln p(yrep|θ̃m)

∂θ∂θ′
− (−H(θ0))

∣∣∣∣∣+

∣∣∣∣∣ 1n ∂ ln p(yrep|θ̃m)

∂θ

∂ ln p(yrep|θ̃m)

∂θ′
− J(θ0)

∣∣∣∣∣
≤ (an + bn)1P

p−→ 0,

Under the Bayesian large sample theory, we know that θ − θ̂m = Op(n
−1/2) so that

θ̃m − θ̂m = Op(n
−1/2). Using the Taylor expansion, we have

ln p(yrep|θ̃m)− ln p(yrep|θ̂m)

=
∂ ln p(yrep|θ̂m)

∂θ
(θ̃m − θ̂m) +

1

2
(θ̃m − θ̂m)′

∂2 ln p(yrep|θ̃m1)

∂θ∂θ′
(θ̃m − θ̂m)

= Op(n
1/2)Op(n

−1/2) +Op(n
−1/2)Op(n)Op(n

−1/2) = Op(1),
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where θ̃m1 lies on the segment between θ̂m and θ̃m. Then, we get

p(y|θ̃m)

p(y|θ̂m)
= exp

[
ln p(yrep|θ̃m)− ln p(yrep|θ̂m)

]
= exp(Op(1)) = Op(1),

Hence, we can have

|c2| =

∣∣∣∣∣12
∫ [

(θ − θ̂m)
′ 1

p(yrep|θ̂m)

∂2p(yrep|θ̃m)

∂θ∂θ′
(θ − θ̂m)

]
p(θ|y)dθ

∣∣∣∣∣
=

∣∣∣∣∣12
∫ [

n(θ − θ̂m)
′ p(yrep|θ̃m)

p(yrep|θ̂m)

[
1

n

1

p(yrep|θ̃m)

∂2p(yrep|θ̃m)

∂θ∂θ′

]
(θ − θ̂m)

]
p(θ|y)dθ

∣∣∣∣∣
≤

∣∣∣∣∣12
∫ [

n(θ − θ̂m)
′ p(yrep|θ̃m)

p(yrep|θ̂m)
[(an + bn)1P ] (θ − θ̂m)

]
p(θ|y)dθ

∣∣∣∣∣
= (an + bn)

∣∣∣∣∣12
∫ [√

n(θ − θ̂m)
′ p(yrep|θ̃m)

p(yrep|θ̂m)
1P
√
n(θ − θ̂m)

]
p(θ|y)dθ

∣∣∣∣∣ p−→ 0

Let θ̂ML be the ML estimator of θ. Using the Taylor expansion, p(θ) = Op(1), we can get

0 =
∂ ln p(y, θ̂m)

∂θ
=
∂ ln p(y, θ̂ML)

∂θ
+
∂2 ln p(y, θ̃m2)

∂θ∂θ′
(θ̂m − θ̂ML),

where θ̃m2 lies on the segment between θ̂m and θ̂ML. Thus,

θ̂m − θ̂ML =

[
∂2 ln p(y, θ̃m2)

∂θ∂θ′

]−1
∂ ln p(y, θ̂ML)

∂θ

= L−(2)
n

(
θ̃m2

)[∂ ln p(y|θ̂ML)

∂θ
+
∂ ln p(θ̂ML)

∂θ

]

= L−(2)
n

(
θ̃m2

)[
0 +

∂ ln p(θ̂ML)

∂θ

]
= Op(n

−1)Op(1) = Op(n
−1).

Again, using the Taylor expansion, we can get

ln p(yrep|θ̂m)− ln p(y|θ̂ML)

=
∂ ln p(yrep|θ̂ML)

∂θ
(θ̂m − θ̂ML) +

1

2
(θ̂m − θ̂ML)′

∂2 ln p(y|θ̃m3)

∂θθ′
(θ̂m − θ̂ML)

= Op(n
1
2 )Op(n

−1) +Op(n
−1)Op(n)Op(n

−1) = Op(n
− 1

2 ),

where θ̃m3 lies on the segment between θ̂m and θ̂ML. Therefore, we can have

− 2 ln p(yrep|y) = −2 ln p(yrep|θ̂m)− 2 ln(1 + c1 + c2)

= −2 ln p(yrep|θ̂m)− 2 ln [1 + op(1)] = −2 ln p(yrep|θ̂m) + op(1)

= −2 ln p(yrep|θ̂ML) +Op(n
− 1

2 ) + op(1)

= −2 ln p(yrep|θ̂ML) + op(1)
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According to the derivation of AIC in Burnham and Anderson (2002), we have

EyEyrep [L(yrep,y)] = EyEyrep [−2 ln p(yrep|y)]

= EyEyrep

[
−2 ln p(yrep|θ̂ML) + op(1)

]
= Ey

[
−2 ln p(y|θ̂ML) + 2P + op(1)

]
In light of Lemma 3.1, using the Taylor expansion, we get

ln p(y|θ̄) = ln p(y|θ̂m) +
∂ ln p(y|θ̂m)

∂θ
(θ̄ − θ̂m) +

1

2
(θ̄ − θ̂m)′

∂2 ln p(y|θ̃m4)

∂θθ′
(θ̄ − θ̂m)

= ln p(y|θ̂m) +Op(n
1/2)op(n

−1/2) + op(n
−1/2)Op(n)op(n

−1/2)

= ln p(y|θ̂m) + op(1) = ln p(y|θ̂ML) + op(1),

where θ̃m4 lies on the segment between θ̄ and θ̂m.

Hence, according to the proof of Lemma 3.1, we can get

PD =

∫
−2
[
ln p(y|θ)− ln p(y|θ̄)

]
p(θ|y)dθ

=

∫
−2
[
ln p(y|θ)− ln p(y|θ̂m)

]
p(θ|y)dθ + 2 ln p(y|θ̂m)− 2 ln p(y|θ̄)

= −2
∂ ln p(y|θ̂m)

∂θ
(θ̄ − θ̂m)−

∫
(θ − θ̂m)′

∂2 ln p(y|θ̃m5)

∂θθ′
(θ − θ̂m)p(θ|y)dθ + op(1)

= op(1)−
∫

(θ − θ̂m)′L(2)
n (θ̃m5)(θ − θ̂m)p(θ|y)dθ +

∫
(θ − θ̂m)′

[
∂ ln p(θ̃m5)

∂θθ′

]
(θ − θ̂m)p(θ|y)dθ

= −
∫

(θ − θ̂m)′L(2)
n (θ̂m)(θ − θ̂m)p(θ|y)dθ + op(1) +Op(n

−1)

= −tr
{
L2
n(θ̂m)V (θ̂m)

}
+ op(1)

= tr
{
L(2)
n (θ̂m)

[
L−(2)
n (θ̂m) + op(n

−1)
]}

= tr
[
L−(2)
n (θ̂m)L−(2)

n (θ̂m)
]

+ tr
[
L(2)
n (θ̂m)op(n

−1)
]

= P + op(1),

where θ̃m5 lies on the segment between θ and θ̂m.

Finally, we have

EyEyrep [L(yrep,y)]

= Ey

[
−2 ln p(y|θ̂ML) + 2P + op(1)

]
= Ey

[
−2 ln p(y|θ̄) + op(1) + 2P + op(1)

]
= Ey

[
D(θ̄) + 2PD + op(1)

]
= Ey [DIC1 + op(1)] .
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Proof of Theorem 4.1

According to Lemma 3.1, it can be shown that

V (θ̄) = E
[
(θ − θ̄)(θ − θ̄)′|y

]
= E

[
(θ − θ̂m + θ̂m − θ̄)(θ − θ̂m + θ̂m − θ̄)′|y

]
= E

[
(θ − θ̂m)(θ − θ̂m)′|y

]
+ 2E

[
(θ − θ̂m)|y

]
(θ̂m − θ̄)′ + (θ̂m − θ̄)(θ̂m − θ̄)′

= E
[
(θ − θ̂m)(θ − θ̂m)′|y

]
+ 2(θ̄ − θ̂m)(θ̂m − θ̄)′ + (θ̂m − θ̄)(θ̂m − θ̄)′

= E
[
(θ − θ̂m)(θ − θ̂m)′|y

]
− (θ̂m − θ̄)(θ̂m − θ̄)′

= V (θ̂m) + op(n
−1/2)op(n

−1/2)

= V (θ̂m) + op(n
−1)

= L−(2)
n (θ̂m) + op(n

−1)

According to the proof of Theorem 3.1, it can be shown that

θ̂m − θ̂ML = Op(n
−1)

Then, based on the standard ML large sample theory and Lemma 3.1, we have θ̄ = θ̂m +

op(n
−1/2) and θ̂ML = θ0 + op(1) so that θ̂m = θ0 + op(1) and θ̄ = θ0 + op(1). Hence, θ̂ML,

and θ̂m and θ̄ both consistent estimators of θ0. The standard ML theory and Assumption 6

suggest that

1

n
I(θ̄) = − 1

n

∂2 ln p(y|θ̄)

∂θ∂θ′
= H(θ0) + op(1),

1

n
I(θ̂m) = − 1

n

∂2 ln p(y|θ̂m)

∂θ∂θ′
= H(θ0) + op(1)

1

n
I(θ̂ML) = − 1

n

∂2 ln p(y|θ̂ML)

∂θ∂θ′
= H(θ0) + op(1)

where H(θ) is the Hessian information matrix given by

H(θ) =

∫
− 1

n

[
∂2 ln p(y|θ)

∂θ∂θ′

]
g(y)dy = 0.

Then, we can get

I(θ̄) = I(θ̂m) + op(n) = I(θ̂ML) + op(n)

Furthermore, since p(θ) = Op(1), it is noted that

L(2)
n (θ̂m) = I(θ̂m) +

∂2 ln p(θ̂m)

∂θ∂θ′
= I(θ̂m) +Op(1) = I(θ̂ML) + op(n)
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Hence, according to the proof of Theorem 3.1, we get

P ∗D = tr
[
I(θ̄)V (θ̄)

]
= tr

{[
I(θ̂ML) + op(n)

] [
V (θ̂m) + op(n

−1)
]}

= tr
{[

I(θ̂ML) + op(n)
] [
L−(2)
n (θ̂m) + op(n

−1)
]}

= tr
{[

I(θ̂ML) + op(n)
] [

I(θ̂m) + op(n
−1)
]}

= tr
{[

I(θ̂ML) + op(n)
] [

I−1(θ̂ML) + op(n
−1)
]}

= P + op(1) = PD + op(1)

Hence,

RDIC = DIC1 + op(1).

Proof of Corollary 4.3

By the Talyor expansion, we get

− 1

n
I
(
θ
)

= ∇ψn
(
θ̄
)

= ∇ψn
(
θ̂m

)
+∇2ψn

(
θ̂m

) [
IP ⊗

(
θ̄ − θ̂m

)]
+

1

2
∇3ψn

(
θ̃
) [
IP ⊗

(
θ − θ̂m

)
⊗
(
θ̄ − θ̂m

)]
,

where θ̃ lies between θ̂m and θ̄. Hence,

I
(
θ̄
)

= I
(
θ̂m

)
− n∇2ψn

(
θ̂m

) [
IP ⊗

(
θ̄ − θ̂m

)]
− 1

2
n∇3ψn

(
θ̃
) [
IP ⊗

(
θ̄ − θ̂m

)
⊗
(
θ̄ − θ̂m

)]
= I

(
θ̂m

)
− n∇2ψn

[
IP ⊗

(
θ̄ − θ̂m

)]
+ op (1)

= I
(
θ̂m

)
− n∇2ψn

[
IP ⊗ %−1

]
+ op (1)

= I
(
θ̂m

)
− nH2

[
IP ⊗ %−1

]
+ op (1) ,

nL(−2)
n

(
θ̂m

)
=

(
∇ψn

(
θ̂m

)
+

1

n
∇γθ

(
θ̂m

))−1

=
[
∇ψn

(
θ̂m

)]−1
+Op

(
n−1

)
=

[
∇2ψn

]−1
+Op

(
n−1/2

)
= H

−1
1 +Op

(
n−1/2

)
= Q+Op

(
n−1/2

)
.

From Li et al. (2015), we have

V
(
θ̄
)

= −L(−2)
(
θ̂m

)
+

1

n2
C(θ̂m) + op

(
n−2

)
,
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where C(θ) is a bounded and continuous function of θ. Hence we get

P ∗D = tr
[
I
(
θ̄
)
V
(
θ̄
)]

= tr
[
I
(
θ̂m

)
V
(
θ̄
)]
− tr

(
nH̄2

[
IP ⊗ %−1

]
V
(
θ̄
))

+ op
(
n−1

)
= tr

[
I
(
θ̂m

)
V
(
θ̄
)]
− tr

[
H̄2

[
IP ⊗ %−1

] (
nV
(
θ̄
))]

+ op
(
n−1

)
= tr

[(
−L(2)

n

(
θ̂m

)
−
(
−∇γθ

(
θ̂m

)))
V
(
θ̄
)]
− tr

[
H̄2

[
IP ⊗ %−1

] (
nV
(
θ̄
))]

+ op
(
n−1

)
= tr

[(
−L(2)

n

(
θ̂m

)
−
(
−∇γθ

(
θ̂m

)))(
−L(−2)

n

(
θ̂m

)
+

1

n2
C
(
θ̂m

)
+ op

(
n−2

))]
+tr

[
H̄2

[
IP ⊗ %−1

] (
−nL(−2)

n

(
θ̂m

))]
+ op(n

−1)

= p− 1

n
tr
[(
−∇γθ

(
θ̂m

))(
−nL(−2)

n

(
θ̂m

))]
+

1

n2
tr
[
−L(2)

n

(
θ̂m

)
C
(
θ̂m

)]
+tr

[
H̄2

[
IP ⊗ %−1

] (
−nL(−2)

n

(
θ̂m

))]
+ op(n

−1)

= p− 1

n
tr
[(
−∇γθ

)(
−H−1

1

)]
+

1

n
tr
[
−H1C

]
+ tr

[
H2

[
IP ⊗ %−1

] (
−H−1

1

)]
+ op

(
n−1

)
= p− 1

n
tr
[
∇γθH−1

1

]
− 1

n
tr
[
H1C̄

]
− tr

[
H2

(
IP ⊗ %−1

)
H
−1
1

]
+ op

(
n−1

)
.

The derivation of RDIC for the dynamic factor models

The complete-data log-likelihood function is:

ln f (Y, F |L,Σ,Φ, Q) = −(K +N)T −K
2

ln 2π − T

2
ln |Σ| − 1

2
tr
[
Σ−1

(
Y − FL′

)′ (
Y − FL′

)]
−T − 1

2
ln |Q| − 1

2
tr
[
Q−1

(
F+1 − F−1Φ′

)′ (
F+1 − F−1Φ′

)]
,

where Y = [Y ′1 , Y
′

2 , ..., Y
′
T ]′, F = [F ′1, F

′
2, ..., F

′
T ]′, F+1 = [F ′2, F

′
3, ..., F

′
T ]′, F−1 =

[
F ′1, F

′
2, ..., F

′
T−1

]′.
Denote this function by ϕ(L,Σ,Φ, Q), In this appendix, we derive the first and second deriva-

tive of the complete-data log-likelihood function. The matrix differentiation used here follows

the rules discussed in Magnus and Neudecker (1999).

The first order derivatives of ϕ(L,Σ,Φ, Q):

Whenever there is no confusion, we denote ϕ(L,Σ,Φ, Q) simply by ϕ. The differential of
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ϕ(L,Σ,Φ, Q) with respect to L is

dL(ϕ) = d

(
−1

2
tr
[
Σ−1

(
Y − FL′

)′ (
Y − FL′

)])
= −1

2
tr
{
−Σ−1 (dL)F

′ (
Y − FL′

)
+ Σ−1

(
Y − FL′

)′ (
−F (dL)′

)}
=

1

2
tr
{

Σ−1dLF
′ (
Y − FL′

)
+ Σ−1

(
Y − FL′

)′
F (dL)′

}
=

1

2
tr
{
F
′ (
Y − FL′

)
Σ−1dL+ dLF ′

(
Y − FL′

) (
Σ−1

)′}
=

1

2
tr
{
F
′ (
Y − FL′

) ((
Σ−1

)′
+ Σ−1

)
dL
}

= tr (c̃dL) ,

where

c̃ =
1

2
F
′ (
Y − FL′

) ((
Σ−1

)′
+ Σ−1

)
.

Taking vec both sides, we get

d

(
vec

(
−1

2
tr
[
Σ−1(Y − FL′)′(Y − FL)

]))
= d(vec(ϕ)) =

(
vec(c̃)′

)′
d(vec(L)).

The first derivative of ϕ (L,Σ,Φ, Q) is

DL (ϕ) =

(
vec

([
1

2
F
′ (
Y − FL′

) ((
Σ−1

)′
+ Σ−1

)]′))′
.

Similarly, we have

DΣ (ϕ) =

(
vec

(
−T

2
Σ−1 +

1

2
Σ−1

(
Y − FL′

)′ (
Y − FL′

)
Σ−1

)′)′
,

DΦ (ϕ) =

(
vec

([
1

2
F ′−1

(
F+1 − F−1Φ′

) ((
Q−1

)′
+Q−1

)]′))′
,

DQ (ϕ) =

(
vec

(
−T − 1

2
Q−1 +

1

2
Q−1

(
F+1 − F−1Φ′

)′ (
F+1 − F−1Φ′

)
Q−1

)′)′
.

The second order derivatives of ϕ (L,Σ,Φ, Q):

The first order derivative of c̃ is

dc̃ = d

(
1

2
F
′ (
Y − FL′

) ((
Σ−1

)′
+ Σ−1

))
= −1

2
F
′
F (dL)

′
((

Σ−1
)′

+ Σ−1
)
.

And the second order derivative is

d2
Lϕ = tr (dc̃ ∗ dL)

= tr

(
−1

2
F
′
F (dL)

′
((

Σ−1
)′

+ Σ−1
)
dL

)
.
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Then, we have,

DL,L (ϕ) = −1

2

(
F
′
F ⊗

((
Σ−1

)′
+ Σ−1

))
,

H = G (T ) = T
′
, T = S (Σ) =

1

2
F
′ (
Y − FL′

) ((
Σ−1

)′
+ Σ−1

)
,

D (G (T )) = KK ,

D (S (Σ)) = IN ⊗
(
F
′ (
Y − FL′

))
·
(
−1

2
(KNN + INN )

)
·
((

Σ−1
)′
⊗ Σ−1

)
,

DH (Σ) = (DG (T )) (DS (Σ)) ,

where KKN is the commutation matrix for a matrix with K rows and N columns. Thus, we

have

DL,Σ (ϕ) =
∂DL (ϕ)

(∂vecΣ)
′ = (DG (T )) (DS (Σ))

= KKN · IN ⊗
(
F
′ (
Y − FL′

))
·
(
−1

2
(KNN + INN )

)
·
((

Σ−1
)′
⊗ Σ−1

)
,

DL,Φ (ϕ) = 0,

DL,Q (ϕ) = 0,

DΣ,Σ (ϕ) = KNN ·


T
2 ·

1
2

((
Σ−1

)′
⊗ Σ−1 +

(
Σ−1

)′
⊗ Σ−1

)
−1

2

 (
Σ−1 (Y − FL′)

′
(Y − FL′) Σ−1

)′
⊗ Σ−1

+
(
Σ−1

)′
⊗
(

Σ−1 (Y − FL′)
′
(Y − FL′) Σ−1

)

 ,

DΣ,Φ (ϕ) = 0,

DΣ,Q (ϕ) = 0,

DΦ,Q (ϕ)

= KKK ·
(
IK ⊗ F ′−1

(
F+1 − F−1Φ′

))
·
(
−1

2
(KKK + IKK)

)
·
((
Q−1

)′
⊗Q−1

)
,

DΦ,Φ (ϕ) = −1

2

(
F
′
−1F−1 ⊗

((
Q−1

)′
+Q−1

))
,

DQ,Q (ϕ) = KKK ·


T−1

2 ·
1
2

((
Q−1

)′
⊗Q−1 +

(
Q−1

)′
⊗Q−1

)
−1

2

 (
Q−1 (F+1 − F−1Φ′)

′
(F+1 − F−1Φ′)Q−1

)′
⊗Q−1

+
(
Q−1

)′
⊗
(

Σ−1 (F+1 − F−1Φ′)
′
(F+1 − F−1Φ′)Q−1

)

 .

The special structure of parameter matrix:

Let L,Σ,Φ, Q have some special structures. In particular, let

L∗ = vec
(
L̄
)
,
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where L̄ is the last (N −K)×K block of L, and

Σ∗ = diag (Σ) , Φ∗ = vec (Φ) , Q∗ = vech (Q) .

The first order derivatives are as follows:

DL∗ (ϕ) = DL (ϕ) ·DL∗ (L (L∗)) = DL (ϕ) · İL∗ ,

DΣ∗ (ϕ) = DΣ (ϕ) ·DΣ∗ (Σ (Σ∗)) = DΣ (ϕ) · İΣ∗ ,

DΦ∗ (ϕ) = DΦ (ϕ) · İΦ∗ ,

DQ∗ (ϕ) = DQ (ϕ) · İQ∗ .

The second order derivatives are as follows:

DL∗,L∗ (ϕ) = DL∗ (DL∗ (ϕ)) = DL∗

(
DL (ϕ) · İL∗

)
=

(
İ
′
L∗ ⊗ I1

)
·DL∗ (DL (ϕ))

=
(
İ
′
L∗ ⊗ I1

)
·DL,L (ϕ) · İL∗ ,

DL∗,Σ∗ (ϕ) = DΣ∗ (DL∗ (ϕ)) = DΣ∗

(
DL (ϕ) · İL∗

)
=

(
İ
′
L∗ ⊗ I1

)
·DΣ∗ (DL (ϕ))

=
(
İ
′
L∗ ⊗ I1

)
·DΣ (DL (ϕ)) ·DΣ∗ (Σ (Σ∗))

= İ
′
L∗ ·DL,Σ (ϕ) · İΣ∗ ,

DL∗,Φ∗ (ϕ) = 0,

DL∗,Q∗ (ϕ) = 0,

DΣ∗,Σ∗ (ϕ) = DΣ∗ (DΣ∗ (ϕ)) = DΣ∗

(
DΣ (ϕ) · İΣ∗

)
= İ

′
Σ∗ ⊗ I1 ·DΣ∗ (DΣ (ϕ))

= İ
′
Σ∗ ·DΣ (DΣ (ϕ)) · İΣ∗ ,

DΣ∗,Φ∗ (ϕ) = 0,

DΣ∗,Q∗ (ϕ) = 0.

DΦ∗,Φ∗ (ϕ) = İ
′
Φ∗ · (DΦ,Φ (ϕ)) · İΦ∗ ,

DΦ∗,Q∗ (ϕ) = İ
′
Φ∗ · (DΦ,Q (ϕ)) · İQ∗ ,

DQ∗,Q∗ (ϕ) = İ
′
Q∗ ·DQ,Q (ϕ) · İQ∗ ,

where DL∗ (L (L∗)) = İL∗ , DΣ∗ (Σ (Σ∗)) = İΣ∗ .

For İL∗ which is a block diagonal matrix, we have

İL∗ = diag (P1, P2, ..., PK) ,
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where

Pi =

[
0K×(N−K)

IN−K

]
.

And for İΣ∗ , which is an N2 ×N matrix whose nth column has 1 in the ((n− 1)×N + n)th

row and other elements are all zeros. For İΦ∗ , we have

İΦ∗ = IK∗K .

For İQ∗ , we have

İQ∗ = diag (R1, R2, ...Rk, ..., RK) .

where

Rk =

[
0(k−1)×(K−k+1)

IK−k+1

]
K×(K−k+1)

,

since Q is a symmetric matrix.

The first order derivatives of the complete-data likelihood with respect to L∗,Σ∗,Φ∗, Q∗

are:

vec
([

DL∗ (ϕ) DΣ∗ (ϕ) DΦ∗ (ϕ) DQ∗ (ϕ)
])
.

The second order derivatives of the complete-data likelihood with respect to L∗,Σ∗,Φ∗, Q∗

are: 

DL∗,L∗ (ϕ) DL∗,Σ∗ (ϕ)
0 0

DΣ∗,L∗ (ϕ) DΣ∗,Σ∗ (ϕ)
0 0

0 0
DΦ∗,Φ∗ (ϕ) DΦ∗,Q∗ (ϕ)

0 0
DQ∗,Φ∗ (ϕ) DQ∗,Q∗ (ϕ)


.

The derivation of RDIC for the stochastic volatility models

The derivatives of the complete-data log-likelihood for M1

The complete-data log-likelihood function

ln p (y,h|θ) = −n ln 2π +
n

2
ln ν − 1

2

n∑
t=1

ht −
1

2

n∑
t=1

(yt − α)2

exp (ht)

−1

2
ν

[
n∑
t=1

(ht − µ− φ (ht−1 − µ))2

]
,

where h = (h1, h2, ..., hn)′, ν = 1/τ2.
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The first order derivatives

∂ ln p (y,h|θ)

∂α
=

n∑
t=1

(yt − α)

exp (ht)
,

∂ ln p (y,h|θ)

∂µ
= −1

2
ν

[
−2

n∑
t=1

(ht − µ− φ (ht−1 − µ)) (1− φ)

]

= ν

[
(1− φ)

n∑
t=1

(ht − µ− φ (ht−1 − µ))

]
,

∂ ln p (y,h|θ)

∂φ
= −1

2
ν

[
−2

n∑
t=1

(ht − µ− φ (ht−1 − µ)) (ht−1 − µ)

]

= ν

[
n∑
t=1

(ht − µ− φ (ht−1 − µ)) (ht−1 − µ)

]
,

∂ ln p (y,h|θ)

∂ν
=
n

2

1

ν
− 1

2

[
n∑
t=1

(ht − µ− φ (ht−1 − µ))2

]
.

The second order derivatives

∂2 ln p (y,h|θ)

∂α∂α
= −

n∑
t=1

1

exp (ht)
= −

n∑
t=1

exp (−ht) ,

∂2 ln p (y,h|θ)

∂α∂µ
=
∂2 ln p (y,h|θ)

∂α∂φ
=
∂2 ln p (y,h|θ)

∂α∂ν
= 0,

∂2 ln p (y,h|θ)

∂µ∂µ
= ν

[
− (1− φ)

n∑
t=1

(1− φ)

]
= −ν

[
n (1− φ)2

]
,

∂2 ln p (y,h|θ)

∂µ∂φ
= ν

[
−

n∑
t=1

(ht − µ− φ (ht−1 − µ))− (1− φ)
n∑
t=1

(ht−1 − µ)

]

= −ν
[

n∑
t=1

(ht − µ− φ (ht−1 − µ)) + (1− φ)
n∑
t=1

(ht−1 − µ)

]
,

∂2 ln p (y,h|θ)

∂µ∂ν
= (1− φ)

n∑
t=1

(ht − µ− φ (ht−1 − µ)) ,

∂2 ln p (y,h|θ)

∂φ∂φ
= ν

[
−

n∑
t=1

(ht−1 − µ)2

]
,

∂2 ln p (y,h|θ)

∂φ∂ν
=

n∑
t=1

(ht − µ− φ (ht−1 − µ)) (ht−1 − µ) ,

∂2 ln p (y,h|θ)

∂ν∂ν
= − n

2ν2
.
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The derivatives of the complete-data log-likelihood for M2

The complete-data log-likelihood function

ln p
(
y,σ2|θ

)
= −n

2
ln 2π +

n

2
ln ν − 1

2
ν

[
n∑
t=1

(
lnσ2

t − µ− φ
(
lnσ2

t−1 − µ
))2]

−1

2

n∑
t=1

(yt − α)2

σ2
t

− n

2
ln 2π − 1

2

n∑
t=1

σ2
t ,

where σ2 =
(
σ2

1, σ
2
2, ...σ

2
n

)′.
The first order derivatives

∂ ln p
(
y,σ2|θ

)
∂α

=

n∑
t=1

yt − α
σ2
t

,

∂ ln p
(
y,σ2|θ

)
∂µ

= ν

[
(1− φ)

n∑
t=1

(
lnσ2

t − µ− φ
(
lnσ2

t−1 − µ
))]

,

∂ ln p
(
y,σ2|θ

)
∂φ

= ν

[
n∑
t=1

(
lnσ2

t − µ− φ
(
lnσ2

t−1 − µ
)) (

lnσ2
t−1 − µ

)]
,

∂ ln p
(
y,σ2|θ

)
∂ν

=
n

2ν
− 1

2

[
n∑
t=1

(
lnσ2

t − µ− φ
(
lnσ2

t−1 − µ
))2]

.

The second order derivatives

∂ ln p
(
y,σ2|θ

)
∂α∂α

= −
n∑
t=1

1

σ2
t

,

∂ ln p
(
y,σ2|θ

)
∂α∂µ

=
∂ ln p

(
y,σ2|θ

)
∂α∂φ

=
∂ ln p

(
y,σ2|θ

)
∂α∂ν

= 0,

∂ ln p
(
y,σ2|θ

)
∂µ∂µ

= −ν
[
n (1− φ)2

]
,

∂ ln p
(
y,σ2|θ

)
∂µ∂φ

= −ν
[

n∑
t=1

(
lnσ2

t − µ− φ
(
lnσ2

t−1 − µ
))

+ (1− φ)
n∑
t=1

(
lnσ2

t−1 − µ
)]
,

∂ ln p
(
y,σ2|θ

)
∂µ∂ν

= (1− φ)

n∑
t=1

(
lnσ2

t − µ− φ
(
lnσ2

t−1 − µ
))
,

∂ ln p
(
y,σ2|θ

)
∂φ∂φ

= ν

[
−

n∑
t=1

(
lnσ2

t−1 − µ
)2]

,

∂ ln p
(
y,σ2|θ

)
∂φ∂ν

=
n∑
t=1

(
lnσ2

t − µ− φ
(
lnσ2

t−1 − µ
)) (

lnσ2
t−1 − µ

)
,

∂2 ln p
(
y, lnσ2|θ

)
∂ν∂ν

= − n

2ν2
.
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Gaussian Approximation

The complete-data log-likelihood function of M1 can be also expressed as:

ln (p (y,h|θ)) = −n
2

ln (2π)− n

2
ln
(
τ2
)
− 1

2
(h− µ)′Q (h− µ)

−n
2

ln (2π)− 1

2

n∑
t=1

ht −
n∑
t=1

(yt − α)2

2
exp (−ht) ,

where µ = µe, e′ = (1, . . . , 1)n, Q is a tri-diagonal precision matrix, Q = Q∗/τ2, Q∗ is

defined as follows:

Q∗ =



φ2 −φ
−φ 1 + φ2 −φ

. . .

. . .
−φ 1 + φ2 −φ

−φ 1

 .

The posterior density of h is

p (h|y,θ) ∝ exp

[
−1

2
(h− µ)′Q (h− µ)−

n∑
t=1

(
1

2
ht +

(yt − α)2

2
exp (−ht)

)]

= exp (f (h)) ≈ exp

(
−1

2
h′ch + bh + constant

)
.

To obtain the parameters c and b of the canonical form, we use the first and second order

derivatives:

ḟ (h) = −h′Q+ µ′Q− 1

2
e′ +

1

2

(
y∗2
)′ � exp (−h)′

f̈ (h) = −Q− diag
(

1

2
(y∗)2 � exp (−h)

)
,

where y∗ = y − α and α = αe, e′ = (1, . . . , 1)n, y∗2 = (y∗21 , . . . , y
∗2
n )′ and exp(−h) =

(exp(−h1), . . . , exp(−hn))′.

Denoting the mode of f by m, we apply the Taylor expansion to f (x):

f (h) ≈ (h−m)′
f̈ (m)

2
(h−m) + ḟ (m) (h−m) + constant

= −1

2
h′
(
−f̈ (m)

)
h−m′f̈ (m) h + ḟ (m) h + constant

= −1

2
h′ch + bh + constant.

Now, we obtain c and b as

c = −f̈ (m) = Q + diag

(
1

2
y∗2 � exp (−m)

)
,
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b = −m′f̈ (m) + ḟ (m)

= m′Q + m′diag

(
1

2
y∗2 � exp (−m)

)
−m′Q + µ′Q− 1

2
e′ +

1

2

(
y∗2
)′ � exp (−m)′

= m′diag

(
1

2
y∗2 � exp (−m)

)
+

1

2

(
y∗2
)′ � exp (−m)′ + µ′Q− 1

2
e′.

Using

−1

2
h′ch + bh + constant = −1

2
(h−m∗)′Q∗ (h−m∗) ,

we obtain

Q∗ = c = Q + diag

(
1

2
y∗2 � exp (−m)

)
,

m∗ = Q∗−1b′.

To obtain the optimal mode of Q∗ and m∗, we run the above procedure recursively until

convergence.
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