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Abstract

An asymptotic distribution is derived for the least squares (LS) estimate of a first-order
autoregression with a mildly explosive root and anti-persistent errors. While the sample
moments depend on the Hurst parameter asymptotically, the Cauchy limiting distribution
theory remains valid for the LS estimates in the model without intercept and a model with an
asymptotically negligible intercept. Monte Carlo studies are designed to check the precision
of the Cauchy distribution in finite samples. An empirical study based on the monthly
NASDAQ index highlights the usefulness of the model and the new limiting distribution.

I. Introduction

The autoregressive (AR) model with an explosive root was first studied in White (1958)
and Anderson (1959) where the following process was considered:

yt =�yt−1 +ut , �> 1, t =1, 2,…, n. (1)

Under the assumptions of independent and identically distributed (iid) Gaussian errors

(i.e. ut
iid∼N (0,�2)) and the zero initial condition (i.e. y0 = 0), White (1958) and Anderson

(1959) showed that the least squares (LS) estimate of � (denoted by �̂) has the following
Cauchy limiting distribution:
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�n

�2 −1
(�̂−�)

as→C, as n→∞, (2)

where
as→ denotes the convergence almost surely and C is a standard Cauchy variate.

It is noteworthy that the above limit theory is not obtained from an invariance princi-

ple because the distributional assumption ut
iid∼N (0,�2) cannot be relaxed.1 To relax the

assumption of Gaussian errors, and in the meantime, to allow for a non-zero initial condi-
tion, Phillips and Magdalinos (2007a) (PM hereafter) and Phillips, Magdalinos and Giraitis
(2010) (PMG hereafter) considered two variations which are analogous to Model (1). PM
designed a mildly explosive AR model by letting �=�n =1+ c/n�, c > 0, �∈ (0, 1), while
PMG introduced a mildly explosive model by letting � = �m,n = 1 + cm/n, c > 0. Under
some suitable assumptions but without the requirements of Gaussian errors and the zero
initial condition, applying different forms of the central limit theorem and the martingale
convergence theorem, PM and PMG obtained the asymptotic theory:

�n
n

�2
n −1

(�̂−�n)⇒C, as n→∞; (PM)

�n
m,n

�2
m,n −1

(
�̂−�m,n

)⇒C, as n→∞ followed by m→∞. (PMG)

The pivotalness of the Cauchy distribution suggests that it is easy to test a hypothesis
about the AR coefficient. Not surprisingly, it has been used in the literature to test the
presence of rational bubbles in asset prices; see Phillips, Wu and Yu (2011). Moreover,
considerable efforts have been made in the literature to explore the explosive-type AR
models with dependent errors. The errors could be weakly dependent as in Phillips and
Magdalinos (2007b), or strongly dependent as in Magdalinos (2012), or could involve con-
ditional heteroskedasticity as in Arvanitis and Magdalinos (2018). These generalizations
are important as the explosive-type model with dependent errors can potentially better
describe the movement of real data than the pure explosive AR(1) model. A number of
related studies in the literature allow for m-dependent errors (Pedersen and Schütte, 2017),
errors with deterministic time-varying volatilities (Harvey, Leybourne and Zu, 2019a, b).

To the best of our knowledge, no limit theory has been developed to cover any explosive-
type AR model with anti-persistent errors. The goal of this paper is to fill the gaps in the
context of the explosive-type AR model of PMG. Why are the gaps important? To see the
empirical relevance of an explosive model with anti-persistent errors, Figure 1 presents time
series plots of four logarithmic stock market indices (left axis) and the residuals obtained
from the fitted AR(1) model with and without intercept (right axis). In particular, we
consider four monthly indices over different sampling periods, namely FTSE 100 Index
from January 2003 to October 2007, Hang Seng Index from May 1989 to June 1997,
NASDAQ Composite Index from January 1990 to December 1999 and Nikkei 225 Index
from August 1982 to November 1989. The sampling periods are selected as these markets

1
This is because what is used to derive equation (2) is the martingale convergence theorem which gives the almost

sure convergence.

© 2020 The Department of Economics, University of Oxford and John Wiley & Sons Ltd



520 Bulletin

Figure 1. Time series plot of four logarithmic stock market indices (left axis) and their residuals obtained from
the fitted AR(1) model with and without intercept by LS (right axis)

experienced exuberance over the respective periods, as it can be seen from the solid black
lines in Figure 1. After fitting the AR(1) model with and without intercept to each time
series by LS, we obtain two residual series with and without intercept and plot them in the
blue and red dotted lines in Figure 1. These plots show that there is strong anti-persistence
in the residuals.2 When we apply the local Whittle (LW) method of Robinson (1994) to
estimate the memory parameter d in the residuals, we find that the estimated d is always
in the range (−0.5, 0) in all cases. The estimated d is reported in Figure 1 with d̂a and
d̂b corresponding to the model without and with intercept, respectively. These exercises
strongly suggest that the explosive-type AR model with anti-persistent errors is not only
of theoretical interest but also of empirical realism, making important the development of
limit theory for an explosive-type AR model with anti-persistent errors.

The paper is organized as follows. Section II briefly reviews several forms of serially
dependent error processes and mildly explosive AR models. Section III studies the mildly
explosive AR model of PMG but with anti-persistent errors and develops the limiting
distribution for the LS estimate of the AR coefficient under a sequential limit. Simulation
studies are carried out in section IV to check the precision of the limiting distribution in
finite samples. Section V provides an empirical study of a rational bubble in the NASDAQ
index. Proofs of the main results in the paper are given in the Appendix.

2
A detailed discussion on anti-persistence is provided in the next section where we also relate anti-persistence to

the memory parameter d.
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We use the following notations throughout the paper:
p→ ,

as→ , ⇒ ,
a∼ , d= and

iid∼ denote
convergence in probability, convergence almost surely, weak convergence, asymptotic
equivalence, equivalence in distribution and iid respectively.

II. Literature review

A review of serially correlated errors

Although our paper focuses on anti-persistent errors, to facilitate discussion and compari-
son, we first review the concepts of weakly dependent errors and strongly dependent errors.
Suppose that the error process admits a Wold-decomposition such that

ut =
∞∑

j=0

cj�t−j, c0 =1, �t
iid∼(0,�2), (3)

where {cj}∞
j=0 are real coefficients. Denote �(k) the kth order autocovariance function of ut ,

that is �(k) :=E(utut−k).
Weakly dependent errors require

∑∞
j=0 |cj|<∞ and

∑∞
j=0 cj �=0. These conditions im-

ply that
∑∞

k=−∞ |�(k)| ∈ (0,∞) and
∑∞

k=−∞ �(k) �= 0. For strongly dependent errors, it is
assumed that cj in (4) has a slow decay rate, such as cj ∼ j−1+d with d ∈ (0, 0.5) when j is
large. This leads to a violation of the summability condition of the linear coefficients and
the autocovariance function as

∑∞
j=0 cj =∞ and

∑∞
k=−∞ |�(k)|=∞.

Anti-persistent errors are remarkably different from weakly dependent errors and
strongly dependent errors. First, they are different from strongly dependent errors as cj has
a fast decay rate for anti-persistent errors, such as cj ∼ j−1+d with d ∈ (−0.5, 0) when j is
large. Second, they are different from weakly dependent errors in the sense that

∑∞
j=0 cj =0

and
∑∞

k=−∞ �(k) = 0. Moreover, for any k �= 0, �(k) has a negative sign (see Proposition
3.2.1 (3) in Giraitis, Koul and Surgailis (2012)), giving rise to the name of anti-persistence.
These properties make the interpretation of corresponding stochastic integrals different
from that when the errors are weakly dependent or strongly dependent. From the theo-
retical viewpoint, therefore, it is important to develop the limit theory for anti-persistent
errors.

We now formally introduce the definition of anti-persistence.

Assumption 1 (AP) Under (3) and let � be a constant. Assume cj
a∼ �j−1+d for j →∞

with d ∈ (−0.5, 0),
∑∞

j=0 cj =0 and
∑∞

k=−∞ �(k)=0.

Assumption AP is general enough to include stationary ARFIMA(p, d, q) processes
where ut = (1−L)−d�(L)−1�(L)�t =

∑∞
j=0 cj�t−j,�(L)=1−∑p

j=0 �jLj,�(L)=1+∑p
j=0 �jLj

and L is the lag operator. We can show that cj can be asymptotically approximated by
�(1)

�(1)�(d) j
−1+d , where �(·) is a gamma function. When d ∈ (−0.5, 0) , the stationary ARFIMA

process has the zero-sum for the linear coefficients, that is
∑∞

j=0 cj = 0. It is well-known
that ut corresponds to a fractional Brownian motion (fBM) with the Hurst parameter
H = 1/ 2 + d; see Giraitis et al. (2012). When H = 0.5, an fBM becomes the standard
Brownian motion. When H ∈ (0, 0.5) which corresponds to the case of interest in the
present paper, an fBM has a rough sample path and is anti-persistent. When H ∈ (0.5, 1),

© 2020 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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an fBM has a smooth sample path in the sense that it is 1/ 2 − �-Hölder continuous for
any � > 0. The empirical relevance of anti-persistent processes in financial time series was
recently documented in Gatheral, Jaisson and Rosenbaum (2018) and Wang, Xiao and Yu
(2019). The empirical relevance of anti-persistent errors in an explosive model was shown
earlier in Figure 1. Assuming a continuous record of observations is available, Xiao andYu
(2019a, b) recently developed the limit theory for the persistence parameter in the fractional
Vasicek model which corresponds to the AR coefficient in the discrete-time representation.

A mildly explosive model

PMG considered the following mildly explosive model:

yt =
(

1+ cm

n

)
yt−1 +ut , c > 0, ut

iid∼(0,�2), y0 =Op(1). (4)

As suggested in PMG, one way of thinking of the model specification is that the total number
of observations (n) is partitioned into m blocks with K samples so that n = m × K . Thus,
the chronological time for yt becomes t =�Kj	+k , for k ∈{1,…, K} and j ∈{0, 1,…m−1}.
This model is closely related to the model proposed in Park (2003) where it was assumed
that c =−1 < 0.

It is easy to see that as n→∞ with fixed m, Model (4) is a local-to-unity model with
the non-centrality parameter cm, and hence, the standard local-to-unity asymptotic theory
is applicable. That is,

n(�̂−�n,m)⇒
∫ 1

0
Jcm(s)dW (s)/

∫ 1

0
J 2

cm(s)ds,

where Jcm(s)=∫ s

0 ecm(s−r)dW (r) and W (·) denotes a standard Brownian motion.
However, since c > 0, if one assumes n →∞ followed by m →∞, Model (4) is akin

to a mildly explosive AR model of PM whose root is in a larger neighbourhood of unity
than a local-to-unit-root. The second asymptotic (m → ∞) creates a departure from the
local-to-unit-root region; see Park (2003) and PMG for detailed discussions. With this
sequential asymptotic scheme, we have

1

2c

n

m
ecm
(
�̂−�n,m

)⇒ e−cm
∫ 1

0 Jcm(s)dW (s)

2ce−2cm
∫ 1

0 J 2
cm(s)ds

, as n→∞ with fixed m

= e−cm
∫ m

0 J̃c(s)dW̃ (s)

2ce−2cm
∫ m

0 J̃ 2
c (s)ds

⇒C, as m→∞, (5)

where W̃ (t)=√
mW (t/m) and J̃c(t)=

∫ t

0 ec(t−s)dW̃ (s).To see the link between this sequential
asymptotic result in equation (5) and the asymptotic results in equations (2) and (PM), note
that ecm = exp( cm

n )n a∼�n
n,m and �2

n,m −1
a∼2c m

n .3

3
Although the limiting distribution in PM is the same as that in PMG, the techniques used to develop the limiting

distribution are different in these two studies. PM uses a Lindeberg–Feller CLT while PMG uses the local-to-unit-root
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III. Mildly explosive model with anti-persistent errors

We now extend the model of PMG to the following model:

yt =	n +�yt−1 +ut , t =1,…, n, (6)

where y0 =op(n1/ 2+d), 	n =	/n#, �=�n,m = (1+ cm
n ), # >1/ 2−d and ut satisfiesAssumption

AP.
Model (6) is different from Model (4) in two aspects. First and foremost, instead of

assuming an iid error process, we allow for anti-persistent errors in Model (6). Second,
when 	 �=0, a non-zero intercept 	n, which is asymptotically negligible, enters the model.
Following Phillips, Shi and Yu (2014), we assume 	n =	/n# so that, in finite samples, the
model can generate a linear trend. Also, the specification of 	n =	/n# with # > 1/ 2 − d
regulates 	n so that the localized drift cannot dominate the random component introduced
by ut . However, if 	=0, then 	n =0 and the intercept vanishes.

In this section, we aim to develop the limiting distribution for the centred LS estimate
with and without intercept. To be more precise, we define the LS estimate without intercept
by �̂a and the LS estimate with intercept by �̂b.Thus, we can express the centred LS estimates
as

�̂a −�=
∑n

t=1 yt−1ut∑n
t=1 y2

t−1

, (7)

and

�̂b −�=
∑n

t=1 yt−1ut − 1
n

∑n
t=1 yt−1

∑n
t=1 ut∑n

t=1 y2
t−1 − 1

n

(∑n
t=1 yt−1

)2 . (8)

Before we develop the asymptotic theory, we first review the functional central limit
theorem due to Giraitis et al. (2012) which extends Donsker’s theorem.

Lemma 3.1 (Corollary 4.4.1 in Giraitis et al. (2012))
Let ut be as in equation (3). Assume cj

a∼ �j−1+d as j →∞ with � being a constant and
d ∈ (−0.5, 0), E|�t|p <∞ with p > (0.5+d)−1 and

∑∞
j=0 cj =0. Then, as n→∞,

n−H
�nr	∑
t=1

ut ⇒ 
BH (r), (9)

in D[0, 1] with the uniform metric, where 
=
√

�2�2 B(d, 1−2d)
d(1+2d) with B(x, y) = �(x)�(y)

�(x+y) , H =
1
2 +d, BH (r) is an fBM with the Hurst parameter H .

An fBM with the Hurst parameter H ∈ (0, 1) is a Gaussian process with zero mean and
the following covariance,

E(BH (r)BH (s))= 1

2

(|r|2H +|s|2H −|r − s|2H
)
.

theory together with the martingale convergence theorem. Our proof follows that of PMG, but there are technical
difficulties that we need to deal with in our proof.

© 2020 The Department of Economics, University of Oxford and John Wiley & Sons Ltd
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Clearly, if H = 1/ 2, BH (t) becomes the standard Brownian motion W (t). Unlike W (t),
BH (t) is not a semi-martingale if H �= 1/ 2. Therefore, we cannot interpret the stochastic
integral with respect to fBM as an Itô integral. In this paper, we interpret the stochastic
integral with respect to fBM as a Young integral when we study the asymptotic theory for
the error process under Assumption AP, where the mathematical techniques are related to
those used in EI Machkouri, Es-Sebaiy and Ouknine (2016) and Xiao and Yu (2019a, b).
This interpretation is in contrast to PMG where J̃c(t)=

∫ t

0 ec(t−s)dW̃ (s) is viewed as an Itô
integral. Moreover, we need a different asymptotic theory to obtain a sequential limit. The
following lemma obtains the asymptotic behaviour of the sample moments.

Lemma 3.2 In Model (6) with {ut} satisfying Assumption AP, we assume E|�t|p < ∞
with p > (0.5 + d)−1. As n →∞ with m fixed, we have the local-to-unit-root asymptotic
results:

(i) 1
n1/ 2+d y�nr	 ⇒ 
J H

cm(r);

(ii) 1
n3/ 2+d

∑n
t=1 yt ⇒ 


∫ 1
0 J H

cm(r)dr;

(iii) 1
n2+2d

∑n
t=1 y2

t ⇒ 
2
∫ 1

0 (J H
cm(r))2dr;

(iv) 1
n1+2d

∑n
t=1 yt−1ut + 1

n1+2d
1
2

∑n
t=1 u2

t ⇒ 
2[cmZ(1)
∫ 1

0 ecmsdBH (s)+R(1)], where


=
√

�2�2
B(d, 1−2d)

d(1+2d)
,B(d, 1−2d)= �(d)�(1−2d)

�(1−d)
,

J H
cm(r)=

∫ r

0
ecm(r−s)dBH (s), Z(1)=

∫ 1

0
e−cmsBH (s)ds,

R(1)=1

2

[
BH (1)

]2 − cm
∫ 1

0
(BH (s))2ds + (cm)2

∫ 1

0

∫ s

0
ecm(r−s)BH (r)BH (s)drds.

Since BH (s) is not a semi-martingale, in the present paper, we treat J H
cm(r) as a Young

integral. For details about the Young integral, see (A.1) in EI Machkouri et al. (2016).

Remark 3.1 The results in Lemma 3.2 are closely related to Lemma 1 in Phillips (1987),
which can be used to show that for Model (6) with weakly dependent errors, when n→∞
with m fixed,

1

n1/ 2
y�nr	 ⇒�Jcm(r),

1

n3/ 2

n∑
t=1

yt ⇒�
∫ 1

0
Jcm(r)dr,

1

n2

n∑
t=1

y2
t ⇒�2

∫ 1

0
(Jcm(r))2dr,

1

n

n∑
t=1

yt−1ut

⇒ 1

2

[
�2Jcm(1)2 −2cm�2

∫ 1

0
(Jcm(r))2dr −E(u2

t )
]
,

where Jcm(r)=∫ r

0 e(r−s)cmdW (s).
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Remark 3.2 For Model (6) with strongly dependent errors, the first three claims in
Lemma 3.2 remain valid, while for the last claim, we have

1

n1+2d

n∑
t=1

yt−1ut ⇒ 
2

[
cmZ(1)

∫ 1

0
ecmsdBH (s)+R(1)

]
,

because the term 1
n1+2d

1
2

∑n
t=1 u2

t appearing in Lemma 3.2.4 asymptotically vanishes as
n →∞. This difference makes the development of the limiting distribution in the mildly
explosive model with anti-persistent errors more difficult. In particular, when n→∞ with
m fixed, the centred LS involves an additional term where 1

n1+2d
1
2

∑n
t=1 u2

t appears in the
numerator. Additional rate condition is needed to make sure this additional term vanishes
asymptotically, as shown in the following theorem.

Theorem 3.1 Let c > 0 in Model (6), under the same set of assumptions as in Lemma
3.2, if n→∞ followed by m→∞ with m=� ln n and �>− 2d

c , we have

1

2c

n

m
ecm
(
�̂j −�

)⇒C,
�n

�2 −1

(
�̂j −�

)⇒C, j ∈{a, b}. (10)

Theorem 3.1 suggests that the centred LS estimates �̂a and �̂b in Model (6) have the
Cauchy limiting distribution upon the correct normalization. Since the Cauchy distribution
is pivotal and � can be consistently estimated by either �̂a or �̂b, the limit theory provides
a convenient way for hypothesis testing for �.

Remark 3.3 The rate condition m = � ln n with � > − 2d
c suggests that m cannot go to

infinity too slowly relative to n. This condition ensures that 1
n1+2d

1
2

∑n
t=1 u2

t is dominated by
1

n1+2d

∑n
t=1 yt−1ut as m→∞.

Remark 3.4 As in Phillips et al. (2011), Theorem 3.1 suggests that a confidence interval
(CI) for � can be constructed as{

�̂j ±
�̂2

j −1

�̂n
j

Ca

}
, j ∈{a, b}, (11)

where Ca is the critical value for the two-tailed test with the significance level � and
C0.1 =6.315, C0.05 =12.7, C0.01 =63.65674.

Remark 3.5 The Cauchy limiting distribution also holds when we have weakly/strongly
dependent errors in Model (4). For example, suppose ut is weakly dependent with

∑∞
j=0 |cj|<

∞, and
∑∞

j=0 cj �= 0, y0 = op(n1/ 2) and E|�t|�+" < ∞ for some � > 2 and " > 0 . With the
sequential asymptotic, we have

1

2c

n

m
ecm
(
�̂a −�

)⇒ e−cm
∫ 1

0 Jcm(s)dW (s)+ e−cm 1
2

(
1− 

�2

)
2ce−2cm

∫ 1
0 J 2

cm(s)ds
, as n→∞ with fixed m

= e−cm
∫ m

0 J̃c(s)dW̃ (s)

2ce−2cm
∫ m

0 J̃ 2
c (s)ds

+Op(e−cm)

⇒C, as m→∞. (12)
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The first convergence follows from Theorem 1 of Phillips (1987), where =�2
∑∞

j=0 c2
j and

�=�
∑∞

j=0 cj. The second convergence follows from the martingale convergence theorem.

Remark 3.6 Suppose that �n = 1 + c/n� with � ∈ (0, 1), c > 0 and ut = �t
iid∼N (0,�2).

According to Theorem 4.3 of Phillips and Magdalinos (2007a),

�−n
n /n�

n∑
t=1

yt−1ut ⇒�0�0,�−2n
n /n2�

n∑
t=1

y2
t−1 ⇒�2

0,

where �0 and �0 are independent N (0,�2/ 2c) random variables. In our model, we have
�=�n,m = 1 + cm/n and anti-persistent errors. Under the sequential asymptotic scheme,
we have

e−cm

m

1

n1+2d

1

�2

n∑
t=1

yt−1ut ⇒�d�d , 2ce−2cm 1

n2+2d

1

�2

n∑
t=1

y2
t−1 ⇒�2

d , (13)

where �d and �d are independent N (0, H�(2H )/ 2c) random variables. We complement
the results of PM and PMG to the model with anti-persistent errors.

Remark 3.7 When ut is strongly dependent, using the similar arguments in proving
Theorem 3.1, we can obtain the results of (10) and (13). In this case, the assumption
m=� ln n with �>− 2d

c , which is used to eliminate 1
n1+2d

1
2

∑n
t=1 u2

t as m→∞, is not needed.

IV. Monte Carlo studies

In this section, we design several Monte Carlo experiments to evaluate the precision of
the derived asymptotic distribution in finite samples. In all experiments, we simulate data
from the following data generating process (DGP):

yt =	n +�yt−1 +ut , t =1, 2,…, n, (14)

where �= (1 + cm
n ), y0 = 0, c > 0,	n =	/n#, ut = (1 − L)d�t with �t

iid∼N (0, 1). We consider
the following parameter settings:

(n, m)∈{(100, 10), (500, 15), (1000, 20)},
d ∈{−0.45, −0.4, −0.3, −0.2, −0.1, −0.01},
c ∈{0.5, 1},	=1, # = 1

2
−d +0.1.

(15)

The number of replications is always set at 10,000.
Under the parameter settings (15), we first obtain the LS estimates �̂a and �̂b, and then

apply the Cauchy distribution to construct the 95% CI (CIa and CIb) based on equation (11)
for �n,m. We calculate the empirical coverage of the true value �, i.e. 1

10000

∑10000
l=1 1(�(l)

L �
���(l)

U ), where �(l)
L and �(l)

U are the two bounds of the CI in the lth replication, and 1(·) is
the indicator function.

Tables 1 reports the empirical coverage of 95% CIs for alternative parameter settings in
(15). With n=100, m=10 and c=0.5, there is an obvious over coverage problem for both
CIa and CIb. This problem is less severe as c increases to 1 or as both m and n increase.
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TABLE 1

Empirical coverage of 95% CI of �

(n=100, m=10) (n=500, m=15) (n=1000, m=20)

c =0.5 c =1 c =0.5 c =1 c =0.5 c =1

d CIa CIb CIa CIb CIa CIb CIa CIb CIa CIb CIa CIb

−0.45 0.995 0.995 0.928 0.92 0.905 0.889 0.923 0.917 0.915 0.905 0.922 0.917
−0.4 0.996 0.995 0.933 0.924 0.917 0.903 0.928 0.924 0.925 0.915 0.929 0.925
−0.3 0.996 0.994 0.945 0.937 0.934 0.923 0.939 0.933 0.936 0.928 0.937 0.935
−0.2 0.995 0.995 0.948 0.943 0.949 0.939 0.944 0.941 0.944 0.937 0.947 0.942
−0.1 0.991 0.992 0.947 0.943 0.95 0.946 0.95 0.945 0.948 0.943 0.950 0.947
−0.01 0.988 0.99 0.951 0.947 0.952 0.946 0.952 0.949 0.950 0.946 0.952 0.950

Moreover, the CIs have good finite sample performance when c is relatively large and d
is between −0.01 and −0.3. When c = 1, it can be seen that both CIa and CIb provide
the empirical coverage which is close to the nominal coverage 95%. Finally, the empirical
coverage obtained from CIa and CIb are similar.

V. An empirical study

To highlight the usefulness of the proposed model and the derived limiting distribution in
practice, we now conduct an empirical study of a rational bubble based on Model (4) and
the asymptotic theory in Theorem 3.1. The standard no-arbitrage condition suggests that

Pt = 1

1+ rf
Et [Pt+1 +Dt+1], (16)

where Pt , rf , Dt and Et denote the price of asset, the discount rate, the dividend and the
expectation based on information at time t respectively. Equation (16) can be solved by
forward substitutions, giving rise to the following expressions:

Pt =Pf
t +Bt , (17)

Pf
t =

∞∑
i=1

(
1

1+ rf

)i

Et

(
Dt+i

)
, (18)

Bt = 1

1+ rf
Et

(
Bt+1

)
. (19)

Equation (17) expresses price as a sum of two components: the fundamental price Pf
t which

summarizes all the expected future discounted dividend and a bubble component Bt which
is not related to the fundamentals.

If the transversality condition is imposed, then Bt =0 and hence, Pt =Pf
t . Note that Bt

is an explosive process since (1+ rf ) > 1. Therefore, when Pf
t is not explosive, testing the

existence of a bubble is equivalent to examining the explosiveness in Pt . That is why in the
literature looking for an explosive behaviour in the price-dividend ratio (Pt/Dt) has been
widely used; see, for example, Phillips, Shi and Yu (2015a, b).
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Our paper studies the price-dividend ratio in the NASDAQ composite index, we obtain
the data set from Phillips et al. (2011), which contains the monthly real price and real
dividend series from February 1973 to June 2005. We then construct the price-dividend
(PD) ratio based on the two time series. After obtaining the PD ratio, we focus on the
sample period from December 1989 to December 1999.

In Figure 2, the PD ratio, the real price and the real dividend are plotted in the black
solid line, the blue dash line and the red dotted line, respectively. We fit Model (4) with and
without intercept to the PD ratio by LS, and then estimate the memory parameter (d) in the
residuals by the LW method of Robinson (1994). The point estimate (‘estimate’ should be
‘estimates’) of the intercept (	̂), the AR coefficient (�̂) and the memory parameter (d̂) are
reported in PanelA ofTable 2.We use the subscript a and b to denote the LS estimate without
and with intercept respectively. Since the estimates of the AR coefficient are greater than 1
and d̂ ∈ (−0.5, 0), Model (4) is relevant and the asymptotic theory developed in Theorem
3.1 is applicable. We then use the Cauchy limiting distribution to form the 95% CI of �
which is reported in Panel A of Table 2. As the 95% CI excludes the unity, suggesting that

Figure 2. Price-dividend ratio in NASDAQ from December 1989 to December 1999

TABLE 2

Empirical results for the NASDAQ Index

d̂a �̂a 95% CIa d̂b 	̂ �̂b 95% CIb

Panel A: Sample Period: December 1989 to December 1999, n=120

Pt/Dt −0.084 1.0437 [1.0370, 1.0504] −0.060 −0.1445 1.0862 [1.0860, 1.0863]

Panel B: Sample Period: January 1993 to December 1999, n=83

Pt/Dt −0.079 1.0478 [1.0220, 1.0736] −0.066 −0.1865 1.0969 [1.0957, 1.0981]
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there is strong evidence of explosiveness in the PD ratio and, hence, strong evidence of
the presence of a bubble. In Panel B, we report the empirical results based on a subsample
of the NASDAQ index, namely, January 1993 to December 1999. We continue to find that
�̂> 1, d̂ ∈ (−0.5, 0), and that the 95% CI suggests the strong evidence of the presence of a
bubble in the subsample.

VI. Conclusion

In this paper, we have made two contributions to the rapidly growing literature on explosive
time series. First, we show that in empirical data, it is very plausible that we may have to use
a mildly explosive model with anti-persistent errors to describe the movement of financial
assets. Second, we show that, when anti-persistent errors are in a first-order autoregression
with a mildly explosive root, the Cauchy limiting distribution remains valid for the LS
estimate. To develop the limiting distribution, we following PMG’s setup by assuming the
autoregressive parameter is �n,m = 1 + cm

n and by adopting a sequential limit with n →∞
followed by m→∞. When the errors are anti-persistent, an extra rate condition m=� ln n
with �>− 2d

c is needed.
We also discuss how to obtain a feasible confidence interval for the AR coefficient. Em-

pirical coverage of CI based on the Cauchy limiting distribution is presented in the Monte
Carlo studies, suggesting that the limiting distribution works well in finite samples. Finally,
an empirical study of a rational bubble in the NASDAQ index is provided, highlighting the
usefulness of the proposed model and the derived asymptotic theory.

Appendix A

Lemma A.1 (Lemma 2.3 in EI Machkouri et al. (2016))
Suppose we have the following stochastic differential equation:

dX (t)= cX (t)dt +dG(t), X (0)=X0 =0,

where G(t) is a Gaussian process and c > 0. Further assume the following two assumptions
hold for G = (G(t), t �0).

(i) The process G has Hölder continuous paths of order �∈ (0, 1];
(ii) For every t �0, E(G2(t))� ct2� for some positive constants c and �.

Then, for every t �0, we have

1

2
X 2(t)= c

∫ t

0
X 2(s)ds + cZ(t)

∫ t

0
ecsdG(s)+R(t),

where

Z(t)=
∫ t

0
e−csG(s)ds,

R(t)= 1

2
G2(t)− c

∫ t

0
G2(s)ds + c2

∫ t

0

∫ s

0
e−c(s−r)G(s)G(r)drds.
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Proof of Lemma 3.2 Throughout the proof, we assume n → ∞ with m fixed. By
backward substitutions, we can write

y�nr	 =
1−��nr	

n,m

1−�n,m
	n +��nr	

n,m y0 +
�nr	∑
j=1

��nr	−j
n,m uj.

Note that �n,m =exp( cm
n )+R�, with R� =−∑∞

k=2( cm
n )k /k!=O(n−2). Applying the binomial

expansion, we have

��nr	
n,m =

(
exp
(cm

n

)
+R�

)�nr	

=
�nr	∑
k=0

( �nr	
k

)
exp
(cm

n

)�nr	−k

Rk
�

= exp
(cm

n

)�nr	
+

�nr	∑
k=1

( �nr	
k

)
exp
(cm

n

)�nr	−k

Rk
�.

We will show for any k �1,( �nr	
k

)
exp
(cm

n

)�nr	−k

Rk
� →0. (20)

To do so, note that
( �nr	

k

)
= O(nk), exp( cm

n )�nr	−k = O(1), and Rk
� = exp(k ln R�) =

exp(k ln O(n−2))= exp(−2k ln(O(n))). Hence,(
nr
k

)
exp
(cm

n

)nr−k

Rk
� =O[nk exp(−2k ln(O(n)))].

Moreover,

ln[nk exp(−2k ln(n))]= k ln(n)−2k ln(n)=−k ln(n)→−∞.

This proves (20).

Letting kÅ = arg maxk∈{2,…,n}

(
nr
k

)
exp( cm

n )nr−kRk
�, we have

�nr	∑
k=2

( �nr	
k

)
exp
(cm

n

)�nr	−k

Rk
� =O[n1+k*

exp(−2kÅ ln(O(n)))]→0, (21)

because

ln[n1+k*

exp(−2kÅ ln(n))]= (kÅ +1−2kÅ) ln(n)

= (1− kÅ) ln n→−∞ since kÅ �2.

From equations (20) and (21), we have

�nr	∑
k=1

( �nr	
k

)
exp
(cm

n

)�nr	−k

Rk
� →0.
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So ��nr	
n,m = exp( cm

n )�nr	 +o(1). Since �nr	/nr →1, we can write

y�nr	 = 1− exp(cmr)

−cm/n
	n + (exp(cmr)+o(1))y0 +

�nr	∑
j=1

��nr	−j
n,m uj +o(1). (22)

For the third term in (26), we can show that ��nr	−j
n,m = exp( cm

n )�nr	−j +o(1) which allows
us to express

�nr	∑
j=1

��nr	−j
n,m uj =

�nr	∑
j=1

(
exp
(cm

n

)�nr	−j

+o(1)
)

uj

=
�nr	∑
j=1

exp
(cm

n

)�nr	−j

uj +o(1)
�nr	∑
j=1

uj

=
�nr	∑
j=1

exp
(cm

n

)�nr	−j

uj +op(n1/ 2+d).

We obtain the third equality by using equation (9) where
∑�nr	

j=1 uj =Op(n1/ 2+d).
Eventually, we can rewrite equation (22) as

y�nr	 =nr	n + exp(cmr)y0 +
�nr	∑
j=1

exp
(cm

n

)�nr	−j

uj +op(n1/ 2+d). (23)

Let Xn(r)= 1
n1/ 2+d


S�nr	 with S�nr	 =
∑�nr	

j=1 uj. Recall that under Model (6), y0 =op(n1/ 2+d),
	n =	/n# with # > 1/ 2 − d. The first two terms in equation (23) vanish as n →∞. If we
multiply both sides in equation (23) by n−1/ 2−d , we have

n−1/ 2−dy�nr	 = 

�nr	∑
j=1

e
(�nr	−j/ cm/n

∫ j/n

(j−1)/n
dXn(s)+op(1)

= 

�nr	∑
j=1

∫ j/n

(j−1)/n
e

(
r−s/ cmdXn(s)+op(1)

= 

∫ r

0
e(r−s)cmdXn(s)+op(1)

⇒ 

∫ r

0
e(r−s)cmdBH (s) := 
J H

cm(r).

We have applied Lemma 3.1 with the continuous mapping theorem (Billingsley, 1968, p.
30) to obtain the last result.

For the terms involving
∑n

t=1 yt and
∑n

t=1 y2
t−1 , note that we can write
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n−3/ 2−d
n∑

t=1

yt = 1

n

n∑
t=1

(
n−1/ 2−dyt

)
,

n−2−2d
n∑

t=1

y2
t = 1

n

n∑
t=1

(
n−1/ 2−dyt

)2
.

By applying the continuous mapping theorem, we obtain the second claim and the third
claim in Lemma 3.2.

For the last claim, after squaring yt and summing over t, we have
n∑

t=1

y2
t =�2

n,m

n∑
t=1

y2
t−1 +2�n,m

n∑
t=1

yt−1ut +
n∑

t=1

u2
t

+n	2
n +2	n�n,m

n∑
t=1

yt−1 +2	n

n∑
t=1

ut ,

which leads to

y2
n = 2cm

n

n∑
t=1

y2
t−1 +2�n,m

n∑
t=1

yt−1ut +
n∑

t=1

u2
t

+ (cm)2

n2

n∑
t=1

y2
t−1 +n	2

n +2	n�n,m

n∑
t=1

yt−1 +2	n

n∑
t=1

ut.

Thus, we have

2�n,m

n∑
t=1

yt−1ut = y2
n − 2cm

n

n∑
t=1

y2
t−1 −

n∑
t=1

u2
t − (cm)2

n2

n∑
t=1

y2
t−1

−n	2
n −2	n�n,m

n∑
t=1

yt−1 −2	n

n∑
t=1

ut ,

2

n1+2d

n∑
t=1

yt−1ut = 1

n1+2d
y2

n − 2cm

n2+2d

n∑
t=1

y2
t−1 − 1

n2d

1

n

n∑
t=1

u2
t

− n	2
n

n1+2d
−2

	n

n1+2d

n∑
t=1

yt−1 −2
	n

n1+2d

n∑
t=1

ut +op(1),

and

2

n1+2d

n∑
t=1

yt−1ut + 1

n2d

1

n

n∑
t=1

u2
t = 1

n1+2d
y2

n − 2cm

n2+2d

n∑
t=1

y2
t−1 − n	2

n

n1+2d

−2
	n

n1+2d

n∑
t=1

yt−1 −2
	n

n1+2d

n∑
t=1

ut +op(1),

as �n,m →1, and (cm)2

n2

∑n
t=1 y2

t−1 =Op(n2d) is dominated by 2cm
n

∑n
t=1 y2

t−1 = Op(n1+2d) when
m is fixed.
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Note that 1
n

∑n
t=1 u2

t
as→E[u2

t ] by the ergodic theorem and

n	2
n

n1+2d
= n−2d

n2�
	2 <

n1−2d

n2�
	2 =

(
n1/ 2−d

n#

)2

	2 →0,

	n

n1+2d

n∑
t=1

yt−1 =	
1

n#

n3/ 2+d

n1+2d

(
1

n3/ 2+d

n∑
t=1

yt−1

)
=	

n1/ 2−d

n#
Op(1)=op(1),

	n

n1+2d

n∑
t=1

ut =	
1

n#

n1/ 2+d

n1+2d

(
1

n1/ 2+d

n∑
t=1

ut

)
=	n−1/ 2−d−#Op(1)=op(1) since # > 0, and d < 1/ 2.

These results lead to

2

n1+2d

n∑
t=1

yt−1ut + 1

n2d

1

n

n∑
t=1

u2
t ⇒ 
2

[(
J H

cm(1)
)2 −2cm

∫ 1

0

(
J H

cm(r)
)2

dr

]
.

So we have

1

n1+2d

n∑
t=1

yt−1ut + 1

n2d

1

2n

n∑
t=1

u2
t ⇒ 
2

[
1

2

(
J H

cm(1)
)2 − cm

∫ 1

0
(J H

cm(r))2dr

]
= 
2

[
cmZ(1)

∫ 1

0
ecmsdBH (s)+R(1)

]
,

where the last step follows from Lemma A.1. This completes the proof of Lemma 3.2.
To analyse the asymptotics when m →∞, we introduce the following lemma, which

documents some results of distributional equivalence. By the self-similarity property of

fBM, we have BH ( t
m ) d=( 1

m )H BH (t). Let B̃H (t) :=mH BH ( t
m ).

Lemma A.2 Applying the self-similarity property of fBM, we can obtain the
following:

(i)
∫ 1

0 J H
cm(r)drBH (1) d= 1

m2H+1

∫ m

0 J̃ H
c (s)dsB̃H (m);

(ii)
(∫ 1

0 J H
cm(r)dr

)2 d= 1
m2H+2

(∫ m

0 J̃ H
c (s)ds

)2

;

(iii)
∫ 1

0 (J H
cm(r))2dr

d= 1
m2H+1

∫ m

0

(
J̃ H

c (s)
)2

ds;

(iv) cmZ(1)
∫ 1

0 ecmsdBH (s)+R(1) d= 1
m2H

(
cZ̃(m)

∫ m

0 ecsdB̃H (s)+ R̃(m)
)

, where

J̃ H
c (r)=

∫ r

0
ec(r−s)dB̃H (s),

Z̃(m)=
∫ m

0
e−csB̃H (s)ds,

R̃(m)= 1

2

(
B̃H (m)

)2

− c
∫ m

0

(
B̃H (s)

)2

ds + c2

∫ m

0

∫ r

0
ec(r−s)B̃H (r)B̃H (s)drds.
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Proof of Lemma A.2 Lemma A.2 obtains the distributional representations of different
functionals of fBM. We can prove the lemma by obtaining the distributional representations
of all the components on the left-hand sides of the four equations in Lemma A.2. That is,
we only need to show the following results are correct:

(i) Z(1) d= 1
mH+1 Z̃(m);

(ii)
∫ 1

0 ecmsdBH (s) d= 1
mH

∫ m

0 ecsdB̃H (s);

(iii)
∫ 1

0 (BH (s))2ds
d= 1

m2H+1

∫ m

0 (B̃H (s))2ds;

(iv)
∫ 1

0 J H
cm(s)ds

d= 1
mH+1

∫ m

0 J̃ H
c (s)ds;

(v)
∫ 1

0 (J H
cm(s))2ds

d= 1
m2H+1

∫ m

0 (J̃ H
c (s))2ds;

(vi) m2
∫ 1

0

∫ s

0 ecm(r−s)BH (r)BH (s)drds
d= 1

m2H

∫ m

0

∫ s

0 ec(r−s)B̃H (r)B̃H (s)drds.

As the steps to prove the above results are similar, we shall only prove the last two
claims. For the fifth claim, we have∫ 1

0

(
J H

cm(r)
)2

dr =
∫ 1

0

(∫ r

0
ecm(r−s)dBH (s)

)2

dr

=
∫ 1

0
e2cmr

(∫ r

0
e−cmsdBH (s)

)2

dr

=
∫ 1

0
e2cmr

(∫ mr

0
e−cvdBH

( v

m

))2

dr

= 1

m2H

∫ 1

0
e2cmr

(∫ mr

0
e−cvd

(
mH BH

( v

m

)))2

dr

= 1

m2H

∫ m

0
e2cu

(∫ u

0
e−cvdB̃H (v)

)2

d
( u

m

)
= 1

m2H+1

∫ m

0

(∫ u

0
ec(u−v)dB̃H (v)

)2

du

= 1

m2H+1

∫ m

0

(
J̃ H

c (u)
)2

du.

For the sixth result, we have

m2

∫ 1

0

∫ s

0
ecm(r−s)BH (r)BH (s)drds =m2

∫ 1

0
e−cms

(∫ s

0
ecmrBH (r)dr

)
BH (s)ds

=m2

∫ 1

0
e−cms

(∫ ms

0
ecrBH

( r

m

)
d
( r

m

))
BH (s)ds

= m

mH

∫ m

0
e−cv

(∫ ms

0
ecrB̃H (r)dr

)
BH
( v

m

)
d
( v

m

)
= 1

m2H

∫ m

0
e−cv

(∫ v

0
ecrB̃H (r)dr

)
B̃H (v)dv

= 1

m2H

∫ m

0

∫ v

0
ec(r−v)B̃H (r)B̃H (v)drdv.
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Proof of Theorem 3.1 To avoid confusion, we now refer n →∞ with m fixed as the
‘fix-m asymptotics’, and n→∞ followed by m→∞ as the ‘sequential asymptotics’.

From equations (7) and (8), we can have the following expressions for the normalized
centred LS estimates

ecm

m
n(�̂a −�)= ecm

m
n

(∑n
t=1 yt−1ut + 1

2

∑n
t=1 u2

t∑n
t=1 y2

t−1

−
1
2

∑n
t=1 u2

t∑n
t=1 y2

t−1

)
= ecm

m
n

∑n
t=1 yt−1ut + 1

2

∑n
t=1 u2

t∑n
t=1 y2

t−1

− ecm

m
Ba

n

:= ecm

m
Aa

n − ecm

m
Ba

n, (24)

where Aa
n =n

∑n
t=1 yt−1ut+ 1

2

∑n
t=1 u2

t∑n
t=1 y2

t−1
and Ba

n = n
2

∑n
t=1 u2

t /
∑n

t=1 y2
t−1.

Similarly, we can express

ecm

m
n(�̂b −�)= ecm

m
n

⎛⎜⎜⎜⎝
∑n

t=1 yt−1ut − 1
n

∑n
t=1 yt−1

∑n
t=1 ut + 1

2

∑n
t=1 u2

t∑n
t=1 y2

t−1 − 1
n

(∑n
t=1 yt−1

)2

−
1
2

∑n
t=1 u2

t∑n
t=1 y2

t−1 − 1
n

(∑n
t=1 yt−1

)2

⎞⎟⎟⎟⎠
:= ecm

m
Ab

n − ecm

m
Bb

n, (25)

where

Ab
n =n

∑n
t=1 yt−1ut − 1

n

∑n
t=1 yt−1

∑n
t=1 ut + 1

2

∑n
t=1 u2

t∑n
t=1 y2

t−1 − 1
n

(∑n
t=1 yt−1

)2 , Bb
n =n

1
2

∑n
t=1 u2

t∑n
t=1 y2

t−1 − 1
n

(∑n
t=1 yt−1

)2 .

Since the proofs of the sequential asymptotics for ecm

m n(�̂a −�) are very similar to those
for ecm

m n(�̂b −�), we shall only prove the later. In fact, the only difference between the two
estimates is the extra terms induced by the inclusion of an intercept in the LS regression.
As we proceed, we will see the extra terms vanish in the sequential asymptotics.

We first show the sequential limit of ecm

m Ab
n in equation (25). Applying Lemma 3.2 and

Lemma A.2, as n→∞ with fixed m,

ecm

m
Ab

n ⇒ ecm

m

cmZ(1)
∫ 1

0 ecmsdBH (s)+R(1)−∫ 1
0 J H

cm(r)drBH (1)∫ 1
0 (J H

cm(r))2dr −
(∫ 1

0 J H
cm(r)dr

)2

d= ecm

m

1
m2H

(
cZ̃(m)

∫ m

0 e−crB̃H (r)dr + R̃(m)− 1
m

∫ m

0 J H
c (s)dsB̃

H
(m)
)

1
m2H+1

(∫ m

0 J̃
H

c (s)2ds − 1
m

(∫ m

0 J̃
H

c (s)ds
)2
)

= ecm cZ̃(m)
∫ m

0 e−crB̃H (r)dr + R̃(m)− 1
m

∫ m

0 J H
c (s)dsB̃

H
(m)∫ m

0 J̃
H

c (s)2ds − 1
m

(∫ m

0 J̃
H

c (s)ds
)2 . (26)
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For the sake of notational simplicity, we now introduce the following process with
m�0,

�(m)=
∫ m

0
e−crdB̃H (r), (27)

where the integral is interpreted in the Young sense.
From Lemma 2.1 of EI Machkouri et al. (2016), we obtain a well-defined limit Z̃(∞)=∫∞

0 e−crB̃H (r)dr. As m→∞, we have

Z̃(m)
as→ Z̃(∞) and �(m)

as→�(∞)= cZ̃(∞). (28)

These two results are similar to those obtained by the martingale convergence theorem
used in PMG when m→∞.

By the definition of the Young integral, we obtain B̃H (0)=0. By the definition of Z̃(m),
we have

�(m)= e−cmB̃H (m)+ c
∫ m

0
e−crB̃H (r)dr = e−cmB̃H (m)+ cZ̃(m),

J̃
H

c (r)=
∫ r

0
ec(r−s)dB̃H (s)= ecr

∫ r

0
e−csdB̃H (s)= ecr�(r).

So we can express (26) as

ecm

(
cZ̃(m)

∫ m

0 ecsdB̃
H

(s)+ R̃(m)
)

− ecs�(s)ds 1
m B̃

H
(m)∫ m

0 e2cs�2(s)ds − 1
m

(
e−cm

∫ m

0 ecs�(s)ds
)2

=
e−cm

[(
cZ̃(m)

∫ m

0 ecsdB̃
H

(s)+ R̃(m)
)

− ecs�(s)ds 1
m B̃

H
(m)
]

e−2cm
[∫ m

0 e2cs�2(s)ds − 1
m

(
e−cm

∫ m

0 ecs�(s)ds
)2
]

=
e−cm

(
cZ̃(m)

∫ m

0 ecsdB̃
H

(s)+ R̃(m)
)

−�′
1

e−2cm
[∫ m

0 e2cs�2(s)ds
]−�′

2

, (29)

where �′
1 = (e−cm

∫ m

0 ecs�(s)ds
)(

1
m B̃

H
(m)
)

:=�′
1a ×�′

1b, �′
2 = 1

m

(
e−cm

∫ m

0 ecs�(s)ds
)2

.

For the term
∫ m

0 ecs�(s)ds, Proposition 3.1 in EI Machkouri et al. (2016) shows it
is a Gaussian process with a diverging variance. Therefore, applying equation (28) and
L’Hospital’s rule, we have, as m→∞,

lim
m→∞

�′
1a = lim

m→∞
e−cm

∫ m

0
ecs�(s)ds

= lim
m→∞

ecm�(m)

cecm
= �(∞)

c
= Z̃(∞). (30)

Since E
(

1
m B̃

H
(m)
)

=0, Var
(

1
m B̃

H
(m)
)

= m2H

m2 →0, as m→∞,

�′
1b = 1

m
B̃

H
(m)

p→0.
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Moreover, the continuous mapping theorem and equation (30) imply that, as m→∞,(
e−cm

∫ m

0
ecs�(s)ds

)2
as→ Z̃

2
(∞).

As 1
m → 0, �′

2

p→0. Note that �′
1 and �′

2 are the extra terms due to the inclusion of the
intercept in the LS regression.As they vanish, ecm

m Aa
n and ecm

m Ab
n are asymptotically equivalent

in the sequential asymptotics. Therefore, as m→∞, we can write (29) as,

e−cm
(

cZ̃(m)
∫ m

0 ecsdB̃
H

(s)+ R̃(m)
)

e−2cm
∫ m

0 e2cs�2(s)ds
+op(1) (31)

To derive the sequential limit of ecm

m Ab
n, we need the following lemma.

Lemma A.3 let � and � be two independent standard normal random variables. Then,
as m→∞, we obtain:

(i) e−2cm
∫ m

0 e2cs�2(s)ds
as→ c

2 Z̃
2
(∞);

(ii) cZ̃(m)
(

e−cm
∫ m

0 ecsdB̃H (s)
)

⇒ cZ̃(∞)
√

H�(2H )
c2H �;

(iii) �(m)
as→�(∞)=

√
H�(2H )

c2H �;

(iv) e−cmR̃(m)
p→0.

The first result is immediate after applying equation (28) and L’Hospital’s rule. The last
three results can be obtained by applying Lemmas 2.1, 2.2 and 2.4 of EI Machkouri et al.
(2016). Hence, as m→∞ and using �(∞)= cZ̃(∞), we have

e−cm
(

cZ̃(m)
∫ m

0 ecsdB̃
H

(s)+ R̃(m)
)

e−2cm
∫ m

0 e2cs�2(s)ds
+op(1)⇒

cZ̃(∞)
√

H�(2H )
c2H �

c
2 Z̃

2
(∞)

=2c × �

�
=2c ×C, (32)

where C is the standard Cauchy variate.
We now analyse the sequential limit of ecm

m Bb
n in equation (25). A standard calculation

shows

ecm

m
Bb

n = ecm

m
n

1
2

∑n
t=1 u2

t∑n
t=1 y2

t−1 − 1
n

(∑n
t=1 yt−1

)2

= ecm

m

n−1−2d 1
2

∑n
t=1 u2

t

n−2−2d
(∑n

t=1 y2
t−1 − 1

n

(∑n
t=1 yt−1

)2
)

= e−cm

e−2cm

m2H

m2H+1

Op(n−2d)

Op

(
e2cm

m2H+1

) as n→∞

=Op

(
m2H n−2d

ecm

)
.
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The third equality is established by 1
n

∑n
t=1 u2

t = Oas(1), Lemma 3.2, Lemma A.2 and
Lemma A.3. The assumption m=� ln n, with �>− 2d

c implies that m2H n−2d

ecm →0. To see this,

ln
m2H n−2d

ecm
=2H ln m−2d ln n− cm

=2H
(
ln �+ ln ln n

)−2d ln n− c� ln n

=−(c�+2d) ln n+2H
(
ln �+ ln ln n

)
→−∞.

Hence,

ecm

m
Bb

n =op(1). (33)

This suggests that when n →∞ followed by m →∞ and when m = � ln n with � > − 2d
c ,

1
n1+2d

1
2

∑n
t=1 u2

t is dominated by 1
n1+2d

∑n
t=1 yt−1ut .

Equations (25), (32) and (33) imply that the sequential limit of 1
2c

ecm

m n(�̂b −�) is the
standard Cauchy random variable C.
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