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Abstract

A new Wald-type statistic is proposed for hypothesis testing based on Bayesian
posterior distributions under the correct model specification. The new statistic can be
explained as a posterior version of the Wald statistic and has several nice properties.
First, it is well-defined under improper prior distributions. Second, it avoids Jeffreys-
Lindley-Bartlett’s paradox. Third, under the null hypothesis and repeated sampling,
it follows a χ2 distribution asymptotically, offering an asymptotically pivotal test.
Fourth, it only requires inverting the posterior covariance for parameters of interest.
Fifth and perhaps most importantly, when a random sample from the posterior dis-
tribution (such as MCMC output) is available, the proposed statistic can be easily
obtained as a by-product of posterior simulation. In addition, the numerical standard
error of the estimated proposed statistic can be computed based on random samples.
A robust version of the test statistic is developed under model misspecification and
inherits many nice properties of the new posterior statistic. The finite sample perfor-
mance of the statistics is examined in Monte Carlo studies. The method is applied to
two latent variable models used in microeconometrics and financial econometrics.
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1 Introduction

This paper develops an approach to testing a point null hypothesis based on Bayesian

posterior distributions under the correct model specification and also under model mis-

specification. The statistics can be understood as the posterior version of the well-known

Wald statistic that has been used widely in practical applications. The Wald statistic is

often based on the maximum likelihood estimator (MLE) or the classical extremum esti-

mators (denoted by θ̂) of parameters of interest (denoted by θ). Typically some squared

difference between θ̂ and θ is shown to follow a χ2 distribution asymptotically under the

null hypothesis, producing an asymptotically pivotal test.

However, in many practical applications, the MLE and the classical extremum esti-

mators may be too difficult to obtain computationally. For example, for the entire class

of non-linear and non-Gaussian state-space models, the likelihood function is tough to

calculate numerically, making the MLE nearly impossible to obtain. Not surprisingly,

Bayesian MCMC methods have emerged as the leading estimation tool for non-linear and

non-Gaussian state-space models. There are many other examples in economics and fi-

nance where the MLE and classical extremum estimators are too difficult to obtain; see,

for example, Chernozhukov and Hong (2003), Imai et al. (2009) and Geweke et al. (2011).

To circumvent the problems in frequentist methods, Chernozhukov and Hong (2003) in-

troduce a class of quasi-Bayesian methods that allow users to employ MCMC to simulate

a random sequence such that the marginal distribution of the sequence is the same as the

quasi-posterior distribution.

The central question we ask in this paper is how to test a point null hypothesis when

the posterior distribution but not classical extremum estimator is available. Testing a

point null hypothesis is important for checking statistical evidence from data to support

or to be against a particular theory because theory often can be reduced to a testable

hypothesis. In many cases, the posterior distribution of parameters is available in the

form of random samples (such as MCMC samples).

Broadly speaking, there are three posterior-based methods available in the literature

for hypothesis testing. The first one is the Bayes factor (BF) that compares the marginal

likelihoods of the two competing models corresponding to the null and alternative hy-

potheses (Kass and Raftery, 1995). Unfortunately, BFs are subject to a few theoretical

and practical problems. First, BFs are not well-defined under improper priors. Second,

BFs are subject to Jeffreys-Lindley-Bartlett’s paradox. That is, they tend to choose the

null hypothesis when a very vague prior is used for parameters in the null hypothesis;

see Kass and Raftery (1995), Poirier (1995), Chapter 4 in Wakefield (2013). Third, in

many cases, the evaluation of marginal likelihood is difficult. Several strategies have been

2



proposed in the literature to address some of these difficulties. For example, to deal with

the first two problems, when calculating BFs, one may use a prior that is data-dependent.

To make the prior data-dependent, one may split the data into two parts, one as a training

set, the other for statistical analysis. The training data can be used to update a prior

(which can be improper) to generate a proper prior to analyze the remaining data. See

the fractional BF of O’Hagan (1995) and the intrinsic BF of Berger (1985). To address

the computational problem in BFs, one can use the methods of Friel and Pettitt (2008),

Li et al. (2019), and Chib (1995).

The second posterior-based method uses credible intervals for point identified param-

eters and credible sets for partially identified parameters. This line of approaches has

drawn a lot of attention among econometricians and statisticians in recent years; see

Chernozhukov and Hong (2003), Moon and Schorfheide (2012), Kline and Tamer (2016),

Liao and Simoni (2019), Chen et al. (2018). Most of these studies justify credible intervals

and sets using a large sample theory under repeated sampling.

The third method is based on statistical decision theory. The idea begins with Bernardo

and Rueda (2002, BR hereafter) where they demonstrate that the BF can be regarded as a

decision problem with a simple zero-one loss function when it is used for point hypothesis

testing. It is this zero-one loss that leads to Jeffreys-Lindley-Bartlett’s paradox. BR

further suggested using the continuous Kullback-Leibler (KL) divergence function as the

loss function to replace the zero-one loss. Subsequent extensions include Li and Yu (2012),

Li et al. (2014), and Li et al. (2015, LLY hereafter) where alternative loss functions are

used.

In this paper, following the third line of approach, we propose two Wald-type statistics

for hypothesis testing based on posterior distributions, one for correctly specified models

and the other for misspecified models. The new statistics are well-defined under improper

prior distributions and avoid Jeffreys-Lindley-Bartlett’s paradox. They are asymptoti-

cally equivalent to the Wald statistic under the null hypothesis, and hence, follow a χ2

distribution asymptotically. They can be obtained as a by-product of posterior simulation

under the alternative hypothesis, requiring almost no coding effort and incurring a low

computational cost.

The paper is organized as follows. Section 2 reviews existing posterior-based statistics

for hypothesis testing in the statistical decision framework. Section 3 develops the new

statistic and establishes its large sample theory under the correct model specification.

Section 4 develops a version of the test statistic that is robust under model misspecification

and establishes its large sample theory. Section 5 investigates the finite-sample properties

of the proposed statistic using simulated data. Section 6 gives two real data applications

of the proposed method. Section 7 concludes the paper. The appendix collects proof of

3



theoretical results.

Throughout the paper, let Iq denote the q×q identity matrix, tr(A) denote the trace of

matrix A,
p→ and

d→ denote the convergence in probability and convergence in distribution,

⊗ denote the Kronecker product, vech denote the column-wise vectorization of the lower

triangular part of a symmetric matrix. The CPU time (in seconds) reported in the paper

is from a laptop with an Intel i5 CPU and 8 GB memory.

2 Hypothesis Testing based on Statistical Decision Theory

It is assumed that a probability model M ≡ {p(y|ϑ)} is used to fit data y := (y1, . . . yn)′

where ϑ =
(
θ′,ψ′

)′ ∈ Θ. We are concerned with testing a point null hypothesis which

may arise from the prediction of a particular theory. Let θ ∈ Θθ denote a vector of

qθ-dimensional parameters of interest and ψ ∈ Θψ a vector of qψ-dimensional nuisance

parameters so that Θ = Θθ ×Θψ. The testing problem is given by{
H0 : θ = θ0,
H1 : θ 6= θ0.

(1)

In the statistical decision framework, hypothesis testing may be understood as follows.

There are two statistical decisions in the decision space, accepting H0 (name it d0) or

rejecting H0 (name it d1). Let {L(di,θ,ψ), i = 0, 1} be the loss function of the statistical

decision associated with di. When the expected posterior loss of accepting H0 is sufficiently

larger than that of rejecting H0, we reject H0. That is, H0 is rejected if

T (y,θ0) =

∫
Θ
{L (d0,θ,ψ)− L (d1,θ,ψ)} p(θ,ψ|y)dθdψ

=

∫
Θ

∆L (H0,θ,ψ) p(θ,ψ|y)dθdψ

= Eϑ|y (∆L (H0,θ,ψ)) > c ≥ 0,

where T (y,θ0) is a posterior-based statistic, p(θ,ψ|y) is the posterior distribution, c is a

threshold value, ∆L (H0,θ,ψ) = L (d0,θ,ψ)− L (d1,θ,ψ) is the net loss function.

BR show that if p (θ = θ0) = p (θ 6= θ0) = 1
2 , c = 0, and

∆L (H0,θ,ψ) =

{
−1, if θ = θ0

1, if θ 6= θ0

,

then T (y,θ0) > 0 leads to the decision rule based on the BF. That is, reject H0 if

BF10 =
p(y|H1)

p(y|H0)
=

∫
p(y,ϑ)dϑ∫

p(y,ψ|θ0)dψ
> 1.
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While the BF serves as the gold standard for model comparison after posterior distri-

butions are obtained for candidate models, it suffers from several theoretical and compu-

tational difficulties when it is used to test a point null hypothesis, as argued earlier.

In the statistical decision framework, several statistics have been proposed for testing

a point null hypothesis. Poirier (1997) develops a loss function approach for hypothesis

testing for models without latent variables. BR (2002) suggest choosing the loss function

to be the KL divergence function. Given that the KL function is not analytically available

for most latent variable models, Li and Yu (2012) suggest basing the loss function on the

Q-function used in the EM algorithm. Li et al. (2014) suggest using the deviance function

to be the loss function. While some of these statistics can avoid Jeffreys-Lindley-Bartlett’s

paradox in finite samples, unfortunately, no pivotal large sample theory is not available

for any of them.

LLY (2015) propose the following quadratic net loss function

∆L (H0,θ,ψ) =
(
θ − θ̄

)′
Cθθ

(
ϑ̄0

) (
θ − θ̄

)
, C (ϑ) =

{
∂ log p (y,ϑ)

∂θ

}{
∂ log p (y,ϑ)

∂θ

}′
,

where ϑ̄ =
(
θ̄
′
, ψ̄
′
)′

and ϑ̄0 =
(
θ′0, ψ̄

′
0

)′
are the posterior mean under H1 and H0,

respectively, Cθθ is the submatrix of C corresponding to θ. The statistic corresponding to

this net loss function is

TLLY (y,θ0) = Eϑ|y (∆L (H0,θ,ψ)) =

∫
Θ

(
θ − θ̄

)′
Cθθ

(
ϑ̄0

) (
θ − θ̄

)
p(ϑ|y)dϑ. (2)

Under repeated sampling, LLY (2015) show that TLLY (y,θ0) follows a χ2 distribu-

tion asymptotically, providing an asymptotically pivotal quantity. This statistic is well-

defined under improper priors and immune to Jeffreys-Lindley-Bartlett’s paradox. Clearly,

TLLY (y,θ0) requires evaluating the first-order derivative of the likelihood function. In

many models, especially in latent variable models, this first-order derivative is not easy to

evaluate since the observed-data likelihood function may not have an analytical expres-

sion.1 Another feature of TLLY (y,θ0) is that it requires estimating both the null model

and the alternative model although, under H0, it is shown to be asymptotically equivalent

to the Lagrange Multiplier (LM) test that requires estimating the null model only.

3 A Posterior Wald-type Statistic under the Correct Model
Specification

Before proposing the new statistic, let us give a simple definition of the correct model

specification. Assume that the data y = (y1, . . . , yn)
′

come from a probability measure P0

1There exist advanced techniques, such as automatic differentiation, which can help evaluate derivatives.
Skaug and Yu (2014) use the automatic differentiation technique, together with the Laplace approximation,
to approximate the likelihood function of stochastic volatility models.
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on the probability space (Ω, F, P0). Let Pϑ be a collection of candidate models indexed

by parameters ϑ. Following White (1987), if there exists ϑ such that P0 ∈ Pϑ, we call

that the model Pϑ is correctly specified. If for any ϑ, P0 /∈ Pϑ, we say the model Pϑ
is misspecified. By the information matrix equality (White, 1996), the assumption of the

correct model specification implies Assumption 8 given later.

3.1 The statistic based on a quadratic loss function

For notational simplicity, let
∫

denote
∫
Θ unless specified. For any ϑ̃ ∈ Θ, denote

V
(
ϑ̃
)

= E

[(
ϑ− ϑ̃

)(
ϑ− ϑ̃

)′
|y, H1

]
=

∫ (
ϑ− ϑ̃

)(
ϑ− ϑ̃

)′
p(ϑ|y)dϑ.

Let us introduce the following reasonable loss functions,

L(d0,θ,ψ) =

{
0 if θ = θ0
1
2 (θ − θ0)′

[
Vθθ(ϑ̄)

]−1
(θ − θ0) if θ 6= θ0

, (3)

L(d1,θ,ψ) =

{
0 if θ = θ0

−1
2 (θ − θ0)′

[
Vθθ(ϑ̄)

]−1
(θ − θ0) if θ 6= θ0

, (4)

where ϑ̄ is the posterior mean of ϑ underH1, Vθθ(ϑ̄) the submatrix of V
(
ϑ̄
)

corresponding

to θ,
[
Vθθ

(
ϑ̄
)]−1

the inverse of Vθθ(ϑ̄).

Based on (3) and (4), we propose the following net loss function for hypothesis testing:

∆L (H0,θ,ψ) = (θ − θ0)′
[
Vθθ(ϑ̄)

]−1
(θ − θ0) .

Then, the new test statistic can be defined as:

T (y,θ0) =

∫
(θ − θ0)′

[
Vθθ

(
ϑ̄
)]−1

(θ − θ0) p(ϑ|y)dϑ =tr
[(

Vθθ

(
ϑ̄
))−1

Vθ (θ0)
]
, (5)

where Vθ (θ0) =
∫

(θ − θ0) (θ − θ0)′ p(ϑ|y)dϑ. Clearly, T (y,θ0) depends only on the

alternative model.

Remark 3.1. It is easy to show that T (y,θ0) is well-defined under improper priors. An

improper prior p(ϑ) satisfies that p(ϑ) = af(ϑ) where f(ϑ) is a non-integrable function

and a is an arbitrary positive constant. Since the posterior distribution p(ϑ|y) is indepen-

dent of a, Vθθ(ϑ̄), being the posterior covariance matrix of θ, is also independent of a.

Hence, the proposed statistic does not depend on a.

Remark 3.2. To see how the new statistic can avoid Jeffreys-Lindley-Bartlett’s paradox,

consider the example in LLY (2015). Let y1, . . . , yn ∼ N(θ, σ2) with a known σ2, the null
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hypothesis be H0 : θ = 0, the prior distribution of θ be N(0, τ2). Let ȳ = 1
n

∑n
i=1 yi. It is

easy to show that the posterior distribution of θ is N(µ(y), ω2) with

µ(y) =
nτ2ȳ

σ2 + nτ2
, ω2 =

σ2τ2

σ2 + nτ2
,

and

2 logBF10 =
nτ2

nτ2 + σ2

nȳ2

σ2
+ log

σ2

nτ2 + σ2
,

T(y, θ0) =
nτ2

nτ2 + σ2

nȳ2

σ2
+ 1.

Thus, holding n constant, when τ2 → +∞ (the prior information becomes more and more

uninformative), logBF10 → −∞ which suggest that the BF supports H0 regardless of

ȳ. This is exactly what Jeffreys-Lindley-Bartlett’s paradox predicts.2 On the other hand,

T(y, θ0) → nȳ2

σ2 + 1 as τ2 → +∞. Hence, T(y, θ0) − 1 is distributed asymptotically as

χ2(1) when H0 is true, suggesting that T(y, θ0) is immune to Jeffreys-Lindley-Bartlett’s

paradox.

3.2 Large sample theory for T (y,θ0)

In this subsection, we establish large sample properties for T (y,θ0) under repeated

sampling. Let yt := (y0, y1, . . . , yt) for any 0 ≤ t ≤ n and lt
(
yt,ϑ

)
= log p(yt|ϑ) −

log p(yt−1|ϑ) be the conditional log-likelihood for the tth observation for any 1 ≤ t ≤ n.

When there is no confusion, we just write lt
(
yt,ϑ

)
as lt (ϑ) so that the log-likelihood

function Ln(ϑ) (:= log p(y|ϑ) conditional on the initial observation), can be written as∑n
t=1 lt (ϑ). Let l

(j)
t (ϑ) be the jth derivative of lt (ϑ) and l

(0)
t (ϑ) = lt (ϑ). Moreover, let

s(yt,ϑ) :=
∂ log p(yt|ϑ)

∂ϑ
=

t∑
i=1

l
(1)
i (ϑ) , h(yt,ϑ) :=

∂2 log p(yt|ϑ)

∂ϑ∂ϑ′
=

t∑
i=1

l
(2)
i (ϑ) ,

st(ϑ) := l
(1)
t (ϑ) = s(yt,ϑ)− s(yt−1,ϑ), ht(ϑ) := l

(2)
t (ϑ) = h(yt,ϑ)− h(yt−1,ϑ),

H̄n(ϑ) :=
1

n

n∑
t=1

ht(ϑ), J̄n(ϑ) :=
1

n

n∑
t=1

[st(ϑ)− s̄t(ϑ)] [st(ϑ)− s̄t(ϑ)]′ , s̄t(ϑ) :=
1

n

n∑
t=1

st(ϑ),

Bn (ϑ) := V ar

[
1√
n

n∑
t=1

l
(1)
t (ϑ)

]
,L[j]

n (ϑ) := ∂j log p(ϑ|y)/∂ϑj ,

Hn(ϑ) :=

∫
H̄n(ϑ)g (y) dy, Jn(ϑ) :=

∫
J̄n(ϑ)g (y) dy,

2Jeffreys-Lindley-Bartlett’s paradox disappears if n is allowed to go to +∞. The reason is as follows.
No matter what τ is (as long as it is different from 0), when the true value of θ is 0,

√
nȳ ∼ Op(1). Hence,

nτ2

nτ2+σ2
nȳ2

σ2 ∼ Op(1). On the other hand, as n → +∞, log σ2

nτ2+σ2 = log
(

σ2

τ2+σ2/n

)
− log (n) → −∞.

Hence, as n → +∞, 2 logBF10
p→ −∞. When the true value of θ is different from 0, nȳ2 ∼ Op(n). As a

result, nτ2

nτ2+σ2
nȳ2

σ2 ∼ Op(n), implying that 2 logBF10 = Op(n)− log(n)
p→ +∞.
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where g(y) is the data generating process (DGP). In the literature, Hn(ϑ) and Jn(ϑ) are

generally known as the Hessian matrix and the Fisher information matrix; H̄n(ϑ) and

J̄n(ϑ) are the empirical Hessian matrix and empirical Fisher information matrix.

In this paper, we first impose the following regularity conditions. Similar assumptions

are used in Li et al. (2017, 2020). Li et al. (2020) discuss the importance of these

assumptions.

Assumption 1: Θ is a compact subset of Rq where q = qθ + qψ.

Assumption 2: {yt}∞t=1 satisfies the α-mixing condition with the coefficient α (m) =

O
(
m
−2r
r−2
−ε
)

where ε > 0 and r > 2.

Assumption 3: For all t, lt (ϑ) is eight-times differentiable on F t−∞×Θ where F t−∞ =

σ (yt, yt−1, · · · ).
Assumption 4: For any ϑ,ϑ′ ∈ Θ,

∥∥∥l(j)t (ϑ)− l(j)t
(
ϑ′
)∥∥∥ ≤ cjt (yt) ∥∥ϑ− ϑ′∥∥ in proba-

bility, where cjt
(
yt
)
> 0, suptE

∥∥∥cjt (yt)∥∥∥ <∞, 1
n

∑n
t=1

(
cjt
(
yt
)
− E

(
cjt
(
yt
))) p→ 0, and

j = 0, 1, 2.

Assumption 5: For all ϑ ∈ Θ, there exists Mt(y
t) > 0 such that l

(j)
t (ϑ) exists,

supϑ∈Θ

∥∥∥l(j)t (ϑ)
∥∥∥ 6 Mt(y

t), and suptE
∥∥Mt(y

t)
∥∥r+δ ≤ M for some δ > 0 and M < ∞,

where r is the same as that in Assumption 2, and j = 0, 1, 2.

Assumption 6:
{
l
(j)
t (ϑ)

}
is L2-near epoch dependent of size −1 for 0 6 j 6 1 and

−1
2 for j = 2 uniformly on Θ.

Assumption 7: Let ϑ0
n be the minimizer of the KL divergence between the DGP

g(y) and the candidate model p(y|ϑ), that is,

ϑ0
n = arg min

ϑ∈Θ

1

n

∫
log

g(y)

p(y|ϑ)
g(y)dy,

where
{
ϑ0
n

}
is the sequence of minimizers interior to Θ. For any ε > 0,

lim
n→∞

sup sup
Θ\N

(
ϑ0
n,ε
) 1

n

n∑
t=1

{
E [lt (ϑ)]− E

[
lt
(
ϑ0
n

)]}
< 0, (6)

where N
(
ϑ0
n, ε
)

is the open ball of radius ε around ϑ0
n.

Assumption 8: For all n,
{
Hn

(
ϑ0
n

)
,Bn

(
ϑ0
n

)}
are negative definite and positive

definite, respectively, and Hn

(
ϑ0
n

)
+ Bn

(
ϑ0
n

)
= 0.

Assumption 9: The prior density p(ϑ) is thrice continuously differentiable and 0 <

p
(
ϑ0
n

)
< ∞. Moreover, there exists an n∗ such that, for any n > n∗, the posterior

distribution p (ϑ|y) is proper and
∫
‖ϑ‖2 p (ϑ|y) dϑ <∞.

Let ϑ̂ be the MLE of ϑ, θ̂ be the subvector of ϑ̂ corresponding to θ. The frequentist

Wald statistic is defined as

Wald = n
(
θ̂ − θ0

)′ [
−H̄−1

n,θθ

(
ϑ̂
)]−1 (

θ̂ − θ0

)
, (7)
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where H̄−1
n,θθ

(
ϑ̂
)

is the submatrix of H̄−1
n

(
ϑ̂
)

corresponding to θ and H̄−1
n

(
ϑ̂
)

is the

inverse of H̄n

(
ϑ̂
)

. Clearly, to compute Wald, one must invert H̄n

(
ϑ̂
)

, a (qθ + qψ)-

dimensional matrix.

By replacing θ̂ and −H̄−1
n,θθ

(
ϑ̂
)

with their posterior counterparts θ̄ and Vθθ(ϑ̄), a

natural Bayesian version of Wald is given by,

W =
(
θ̄ − θ0

)′ [
Vθθ(ϑ̄)

]−1 (
θ̄ − θ0

)
.

It can be shown that

T (y,θ0) =

∫
(θ − θ0)′

[
Vθθ

(
ϑ̄
)]−1

(θ − θ0) p(ϑ|y)dθ

= tr
{[

Vθθ

(
ϑ̄
)]−1

E
[
(θ − θ0) (θ − θ0)′ |y

]}
= tr

{[
Vθθ

(
ϑ̄
)]−1

[
Vθθ

(
ϑ̄
)

+
(
θ̄ − θ0

) (
θ̄ − θ0

)′]}
= qθ + tr

{[
Vθθ

(
ϑ̄
)]−1 (

θ̄ − θ0

) (
θ̄ − θ0

)′}
= qθ +

(
θ̄ − θ0

)′ [
Vθθ

(
ϑ̄
)]−1 (

θ̄ − θ0

)
= qθ + W.

Hence, T (y,θ0) − qθ is equivalent to W. The reason that W is not used as the test

statistic in this paper is because it is difficult to specify a reasonable loss function for W.

To show that T (y,θ0) (and also W) is a Bayesian version of Wald, we first need to

show that ϑ and V
(
ϑ̂
)

are asymptotically equivalent to ϑ̂ and − 1
nH̄−1

n

(
ϑ̂
)

. This is the

implication of the Bernstein-von Mises (BvM) theorem, as reported in the next lemma.

Lemma 3.1. Under Assumptions 1-9, it can be shown that

ϑ = E [ϑ|y, H1] = ϑ̂+ op(n
−1/2), (8)

V
(
ϑ̂
)

= E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y, H1

]
= − 1

n
H̄−1
n

(
ϑ̂
)

+ op(n
−1). (9)

Theorem 3.1. If Assumptions 1-9 hold, and under H0,

T (y,θ0)− qθ = W = Wald + op(1)
d→ χ2(qθ).

Corollary 3.2. Under the same conditions as in Theorem 3.1 we have

T (y,θ0)− qθ = TLLY (y,θ0) + op(1)
d→ χ2(qθ). (10)

Remark 3.3. LLY (2015) establish the relationship between TLLY (y,θ0) and LM under

H0, that is, TLLY (y,θ0) = LM +op(1). It is noted in Engle (1984) that under H0, LM =

Wald+op(1). Equation (10) is the posterior version of this asymptotic equivalence between
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Wald and LM. An advantage of T (y,θ0) over TLLY (y,θ0) is that T (y,θ0) does not

require evaluating the first-order derivative of the likelihood function. Another advantage

of T (y,θ0) over TLLY (y,θ0) is that T (y,θ0) only needs to estimate the alternative model

but TLLY (y,θ0) needs to estimate both the null model and alternative model.

Remark 3.4. Theorem 3.1 suggests that the asymptotic distribution of T (y,θ0) is piv-

otal. To implement the proposed test, we can choose the threshold value, c, to be the critical

value of χ2(qθ) distribution such that we

accept H0 if T (y,θ0)− qθ ≤ c; reject H0 if T (y,θ0)− qθ > c.

Remark 3.5. It is obvious that T (y,θ0) only requires evaluating the inverse of the sub-

matrix of the covariance matrix corresponding to θ. In contrast, the Wald statistic in (7)

requires evaluating the inverse of the entire empirical Hessian matrix and then use the

submatrix corresponding to θ. When ϑ is high-dimensional but θ is low-dimensional, the

inversion in Wald is numerically more involved than that in T (y,θ0). For example, con-

sider the case where the dimension of ϑ is 100, but the null hypothesis involves only one of

the parameters. To use the Wald statistic, one has to evaluate the inverse of a 100× 100

dimensional Hessian matrix. Whereas, to use T (y,θ0), one only needs to evaluate the

inverse of a scalar.

Remark 3.6. Unlike the Wald statistic, T (y,θ0) depends on the prior distribution and

the prior information may help improve the performance of T (y,θ0). To illustrate this

advantage and also the advantage of the proposed test over the BF, we consider the fol-

lowing experiment. Let y1, ..., yn ∼ N(θ, 1) and we test H0 : θ = 0. Consider two cases

where the true value of θ is set at θ0
n = 0.1 and 0, respectively. The prior distribution of

θ is N(µ0, τ
2). It can be shown that

2 logBF10 =
nτ2

1 + nτ2

[(√
nȳ
)2

+ 2
µ0ȳ

τ2
− µ2

0

τ2

]
+ log

1

1 + nτ2
,

T(y, θ0)− 1 =
1

1
τ2 + n

(
nȳ +

µ0

τ2

)2
=

1
1
nτ2 + 1

nȳ2 +
1

1
τ2 + n

(
2nȳ

µ0

τ2
+
µ2

0

τ4

)
,

Wald = nȳ2.

Under H0, as n→ +∞,

T(y, θ0)− 1−Wald
p→ 0,

and the asymptotic distribution for both T(y, θ0) − 1 and Wald is χ2(1). For each case

of θ0
n, suppose two prior distributions are used, a highly informative prior N(θ0

n, 10−3)

and a very vague prior N(0, 1050). We simulate n observations from the model, obtaining

ȳ and calculating 2 logBF10, T(y, θ0) − 1, and Wald. We repeat the experiment for

10



5,000 times. Table 1 reports rejection rates of 2 logBF10, T(y, θ0) − 1, and Wald when

n = 10, 100, 1000, 10000 out of 5,000 replications. The top panel corresponds to the case of

θ0
n = 0.1. The bottom panel corresponds to the case of θ0

n = 0. The left panel corresponds

to the case of the informative prior N(θ0
n, 10−3). The right panel corresponds to the case

of the vague prior N(0, 1050).

When θ0
n = 0.1, a good test is expected to reject H0. What we find from the top panel

of Table 1 is that T(y, θ0) − 1 rejects H0 successfully regardless of prior as long as n is

large enough and also that T(y, θ0)−1 rejects H0 successfully regardless of n as long as the

prior is highly informative. Wald performs much worse than T(y, θ0)− 1 when the prior

is highly information and n is very small. Moreover, under the vague prior, 2 logBF10

tends to choose the wrong model even when the sample size is very large (but finite). This

is the same as Jeffreys-Lindley-Bartlett’s paradox.

When θ0
n = 0, a good test is expected not to reject H0. What we find from the bottom

panel of Table 1 is the rejection rates for T(y, θ0)− 1 and Wald are the same which are

always very close to 5% under the vague prior. Under the informative prior, the rejection

rates for T(y, θ0) − 1 are much lower than 5% for small values of n and tend to 5% as

n increases. While T(y, θ0) − 1 is conservative in this case, 2 logBF10 tends to choose

the wrong model too often under the informative prior. For example, when n = 1, 000, it

chooses the wrong model 25% times.

Table 1: The rejection rates of alternative test statistics for H0 : θ = 0 in 5,000 replications

θ0
n = 0.1

Prior N
(
0.1, 10−3

)
N
(
0, 1050

)
n 10 100 1, 000 10, 000 10 100 1, 000 10, 000

2 logBF10 100 100 100 100 0 0 0 12.82
T(y, θ0)− 1 100 100 99.98 100 5.74 16.96 88.50 100

Wald 5.74 16.96 88.50 100 5.74 16.96 88.50 100

θ0
n = 0

Prior N
(
0, 10−3

)
N
(
0, 1050

)
n 10 100 1, 000 10, 000 10 100 1, 000 10, 000

2 logBF10 31.86 30.56 24.94 10.12 0 0 0 0
T(y, θ0)− 1 0 0 0.74 4.24 4.70 4.76 5.02 5.20

Wald 4.70 4.76 5.02 5.20 4.70 4.76 5.02 5.20

11



3.3 Extension to hypotheses in a general form

In this subsection, we extend the point null hypothesis to the following non-linear form,{
H0 : R

(
θ0
n

)
= r

H1 : R
(
θ0
n

)
6= r

, (11)

where R (·) : Θθ → Rm, m ≤ qθ, and r ∈ Rm. Here R is a set of m non-linear func-

tions/restrictions. We can test for a single hypothesis on multiple parameters, as well as a

jointly multiple hypotheses on single/multiple parameters. While this hypothesis is in the

standard form for the Wald test, as pointed out by McCulloch and Rossi (1992), the non-

linear restrictions make BFs difficult to implement. To develop large sample properties of

the proposed test, we need to impose the following assumption on R (θ).

Assumption 10: R (θ) is second-order continuously differentiable with respect to θ

on Θθ and full rank at θ0
n .

For the hypothesis defined in (11), the classical Wald statistic and its asymptotic theory

are

Wald =
[
R
(
θ̂
)
− r
]′
n

∂R
(
θ̂
)

∂θ′

[
−H̄−1

n,θθ

(
ϑ̂
)] ∂R(θ̂)

∂θ


−1 [

R
(
θ̂
)
− r
]

d→ χ2 (m) .

Based on the statistical decision theory, we can define the following net loss function

∆L (H0,θ,ψ) = (R (θ)− r)′
[
∂R
(
θ̄
)

∂θ′
Vθθ

(
ϑ̄
) ∂R (θ̄)

∂θ

]−1

(R (θ)− r) ,

and introduce our test statistic as:

T (y, r) =

∫
∆L (H0,θ,ψ) p (ϑ|y) dϑ

=

∫
(R (θ)− r)′

[
∂R
(
θ̄
)

∂θ′
Vθθ
(
ϑ̄
) ∂R (θ̄)

∂θ

]−1

(R (θ)− r) p (ϑ|y) dϑ

= tr

(∂R (θ̄)
∂θ′

Vθθ
(
ϑ̄
) ∂R (θ̄)

∂θ

)−1

Vθ(r)

 , (12)

where Vθ(r) =
∫

(R (θ)− r) (R (θ)− r)′ p (ϑ|y) dϑ.

Theorem 3.3. If Assumptions 1-10 hold, and under H0,

T (y, r)−m = Wald + op(1)
d→χ2 (m) .
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3.4 Calculating the proposed statistic

As noted in Sections 3.2 and 3.3, the proposed statistics are only dependent on the posterior

mean and the posterior variance of ϑ, ϑ and V
(
ϑ
)
. In practice, ϑ and V

(
ϑ
)

are often

unknown analytically. Fortunately, when random samples from the posterior distribution

p(ϑ|y) are obtained via posterior simulation (such as MCMC or importance sampling), we

can consistently estimate ϑ and V
(
ϑ
)

arbitrarily well. Specifically, let
{
ϑ[j], j = 1, . . . , J

}
be effective samples generated from p(ϑ|y), and consistent estimates of ϑ, θ and V

(
ϑ
)

be given by

¯̄ϑ =
1

J

J∑
j=1

ϑ[j], v̄1 =
1

J

J∑
j=1

θ[j], V̄
(

¯̄ϑ
)

=
1

J

J∑
j=1

(
ϑ[j] − ¯̄ϑ

)(
ϑ[j] − ¯̄ϑ

)′
.

By plugging ¯̄ϑ, v̄1, and V̄
(

¯̄ϑ
)

into the proposed statistics, we obtain consistent estimates

of T (y,θ0) and T (y, r) as

T̂ (y,θ0) := tr

[(
V̄θθ

(
¯̄ϑ
))−1

V̄θ (θ0)

]
,

T̂ (y, r) := tr

[(
∂R (v̄1)

∂θ′
V̄θθ

(
¯̄ϑ
) ∂R (v̄1)

∂θ

)−1

V̄θ(r)

]
, (13)

where

V̄θ (θ0) =
1

J

J∑
j=1

(
θ[j] − θ0

)(
θ[j] − θ0

)′
,

V̄θ(r) =
1

J

J∑
j=1

(
R
(
θ[j]
)
− r
)(

R
(
θ[j]
)
− r
)′
.

Remark 3.7. Various approaches have been developed for posterior simulation. Examples

include Monte Carlo (MC) integration, importance sampling, MCMC techniques such as

the Gibbs sampler and the Metropolis-Hastings algorithm. For more details about posterior

simulation, one can refer to Geweke (2005). All these approaches can be used to generate

random observations from p(ϑ|y). From (13), the proposed statistics are by-products of

posterior simulation. Furthermore, the test statistics can be applied in a variety of models.

When T̂(y,θ0) and T̂ (y, r) are calculated from posterior simulation, it is important

to obtain their numerical standard error (NSE) that measures the magnitude of simulation

errors. The following theorem shows how to calculate the NSE of T̂(y,θ0) and T̂ (y, r).

Theorem 3.4. Let V̄2 = 1
J

∑J
j=1

(
θ[j] − v̄1

)(
θ[j] − v̄1

)′
, v̄2 = vech

(
V̄2

)
, v̄ = (v̄′1, v̄

′
2)′,

V ar (v̄) be the NSE of v̄. The NSE of T̂ (y,θ0) is given by

NSE
(
T̂ (y,θ0)

)
=

√
∂T̂ (y, θ0)

∂v̄′
V ar (v̄)

∂T̂ (y,θ0)

∂v̄
,
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where

∂T̂ (y,θ0)

∂v̄
=vech (Iqθ)

′
[((

(v̄1 − θ0)′ V̄−1
2

)′ ⊗ Iqθ + V̄−1
2 ⊗ (v̄1 − θ0)

) ∂v̄1

∂v̄

−
[
Iqθ ⊗ (v̄1 − θ0) (v̄1 − θ0)′

] (
V̄−1

2 ⊗ V̄−1
2

) ∂V̄2

∂v̄

]
,

and

∂v̄1

∂v̄
=
∂v̄′1
∂v̄

= [Iqθ , 0qθ×q∗ ] ,
∂V̄2

∂v̄
=

0q2
θ×qθ

,

(
∂vech

(
V̄2

)
∂v̄2

)
q2
θ×q∗

 .
Furthermore, the NSE of T̂ (y, r) is given by

NSE
(
T̂ (y, r)

)
=

√
∂T̂ (y, r)

∂v̄′
V ar (v̄)

∂T̂ (y, r)

∂v̄
,

where

∂T̂ (y, r)

∂v̄
=vech (Im)′

{[(
(v̄3 − r)′

(
V̄′4V̄2V̄4

)−1
)′
⊗ Im

]
∂v̄3

∂v̄1

∂v̄1

∂v̄

+
[(

V̄′4V̄2V̄4

)−1 ⊗ (v̄3 − r)
] ∂v̄′3
∂v̄1

∂v̄1

∂v̄

+
[
Im ⊗ (v̄3 − r) (v̄3 − r)′

] [(
V̄′4V̄2V̄4

)−1 ⊗
(
V̄′4V̄2V̄4

)−1
]

×
∂vech

(
V̄′4V̄2V̄4

)
∂v̄

}
,

v̄3 = R (v̄1) , V̄4 =
∂R (θ)

∂θ
|θ=v̄1

,

∂vech
(
V̄′4V̄2V̄4

)
∂v̄

=
((

V̄2V̄4

)′ ⊗ Im

) ∂V̄′4
∂v̄1

∂v̄1

∂v̄
+
(
V̄4 ⊗ V̄′4

) ∂V̄2

∂v̄

+
(
Im ⊗ V̄′4V̄2

) ∂V̄4

∂v̄1

∂v̄1

∂v̄
,

and the derivatives of V̄4 and v̄3 depend on the form of R (θ).

Remark 3.8. Following Newey and West (1987), a consistent estimator of the NSE of v̄

is given by

V ar(v̄) =
1

J

[
Ω0 +

K∑
k=1

(
1− k

K + 1

)(
Ωk + Ω′k

)]
,

where

Ωk = J−1
J∑

j=k+1

(
v[j] − v̄

)(
v[j] − v̂

)′
.
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4 Posterior Statistic under Model Misspecification

In many applications, the assumption of the correct model specification is too strong.

We now develop a version of posterior statistic that is robust under model misspecifica-

tion. According to the information matrix equality, the correct model specification implies

Hn

(
ϑ0
n

)
+ Bn

(
ϑ0
n

)
= 0. To allow for model misspecification, we replace Assumption 8

with the following assumption without imposing Hn

(
ϑ0
n

)
+ Bn

(
ϑ0
n

)
= 0.

Assumption 8B: For all n,
{
Hn

(
ϑ0
n

)
,Bn

(
ϑ0
n

)}
are negative definite and positive

definite, respectively.

Under Assumptions 1-7 and 8B,

H̄−1
n

(
ϑ̂
)
−H−1

n

(
ϑ0
n

) p→ 0. (14)

According to Li et al. (2020), under Assumptions 1-7, 8B, 9,

H̄−1
n

(
ϑ̄
)
−H−1

n

(
ϑ0
n

) p→ 0. (15)

Moreover, according to Newey and West (1987), a heteroskedasticity and autocorrelation

consistent (HAC) estimator of Bn

(
ϑ0
n

)
can be constructed

Ω̄n

(
ϑ̂
)

=
1

n

n∑
t=1

n∑
τ=1

st

(
ϑ̂
)

sτ

(
ϑ̂
)′
k

(
t− τ
γn

)
,

where k(·) is a kernel function and γn is the bandwidth. To ensure consistency and

positive semidefiniteness of Ω̄n

(
ϑ̂
)

, following de Jong and Davidson (2000), we add three

assumptions, the first two of which are about the kernel function and bandwidth, while

the last of which is about the score function st
(
ϑ0
n

)
.

Assumption 11: Assume the kernel function k (·) ∈ H, where

H =


k (·) : R→ [−1, 1] , k (x) = k (−x) , for any x ∈ R,∫ +∞

−∞ |k (x)| dx <∞,
∫ +∞
−∞ ψ (ξ) dξ <∞,

k (·) is continuous at 0 and at all but a finite number of points in R

 ,

where

ψ (ξ) = (2π)−1
∫ +∞

−∞
k (x) eiξxdx.

Assumption 12: The bandwidth parameter γn is an increasing function of sample

size n and γn = o
(
n1/2

)
.

Assumption 13: The expectation of the score function E
(
st
(
ϑ0
n

))
= 0 for any t.

Remark 4.1. In Assumption 11, the function class H includes many well-known kernel

functions, such as Bartlett, Parzen, Quadratic Spectral, and Tukey-Hanning kernels. It

ensures that Ω̄n

(
ϑ̂
)

is positive semidefinite with probability approaching one; see Andrews

(1991). Note that H does not include truncated kernels.
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Remark 4.2. From Assumption 1-7 and 8B, according to Gallant and White (1988),

√
n
(
ϑ̂− ϑ0

n

)
d→ N

(
0,Σ0

n

)
,

where Σ0
n is the so-called “sandwich” covariance matrix given by

Σ0
n = H−1

n

(
ϑ0
n

)
Bn

(
ϑ0
n

)
H−1
n

(
ϑ0
n

)
.

According to Li et al. (2020), under Assumptions 1-7, 8B and 11-13,

Ω̄n

(
ϑ̂
)
−Bn

(
ϑ0
n

) p→ 0. (16)

Then a consistent estimator of Σ0
n is

Σ̂S

(
ϑ̂
)

= H̄−1
n

(
ϑ̂
)

Ω̄n

(
ϑ̂
)

H̄−1
n

(
ϑ̂
)
.

Remark 4.3. According to Li et al. (2020), under Assumptions 1-7, 8B, 9, 11-12,

Ω̄n

(
ϑ̄
)
− Ω̄n

(
ϑ̂
)

p→ 0. (17)

Hence, Ω̄n

(
ϑ̄
)

is also a consistent estimator of Bn

(
ϑ0
n

)
. From (15) and (17), we have

Σ̂S

(
ϑ̄
)
− Σ̂S

(
ϑ̂
)

p→ 0.

That is, Σ̂S

(
ϑ̄
)

is also a consistent estimator of Σ0
n. If we further define

Σ̄S

(
ϑ̄
)

= nV
(
ϑ̄
)
Ω̄n

(
ϑ̄
)
nV

(
ϑ̄
)
,

it can be shown that

Σ̄S

(
ϑ̄
)
− Σ̂S

(
ϑ̄
) p→ 0,

which means that

Σ̄S

(
ϑ̄
)
−Σ0

n
p→ 0. (18)

It is well known that, whether the model is misspecified or not, the BvM theorem

suggests that
√
n
(
ϑ− ϑ̄

)
|y a∼ N

(
0,−H−1

n

(
ϑ0
n

))
.

Due to the discrepancy between −H−1
n

(
ϑ0
n

)
and Σ0

n in misspecified models, Müller (2013)

uses an artificial posterior distribution based on the “sandwich” covariance matrix to

improve the Bayesian statistical inference. In particular, the posterior distribution of ϑ

is artificially constructed as N
(
ϑ̄, 1

nΣ0
n

)
. Since Σ0

n is unknown, it is substituted by the

consistent estimator Σ̄S

(
ϑ̄
)
. Müller (2013) shows that for misspecified models, this new

posterior distribution can yield a lower risk for parameter estimation compared with the
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original posterior distribution. We now show how to use N
(
ϑ̄, 1

nΣ̄S

(
ϑ̄
))

to construct our

test statistic that is robust under model misspecification.

Let pS (ϑ|y) denote the pdf of N
(
ϑ̄, 1

nΣ̄S

(
ϑ̄
))

. Define the following loss function:

L(d0,θ,ψ) =

{
0 if θ = θ0
1
2 (θ − θ0)′ n

[
Σ̄S,θθ

(
ϑ̄
)]−1

(θ − θ0) if θ 6= θ0
(19)

and

L(d1,θ,ψ) =

{
0 if θ = θ0

−1
2 (θ − θ0)′ n

[
Σ̄S,θθ

(
ϑ̄
)]−1

(θ − θ0) if θ 6= θ0
. (20)

Hence, the net loss function is

∆L (H0,θ,ψ) = (θ − θ0)′ n
[
Σ̄S,θθ

(
ϑ̄
)]−1

(θ − θ0) .

Based on this net loss function, we propose the following test statistic

TS (y,θ0) =

∫
∆L (H0,θ,ψ) pS (ϑ|y) dϑ

=

∫
(θ − θ0)′ n

[
Σ̄S,θθ

(
ϑ̄
)]−1

(θ − θ0) pS (ϑ|y) dϑ.

Let WS :=
(
θ̄ − θ0

)′
n
[
Σ̄S,θθ

(
ϑ̄
)]−1 (

θ̄ − θ0

)
. We have

TS (y,θ0) = tr

{
n
[
Σ̄S,θθ

(
ϑ̄
)]−1

∫
(θ − θ0) (θ − θ0)′ pS (θ|y) dθ

}
= tr

{
n
[
Σ̄S,θθ

(
ϑ̄
)]−1

[
1

n
Σ̄S, θθ

(
ϑ̄
)

+
(
θ̄ − θ0

) (
θ̄ − θ0

)′]}
= qθ + tr

{
n
[
Σ̄S,θθ

(
ϑ̄
)]−1 (

θ̄ − θ0

) (
θ̄ − θ0

)′}
= qθ +

(
θ̄ − θ0

)′
n
[
Σ̄S,θθ

(
ϑ̄
)]−1 (

θ̄ − θ0

)
= qθ + WS .

Define the Wald statistic that is robust under model specification as

WaldS =
(
θ̂ − θ0

)′
n
[
Σ̂S,θθ

(
ϑ̂
)]−1 (

θ̂ − θ0

)
.

The following theorem establishes the asymptotic equivalence between TS (y,θ0) and

WaldS under H0.

Theorem 4.1. If Assumptions 1-7, 8B, 9, 11-13 hold, and under H0,

TS (y,θ0)− qθ = WaldS + op(1).
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We can extend the results to the hypothesis defined in (11) under model misspecifica-

tion. Note that the classical Wald statistic under misspecification and its null asymptotic

theory are

WaldRS =
[
R
(
θ̂
)
− r
]′
n

∂R
(
θ̂
)

∂θ′
Σ̂S,θθ

(
ϑ̂
) ∂R(θ̂)

∂θ


−1 [

R
(
θ̂
)
− r
]

d→ χ2 (m) .

Define the net loss function

∆L (H0,θ,ψ) = (R (θ)− r)′ n

[
∂R
(
θ̄
)

∂θ′
Σ̄S,θθ

(
ϑ̄
) ∂R (θ̄)

∂θ

]−1

(R (θ)− r) ,

and the test statistic

TS (y, r) =

∫
∆L (H0,θ,ψ) pS (ϑ|y) dϑ

=

∫
(R (θ)− r)′ n

[
∂R
(
θ̄
)

∂θ′
Σ̄S,θθ

(
ϑ̄
) ∂R (θ̄)

∂θ

]−1

(R (θ)− r) pS (ϑ|y) dϑ.

Theorem 4.2. If Assumptions 1-7, 8B, 9-13 hold, under H0,

TS (y, r)−m = WaldRS + op (1)
d→ χ2 (m) .

5 Simulation Studies

We design three experiments to examine the finite-sample performance of the proposed test

with simulated data. In the first experiment, we test different null hypotheses in a linear

regression model. This study aims to compare the finite-sample behavior of T (y,θ0)

and that of Wald in terms of size and power. In the second experiment, we study the

finite-sample properties of TS (y,θ0) in a misspecified linear regression model. In the

third experiment, we test the point null hypothesis in a discrete choice model. It is a

simultaneous equation model with ordered probit and two-limit censored regression. Li

(2006) applied this microeconometric model to study the relationship between high school

completion and future youth unemployment.

5.1 Hypothesis testing in a linear regression model

The linear regression model we consider is specified as

yi = x′iβ + εi, εi ∼ N
(
0, σ2

)
, i = 1, . . . , n.

with xi1 = 1. Let β =
(
β′1,β

′
2

)′
. We consider two different null hypotheses, both concern-

ing β1. The first one is to test H0 : β1 = β∗1 against H1 : β1 6= β∗1. The other is to test
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H0 : Rβ1 = r against H1 : Rβ1 6= r. To do Bayesian analysis, the conjugate priors for β

and σ2 can be specified as the normal distribution and the inverse gamma distribution,

respectively,

β|σ2 ∼ N
(
µ0, σ

2V0

)
, σ2 ∼ IG (a, b) ,

where µ0, V0 and a, b are hyperparameters. As a result, the posterior distributions are

available analytically.

For simplicity, we consider the case in which β = (β1, β2, β3, β4), xi = (xi1, xi2, xi3, xi4)′,

where xi1 = 1, xi2, xi3, xi4 ∼ N (0, 1). The true parameter values used to simulate data

are given as σ2 = 0.01, β1 = 0.3, β2 = 0.2, β3 = 0.1C, β4 = 0.5C for C = 0, 0.1, 0.3, 0.5,

where C is used to control the difference between the true value and zero. The number of

replications is set at 1, 000 while three sample sizes are considered, n = 50, 100, 150. Each

of four null hypotheses is tested, β3 = 0, or β4 = 0, or β3 = β4 = 0, or β3 + β4 = 0, in

every replication. To make the priors vague, the hyperparameters are specified at

µ0 = (0, 0, 0, 0)′ ,V0 = 1000× I4, a = 0.0001, b = 0.0001.

In each replication, we draw 5, 000 i.i.d. random samples from the posterior distribution

and then use the posterior samples to compute T (y,θ0). Also computed is Wald for the

purpose of comparison. The Wald test is feasible because MLE is easy to obtain in this

application.

Table 2 reports the size and the power of T (y,θ0) and Wald for a nominal size of

5%. In all cases, the size distortion for T (y,θ0) is very small and the two tests perform

similarly in terms of size. The size approaches 5% as the sample size increases. Moreover,

in all cases, the power of T (y,θ0) is comparable to that of Wald. As C increases, the

power of T (y,θ0) approaches 100%. Similarly, as the sample size increases, the power of

T (y,θ0) approaches 100%.

5.2 Hypothesis testing in a misspecified linear regression model

To examine the performance of TS (y,θ0), following Zhou et al. (2012), we consider the

point-null hypothesis testing problem in a linear regression model with heteroskedastic

errors. In particular, we adopt the design of Zhou et al. (2012) by simulating data from

yi = xi1β1 + xi2β2 + σiεi, εi ∼ N (0, 1) , i = 1, . . . , n,

where β1 = 0.1C, β2 = 0.5C, C = 0, 0.1, 0.3, 0.5, xi1 = 1, xi2 ∼ U (−5, 5), σi is the

ith diagonal element in matrix
√
X (X ′X)−1X with X = (x1, x2), xi = (x1j , . . . , xnj)

′,

j = 1, 2. We then obtain the size and power of TS (y,θ0). We also obtain the size and

power T (y,θ0) and Wald without taking heteroskedasticity into account.
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Table 2: The size and power of T (y,θ0) and Wald in the linear regression model

Empirical Size Empirical Power

C = 0 C = 0.1 C = 0.3 C = 0.5

n H0 T (y,β10) Wald T (y,β10) Wald T (y,β10) Wald T (y,β10) Wald

50

β3 = 0 4.50 5.10 10.40 11.00 55.80 57.30 92.00 92.20
β4 = 0 6.50 7.10 92.00 92.5% 100 100 100 100

β3 = β4 = 0 6.60 7.50 88.80 89.70 100 100 100 100
β3 + β4 = 0 6.20 6.70 83.30 84.00 100 100 100 100

100

β3 = 0 5.50 5.80 20.20 20.40 82.00 82.80 99.90 100
β4 = 0 4.60 5.00 99.70 99.70 100 100 100 100

β3 = β4 = 0 5.70 6.00 99.50 99.50 100 100 100 100
β3 + β4 = 0 6.00 6.20 98.60 98.60 100 100 100 100

150

β3 = 0 5.30 5.40 24.40 24.60 95.90 95.90 100 100
β4 = 0 5.20 5.30 100 100 100 100 100 100

β3 = β4 = 0 5.40 5.60 100 100 100 100 100 100
β3 + β4 = 0 4.20 4.20 99.80 99.80 100 100 100 100

The estimation and hypothesis testing problems are the same as those in Section 5.1.

The empirical size and power are reported in Table 3. It is clear that the empirical size

of TS (y,θ0) in all cases are close to the nominal level 5%. In particular, as the sample

size increases, the size distortion becomes smaller. In a contrast, the size of both T (y,θ0)

and Wald does not seem to converge to the nominal level even when n = 200. Moreover,

the empirical power of TS (y,θ0) is good in all cases.

Table 3: The size and power of T (y,θ0), TS (y,θ0) and Wald in the misspecified linear
regression model.

Empirical Size Empirical Power

C = 0 C = 0.1 C = 0.3 C = 0.5

n H0 T TS Wald T TS Wald T TS Wald T TS Wald

100

β3 = 0 5.40 6.60 5.50 10.60 12.30 11.00 54.40 57.90 54.90 93.20 93.90 93.40
β4 = 0 8.90 6.80 9.10 100 100 100 100 100 100 100 100 100

β3 = β4 = 0 9.40 7.50 9.90 100 100 100 100 100 100 100 100 100
β3 + β4 = 0 6.30 6.80 6.40 96.80 100 96.80 100 100 100 100 100 100

150

β3 = 0 5.40 5.70 5.40 18.00 20.00 18.20 88.40 89.40 88.40 99.90 100 100
β4 = 0 9.00 5.50 9.20 100 100 100 100 100 100 100 100 100

β3 = β4 = 0 7.20 5.60 7.70 100 100 100 100 100 100 100 100 100
β3 + β4 = 0 6.20 5.50 6.50 100 100 100 100 100 100 100 100 100

200

β3 = 0 4.10 4.50 4.30 29.50 31.30 29.70 99.00 99.10 99.00 100 100 100
β4 = 0 8.50 4.70 9.10 100 100 100 100 100 100 100 100 100

β3 = β4 = 0 7.20 5.00 7.30 100 100 100 100 100 100 100 100 100
β3 + β4 = 0 4.70 4.70 4.80 100 100 100 100 100 100 100 100 100
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5.3 Hypothesis testing in a discrete choice model

The third model in the simulation study is a simplified version of the model of Li (2006),

where the effects of attendance on high school completion and future youth unemployment

were studied. As noted in Li (2006), the likelihood function involves multiple integrals

and discrete and censored variables. Consequently, the likelihood function and the cor-

responding derivatives are not easy to evaluate. That is why Li (2006) introduces an

MCMC approach for statistical analysis. We perform hypothesis testing in the discrete

choice model with latent variables.

Let zi = 1, 2, 3, 4 denote the high school grade completed by individual i which is, by

definition, an ordered integer. Let yi denote the latent outcome corresponding to zi. The

first part of the model is an ordered probit defined as{
yi = β0 + β1xi + εi, εi ∼ N

(
0, σ2

)
, γzi < yi < γzi+1,

γ1 = −∞, γ2 = 0, γ2 < γ3 < γ4, γ4 = 1, γ5 =∞,

where i = 1, . . . , n with n being the total number of individuals, εi is an individual level

random error term, σ2 is the variance of the error term, {γj}5j=1 are the cutoff points, xi

contains some covariates which are assumed to be exogenous. For the purpose of simulating

data, we simply assume xi is univariate and xi ∼ N (0, 1).

Furthermore, let ωi denote the proportion of time during which individual i is unem-

ployed, ỹi is the latent outcome corresponding to ωi, and ỹi is limited as,

ỹi


≤ 0, ωi = 0,

= ωi, 0 < ωi < 1,

≥ 1, ωi = 1.

Then the censored regression is,

ỹi = β̃0 + β̃1x+ ε̃i, ε̃i ∼ N
(
0, σ̃2

)
. (21)

The two error terms are correlated, that is,(
εi
ε̃i

)
∼ N

((
0
0

)
,

(
σ2 σ12

σ12 σ̃2

))
:= N (0,Σ) .

In the simulation study, the null and alternative hypotheses are,

H0 : β1 = 0, H1 : β1 6= 0.

To calculate the size and power of the proposed statistic, three sample sizes are considered,

n = 100, 250, and 500. In each case, we compute the empirical size when β1 = 0 at a
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Table 4: The size and power of T (y,θ0) in the discrete choice model

Empirical Size Empirical Power

β1 = 0 β1 = 0.1 β1 = 0.2 β1 = 0.4

n = 100 4.20 11.00 23.00 75.80
n = 250 5.20 24.00 65.00 100
n = 500 4.60 49.40 97.20 100

nominal size of 5%. We also compute the power when β1 = 0.1, 0.2 and 0.4. The number

of replications is 500. The true values of other parameters are set at,

β0 = 1, β̃0 = 0.01, β̃1 = 0.1,Σ =

(
1 −0.01

−0.01 0.1

)
, γ3 = 0.67.

These values are close to those reported in Li (2006) based on actual data.

Following Li (2006), we use the following vague priors to do Bayesian analysis,

β =
(
β0, β1.β̃0, β̃1

)′
∼ N (0, 1000× I4) , Σ ∼ IW (6, 6× I2) , γ3 ∼ Beta (1, 1) ,

where IW denotes the inverted Wishart distribution and Beta denotes the Beta distribu-

tion.

We run MCMC to obtain 10,000 random samples. After dropping the first 4,000 sam-

ples, we treat the remaining 6,000 sample as effective draws from the posterior distribution.

Let
{
β

[j]
1

}J
j=1

denote the effective posterior draws. From (13), the proposed statistic can

be simply calculated as

T̂ (y, β1 = 0) =

1
J

∑J
j=1

(
β

[j]
1

)2

1
J

∑J
j=1

(
β

[j]
1 − β1

)2 , β1 =
1

J

J∑
j=1

β
[j]
1 .

Other test statistics, such as BFs and the Wald statistic, are harder to obtain due to the

presence of latent variables.

The empirical size and power of the proposed test are reported in Table 4 for a nominal

size of 5%. It is obvious that the empirical size is close to the nominal size in all cases,

even when the sample size is only 100. When β1 becomes further and further away from

0, the power increases and approaches 100. Furthermore, as the sample size increases, the

power increases in all cases.

6 Empirical Examples

We then consider two empirical studies using real data. The first model is the full version of

the discrete choice model of Li (2006). The second model is the stochastic volatility model
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with leverage effect. For both models, it is well-known that the observed-data likelihood

function is intractable due to latent variables. As a result, the observed-data likelihood

function and its derivatives are very difficult to evaluate, and hence it is advantageous to

use the proposed statistic over existing statistics for hypothesis testing.

6.1 Hypothesis testing in a discrete choice model

In the first empirical study, we consider the same model and use the same data set as in

Li (2006). Let zhi denote the high school grade completed by individual i, and yhi denote

the latent outcome corresponding to zhi, where h is the schooling outcome. Let zhi = 1 if

individual i drops out of high school after completing the ninth grade, zhi = 2 if he drops

out after completing the tenth grade, zhi = 3 if he drops out after completing the eleventh

grade, and zhi = 4 if he completes high school. An ordered probit is specified as{
yhi = β′hxhi + εhi, εhi ∼ N

(
0, σ2

h

)
, γzhi < yhi < γzhi+1

γ1 = −∞, γ2 = 0, γ2 < γ3 < γ4, γ4 = 1, γ5 =∞
, (22)

where xhi is a kh × 1 vector incorporating individual-level variables, including base year

cognitive test score, parental income, parental education, number of siblings, gender, race,

county-level employment growth rate between 1980 and 1982, a fourth-order polynomial

in age and a fourth-order polynomial in the time eligible to drop out.

Furthermore, let ωui represent the proportion of time when individual i is unemployed,

yui the latent outcome corresponding to ωui, and yui is limited as,

yui


≤ 0, ωui = 0,

= ωui, 0 < ωui < 1,

≥ 1, ωui = 1.

(23)

Thus, the censored regression is,

yui = β′uxui + s′iη + εui, εui ∼ N
(
0, σ2

u

)
, (24)

where xui is a ku×1 vector incorporating observed variables, including base year cognitive

test score, parental income, parental education, number of siblings, gender, race, age and

a dummy variable indicating any post-secondary education.

In Equation (24), si is a 4×1 vector consisting of dummy variables indicating the high

school grade completed by individual i. In other words, si = (si,1, si,2, si,3, si,4)′, and if

si,zhi = 1 then si,j = 0, j 6= zhi. Besides, η indicates the 4× 1 vector of the effect of high

school completion on unemployment. For simplicity, η is assumed to be the same across

schools. This assumption is different from that in Li (2006) although our empirical results

are almost the same as those in Li. The random terms are assumed to be correlated,(
εhi
εui

)
∼ N

((
0
0

)
,

(
σ2
h σhu

σhu σ2
u

))
:= N (0,Σ) .
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In total, there are 34 parameters in the model.

As noted in Li (2006), the MLE is difficult to obtain. Hence, the MCMC technique is

implemented. We adopted the same priors as Li which are listed in the following,

β =
(
β′h,β

′
u

)′ ∼ N (0k×1, 1000× Ik) , Σ ∼ IW (6, 6× I2) ,

η ∼ N (0, I4) , γ3 ∼ Beta (1, 1) ,

where k = kh + ku.

The dataset contains 5,238 students from 871 schools. For more details about the data,

one can refer to Li (2006). We run MCMC for 20,000 times. After dropping the first 4,000

samples, we treat the remaining 16,000 as effective draws. Posterior means and posterior

standard errors are reported in Table 5, all of which are very close to those reported in Li

(2006).

Suppose one is interested in testing that the marginal effects of father’s education level

and mother’s education level on the completion of high school can be ignored or not. The

null hypothesis can be written as H0 : β4h = β5h = 0. With the MCMC output, we can

very easily compute the statistic. We also compute ̂logBF10 and T̂LLY (y,θ0). The three

test statistics and their numerical standard errors are reported in Table 6.3

According to Table 6, both T̂ (y,θ0) − 2 and T̂LLY (y,θ0) take very large values, in-

dicating that the null hypothesis is overwhelmingly rejected. This conclusion is consistent

with that by ̂logBF10, which strongly supports the alternative hypothesis. Furthermore,

their numerical standard errors are all small relative to the values of the statistics. Fi-

nally, in spite of the same conclusion reached, the CPU time required to compute the test

statistics is vastly different. The proposed statistic is more than 1700 times and nearly

13000 times faster to compute than T̂LLY (y,θ0) and ̂logBF10 after MCMC outputs are

available. An additional advantage that does not reflect in the CPU time is that the pro-

posed statistic only needs MCMC output from the alternative model while the other two

statistics require MCMC output for both the null and alternative models.

6.2 Hypothesis testing in a stochastic volatility model

Stochastic volatility (SV) models with leverage effect have been widely used in finance;

see Harvey and Shephard (1996) and Aı̈t-Sahalia et al. (2017). Following Yu (2005), the

SV model with leverage effect is defined as,{
rt = exp (ht/2) εt,

ht+1 = µ+ φ (ht − µ) + σεt+1, h0 = µ,

3We use the marginal likelihood method of Chib (1995) to compute the BF and its NSE.
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Table 5: Posterior means and standard errors of parameters in the discrete choice model
E (·|Data) SE (·|Data)

High school completion yh
Constant 0.9474 0.2119
Parental income 0.0110 0.0262
Base year cognitive test 0.4413 0.0370
Father’s education 0.0456 0.0131
Mother’s education 0.0627 0.0159
Number of siblings -0.0370 0.0153
Female -0.0694 0.0534
Minority 0.3840 0.0664
County employment growth -0.0132 0.0047
Age -0.4150 0.0853
Age2 -0.1887 0.0766
Age3 -0.0333 0.0468
Age4 0.0311 0.0148
Time eligible to drop out 0.0932 0.0696
Time2 0.0905 0.0473
Time3 -0.0090 0.0106
Time4 -0.0094 0.0053

Proportion of time unemployed ωu

Parental income -0.0275 0.0056
Base year cognitive test -0.0392 0.0071
Father’s education -0.0020 0.0025
Mother’s education -0.0043 0.0030
Number of siblings 0.0049 0.0034
Post-secondary education -0.0113 0.0138
Female 0.0621 0.0112
Minority 0.0826 0.0131
Age -0.0058 0.0126
Completing ninth grade(η1) 0.1925 0.0705
Completing tenth grade(η2) 0.1211 0.0530
Completing eleventh grade(η3) 0.1187 0.0492
Completing high school(η4) 0.0083 0.0416

Covariance matrix Σ

σ2
h 0.9450 0.0914
σ2
u 0.1215 0.0039
σhu -0.0099 0.0191

Cutoff point

γ3 0.6684 0.0220
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Table 6: The test statistics, T (y,θ0), T̂LLY (y,θ0), ̂logBF10, their NSE and their com-
putational time in the discrete choice model

β4 = β5 = 0
Value NSE CPU Time (seconds)†

T̂ (y,θ0)− 2 43.39 1.59 22.54

T̂LLY (y,θ0) 2502.00 89.57 39,096.79
̂logBF10 5.2019 1.03 292,886.45

with (
εt
εt+1

)
i.i.d.∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
,

where rt is the return at time t, ht the latent volatility at period t. In this model, ρ is the

parameter that captures the leverage effect when it is negative. Hence, we test H0 : ρ = 0

against H1 : ρ 6= 0. In this example, we use two different datasets for hypothesis testing.

For each dataset, we compute the proposed statistic, TLLY (y,θ0) and ̂logBF10.4

Let
{
ρ[j]
}J
j=1

denote the effective posterior draws for ρ under H1. The proposed

statistic is simply calculated as

T̂(y, ρ = 0) =
1
J

∑J
j=1

(
ρ[j]
)2

1
J

∑J
j=1

(
ρ[j] − ρ

)2 , ρ =
1

J

J∑
j=1

ρ[j].

On the contrary, computing T̂LLY (y,θ0) and ̂logBF10 require substantially higher coding

efforts and extra CPU time.

The first dataset consists of daily returns on Pound/Dollar exchange rates from October

1, 1981 to June 28, 1985 with sample size 945. The series rt is the daily mean-corrected

returns. The following vague priors are used:

µ ∼ N (0, 100) , φ ∼ Beta (1, 1) , σ−2 ∼ Γ (0.001, 0.001) , ρ ∼ U (−1, 1) .

We draw 50,000 from the posterior distribution and discard the first 20,000 as burn-in

samples. Then we store every 5th value of the remaining samples as effective random

samples. The estimation results are reported in Table 7.

Table 8 reports the proposed statistic, T̂LLY (y,θ0) and ̂logBF10 and the NSEs for the

first two statistics. Since the observed-data likelihood function is expensive to compute,

the NSE of BF is too difficult to obtain and not reported. ̂logBF10 strongly supports

the null hypothesis, that is, the SV model without leverage effect. T̂LLY (y,θ0) takes a

very small value, suggesting that we cannot reject the null hypothesis. When the null

4Again we use the marginal likelihood method of Chib (1995) to compute the BF.
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Table 7: Posterior means and standard errors of parameters in the SV model

H1 H0

Parameter Mean SE Mean SE

µ -0.5776 0.3487 -0.6608 0.3164
φ 0.9849 0.0097 0.9793 0.0127
ρ -0.0941 0.1507 - -
τ 0.1553 0.0243 0.1618 0.0360

Table 8: The test statistics, T (y,θ0), T̂LLY (y,θ0), ̂logBF10, their NSE, and the CPU
time in the SV model

T̂ (y,θ0)− 1 T̂LLY (y,θ0) ̂logBF10

Value 0.3893 0.2883 -10.1235
NSE 0.0255 0.2028 -

CPU Time (seconds) 0.9411 549.0631 3,701.2241

hypothesis is true, we know that T (y,θ0)−1
d→ χ2 (1). It can be found that T̂ (y,θ0)−1

is very closed to T̂LLY (y,θ0), also suggesting that we cannot reject the null hypothesis.

Finally, our proposed statistic has a smaller NSE than T̂LLY (y,θ0).

The second dataset contains 1,822 daily returns of the Standard & Poor (S&P) 500

index, covering the period between January 3, 2005 and March 28, 2012. We use the same

priors and method as before to estimate the model with and without leverage effect. The

estimation results are reported in Table 9.

Table 9: The estimates of the SV models for the S&P500 returns.

H1 H0

Parameter Mean SE Mean SE

µ -10.8800 0.1751 -11.2200 0.3349
φ 0.9804 0.0039 0.9897 0.0042
ρ -0.7151 0.0422 - -
τ 0.2057 0.0178 0.1705 0.0169

The three test statistics and the NSEs for the first two statistics are reported in Table

10. Contrary to the case of Pound/Dollar returns, all three statistics strongly support

the alternative hypothesis. Both T̂ (y,θ0)− 1 and T̂LLY (y,θ0) reject the null hypothesis

under the 99% significance level. Similarly, ̂logBF10 strongly supports the alternative

hypothesis. However, the proposed statistic is nearly 1000 times and more than 6000 times

faster to compute than T̂LLY (y,θ0) and ̂logBF10 after MCMC outputs are available.
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Table 10: The performance of alternative statistics in the SV model.

T̂ (y,θ0)− 1 T̂LLY (y,θ0) ̂logBF10

Value 286.7944 8.2419 51.9582
NSE 0.6915 0.6849 -

CPU Time (seconds) 1.2922 1,256.7768 7,785.6888

7 Conclusion

In this paper, a new statistic based on posterior distribution is proposed to test for a point

null hypothesis under the correct model specification. It can be treated as the posterior

version of the Wald test. Compared with existing methods, the proposed statistic has

many important advantages. First, it is well-defined under improper prior distributions.

Second, it avoids Jeffreys-Lindley-Bartlett’s paradox. Third, its asymptotic distribution

is a χ2 distribution under the null hypothesis and repeated sampling. This property is

the same as the Wald statistic so that the critical values can be easily obtained. Fourth,

it is very easy to compute as it is based on the posterior mean and posterior variance

of the parameters of interest. Fifth, it can be used to test hypotheses that impose non-

linear relationships among the parameters of interest, for which the BF is difficult to use.

Sixth, for latent variable models for which the MLE and the Wald test are more difficult

to obtain, the proposed statistic is the by-product of posterior sampling. Finally, only

posterior sampling for the alternative hypothesis is needed for the proposed statistic. We

also propose a test statistic based on an artificial posterior distribution that is robust

under model misspecification that inherits many nice properties of the first test statistic.

The finite-sample properties of the proposed statistic under the correct model specifi-

cation is examined in a linear regression model and in a discrete choice model with latent

variables. In the linear regression models, the Wald statistic is feasible and compared with

the proposed test. Simulation results show that the proposed test has little size distortion

even when the sample size is small and its size and power are very similar to those of the

Wald test when a vague prior is used. In the discrete choice model, the proposed test

continues to enjoy small size distortions even when the sample size is small. The power

increases rapidly when the sample size increases or when the difference between the null

and alternative hypotheses increases. We also check the finite-sample behavior of the pro-

posed robust test in a linear regression model with heteroskedastic errors. The simulation

results also suggest that the proposed test has good finite-sample properties.

We apply the method to two models using real data. The first one is a discrete choice
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model, and the second is an SV model. In both models, there are latent variables. Due to

the presence of latent variables, the Wald statistic is very difficult to obtain and because

the maximum likelihood method is difficult to use. While both the BF and the test

proposed by LLY (2015) are feasible to compute based on MCMC output, they are much

more expensive to compute than the proposed statistic with longer CPU time after MCMC

output is available. The empirical conclusion obtained by these three methods is the same

in both empirical applications.

8 Appendix

Before we prove Lemma 3.1, we need to introduce and prove three lemmas.

Lemma 8.1. Let N0 (δ) =
{
ϑ :
∥∥ϑ− ϑ0

n

∥∥ ≤ δ}. If Assumptions 1-7 hold true, then for

any ε > 0, there exists δ (ε) > 0 such that

P

(
sup

ϑ∈N0(δ(ε))

∣∣∣H̄n (ϑ)− H̄n

(
ϑ̂
)∣∣∣ < ε

)
→ 1, (25)

and

P

(
sup

ϑ∈N0(δ(ε)),‖r0‖=1

∣∣∣1− r′0H̄
−1/2
n

(
ϑ̂
)

H̄n (ϑ) H̄−1/2
n

(
ϑ̂
)

r0

∣∣∣ < ε

)
→ 1.

where r0 is a q-dimensional vector.

Proof. First, we can show that∥∥∥H̄n (ϑ)− H̄n

(
ϑ̂
)∥∥∥

=
∥∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)
+ H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)
+ Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥

≤
∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)∥∥+
∥∥H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)∥∥+
∥∥∥Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥ . (26)

For any ε, there exists a δ (ε) > 0 such that

P

(
sup

ϑ∈N(ϑ0
n,δ(ε))

∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)∥∥ < ε

3

)
→ 1. (27)

by Assumptions 1-7, we have the uniform convergence of l
(2)
t (ϑ) and ϑ̂−ϑ0

n
p→ 0 (Gallant

and White, 1988). Hence, by Assumption 3 that l
(2)
t (ϑ) is almost surely continuous at

ϑ0
n, we have

P
(∥∥H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)∥∥ < ε

3

)
→ 1, P

(∥∥∥Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥ < ε

3

)
→ 1. (28)
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LetAn (ε) =
{

supϑ∈N(ϑ0
n,δ(ε))

∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)∥∥ < ε
3

}
, Bn (ε) =

{∥∥H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)∥∥ < ε
3

}
,

and Cn (ε) =
{∥∥∥Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥ < ε

3

}
. Then, we have

P

(
sup

ϑ∈N(ϑ0
n,δ(ε))

{∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)∥∥+
∥∥H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)∥∥+
∥∥∥Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥} < ε

)
≥ P (An (ε) ∩Bn (ε) ∩ Cn (ε)) .

From (27) and (28), the probability of the complementary of An (ε) ∩An (ε) ∩An (ε) is

P ((An (ε) ∩Bn (ε) ∩ Cn (ε))c)

= P (An (ε)c ∪Bn (ε)c ∪ Cn (ε)c) ≤ P (An (ε)c) + P (Bn (ε)c) + P (Cn (ε)c)→ 0,

which implies

P (An (ε) ∩Bn (ε) ∩ Cn (ε))→ 1.

Hence, by (26), for any ε > 0

P

(
sup

ϑ∈N(ϑ0
n,δ(ε))

∥∥∥H̄n (ϑ)− H̄n

(
ϑ̂
)∥∥∥ < ε

)

≥ P

(
sup

ϑ∈N(ϑ0
n,δ(ε))

∥∥H̄n (ϑ)− H̄n

(
ϑ0
n

)∥∥+
∥∥H̄n

(
ϑ0
n

)
−Hn

(
ϑ0
n

)∥∥+
∥∥∥Hn

(
ϑ0
n

)
− H̄n

(
ϑ̂
)∥∥∥ < ε

)
→ 1. (29)

Note that

sup
ϑ∈N(ϑ0

n,δ(ε)),‖r0‖=1

∣∣∣1− r′0H̄
−1/2
n

(
ϑ̂
)

H̄n (ϑ) H̄−1/2
n

(
ϑ̂
)

r0

∣∣∣
= sup

ϑ∈N(ϑ0
n,δ(ε)),‖r0‖=1

∣∣∣1 + r′0

(
−H̄−1/2

n

(
ϑ̂
)) (
−H̄n (ϑ)

) (
−H̄−1/2

n

(
ϑ̂
))

r0

∣∣∣
= sup

ϑ∈N(ϑ0
n,δ(ε)),‖r0‖=1

∣∣∣r′0 (−H̄−1/2
n

(
ϑ̂
)) [
−H̄n

(
ϑ̂
)

+ H̄n (ϑ)
] (
−H̄−1/2

n

(
ϑ̂
))

r0

∣∣∣
≤ λn sup

ϑ∈N(ϑ0
n,δ(ε)),‖r0‖=1

∣∣∣r′0 (H̄n (ϑ)− H̄n

(
ϑ̂
))

r0

∣∣∣
≤ λn sup

ϑ∈N(ϑ0
n,δ(ε)),‖r0‖=1

∥∥r′0∥∥∥∥∥H̄n (ϑ)− H̄n

(
ϑ̂
)∥∥∥ ‖r0‖

= λn sup
N(ϑ0

n,δ(ε)),‖r0‖=1

∥∥∥H̄n

(
ϑ̂
)
− H̄n (ϑ)

∥∥∥ ,
where λn is the smallest eigenvalue of −H̄n

(
ϑ̂
)

. Then, from (29), for any ε > 0,

P

(
sup

ϑ∈N(ϑ0
n,δ(ε)),‖r0‖=1

∣∣∣1− r′0H̄
−1/2
n

(
ϑ̂
)

H̄n (ϑ) H̄−1/2
n

(
ϑ̂
)

r0

∣∣∣ < ε

)
→ 1. (30)
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Lemma 8.2. Let X1, ..., Xq be i.i.d. random variables. If E |X1|2k <∞ for k > 0, then

E

[(
max

i∈{1,...,q}
|Xi|

)k]
<
√

2e5/3 q + 1
√
q

[
E |X1|2k

]1/2
.

Proof. Let δ = kρ−1, 0 < ρ ≤ 1/2. From Gribkova (1995), the following inequality

E

[∣∣∣∣ max
i∈{1,...,q}

Xi

∣∣∣∣k
]
< C (ρ)

{
E |X1|δ g−1

(
q

q + 1

)}ρ
,

holds for q ≥ 2ρ + 1, where C (ρ) = 2
√
ρ exp (ρ+ 7/6) and g (u) = u (1− u). By setting

ρ = 0.5, it can be shown that, for q ≥ 2,

E

[∣∣∣∣ max
i∈{1,...,q}

Xi

∣∣∣∣k
]
< C (0.5)

{
E |X1|δ g−1

(
q

q + 1

)}1/2

=
√

2e5/3 q + 1
√
q

[
E |X1|2k

]1/2
.

(31)

For q = 1, by Jensen’s Inequality,

E

[∣∣∣∣ max
i∈{1,...,q}

Xi

∣∣∣∣k
]

= E
[
|X1|k

]
≤
[
E |X1|2k

]1/2
.

Then,

E

[∣∣∣∣ max
i∈{1,...,q}

Xi

∣∣∣∣k
]
<
√

2e5/3 1 + 1√
1

[
E |X1|2k

]1/2
. (32)

From (31) and (32), for k > 0 and q ≥ 1, we get,

E

[∣∣∣∣ max
i∈{1,...,q}

Xi

∣∣∣∣k
]
<
√

2e5/3 q + 1
√
q

[
E |X1|2k

]1/2
. (33)

Let Yi = |Xi|. Then by (33) we have

E

[(
max

i∈{1,...,q}
|Xi|

)k]
= E

[∣∣∣∣ max
i∈{1,...,q}

|Xi|
∣∣∣∣k
]

= E

[∣∣∣∣ max
i∈{1,...,q}

Yi

∣∣∣∣k
]

<
√

2e5/3 q + 1
√
q

[
E |Y1|2k

]1/2
=
√

2e5/3 q + 1
√
q

[
E |X1|2k

]1/2
.

�

Lemma 8.3. Let Σn = − 1
nH̄−1

n (ϑ̂), zn = Σ
−1/2
n

(
ϑ− ϑ̂

)
, p (ϑ|y) and p (y) be the poste-

rior density and the marginal likelihood, respectively. Then, under Assumptions 1-9

lim
n→∞

P

(∫
An

‖zn‖2
∣∣∣∣p (zn|y)− (2π)−q/2 exp

(
−z′nzn

2

)∣∣∣∣ dzn> ε

)
= 0, (34)

where An =
{

zn : ϑ̂+ Σ
1/2
n zn∈Θ

}
is the support of zn.
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Proof. The posterior density of zn can be written as

p (zn|y) =
|Σn|1/2 p (y|ϑ) p (ϑ)

p (y)
=
|Σn|1/2 p

(
y|ϑ̂+ Σ

1/2
n zn

)
p
(
ϑ̂+ Σ

1/2
n zn

)
p (y)

. (35)

Applying the Taylor expansion to log p
(
y|ϑ̂+ Σ

1/2
n zn

)
at ϑ̂, we have

log p
(
y|ϑ̂+ Σ1/2

n zn

)
= log p

(
y|ϑ̂

)
+

1

2
z′nΣ

1/2
n

∂2 log p
(
y|ϑ̃1

)
∂ϑ∂ϑ′

Σ1/2
n zn

= log p
(
y|ϑ̂

)
− 1

2
z′nΣ

1/2
n

−∂2 log p
(
y|ϑ̂

)
∂ϑ∂ϑ′

−
∂2 log p

(
y|ϑ̃1

)
∂ϑ∂ϑ′

+
∂2 log p

(
y|ϑ̂

)
∂ϑ∂ϑ′

Σ1/2
n zn

= log p
(
y|ϑ̂

)
− 1

2
z′nΣ

1/2
n

Σ−1
n −

∂2 log p
(
y|ϑ̃1

)
∂ϑ∂ϑ′

−Σ−1
n

Σ1/2
n zn

= log p
(
y|ϑ̂

)
− 1

2
z′n [Iq −Rn (ϑ,y)] zn, (36)

where

Rn (ϑ,y) = Iq + Σ1/2
n

∂2 log p
(
y|ϑ̃1

)
∂ϑ∂ϑ′

Σ1/2
n ,

with ϑ̃1 lying between ϑ̂+ Σ
1/2
n zn and ϑ̂.

To prove (34), by Chen (1985) and Schervish (2012), we have

p (zn|y)− (2π)−q/2 exp

(
−z′nzn

2

)
= p (y)−1 |Σn|1/2 p

(
y|ϑ̂+ Σ1/2

n zn

)
p
(
ϑ̂+ Σ1/2

n zn

)
− (2π)−q/2 exp

(
−z′nzn

2

)

= p (y)−1 |Σn|1/2 p
(
y|ϑ̂

)
p
(
ϑ̂+ Σ1/2

n zn

) p(y|ϑ̂+ Σ
1/2
n zn

)
p
(
y|ϑ̂n

) − (2π)−q/2 exp

(
−z′nzn

2

)
,

and

p (y)−1 |Σn|1/2 p
(
y|ϑ̂

)
p→ (2π)−q/2

p (ϑ0
n)

.

To verify (34), according to (36), it is sufficient to show

P

∫
An

‖zn‖2
∣∣∣∣∣∣
p
(
ϑ̂+ Σ

1/2
n zn

)
p (ϑ0

n)
exp

[
−z′n[Iq −Rn (ϑ,y)]zn

2

]
− exp

(
−z′nzn

2

)∣∣∣∣∣∣ dzn< ε

→ 1.

(37)
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To ensure (37), by Assumption 9, it is enough to prove

P

(∫
An

‖zn‖2
∣∣∣∣p(ϑ̂+ Σ1/2

n zn

)
exp

[
−z′n[Iq −Rn (ϑ,y)]zn

2

]
− p

(
ϑ0
n

)
exp

(
−z′nzn

2

)∣∣∣∣ dzn< ε

)
→ 1.

(38)

We now prove (38). Since the prior density is continuous at ϑ0
n, given any ε > 0, for

any η ∈ (0, 1) satisfying

ε ≥ η

(
q2 (1 + η)

√
(2k + 1) (2k + 3)

2 (1− η)
q+k+2

2

+ 1

)
,

∃δ1 > 0, so that, for any ϑ ∈ N0 (δ1),∣∣p (ϑ)− p
(
ϑ0
n

)∣∣ =
∣∣∣p(ϑ̂+ Σ1/2

n zn

)
− p

(
ϑ0
n

)∣∣∣ ≤ ηp (ϑ0
n

)
. (39)

Furthermore, by Lemma 8.1, ∀η > 0, ∃δ2 > 0, so that,

lim
n→∞

P

(
sup

ϑ∈N0(δ2),‖r0‖=1

∣∣∣∣1 + r′0Σ
1/2
n

∂2 log p (y|ϑ)

∂ϑ∂ϑ′
Σ1/2
n r0

∣∣∣∣ < η

)
= 1. (40)

Let δ = min {δ1, δ2} and define

A1n =
{

zn : ϑ̂+ Σ1/2
n zn∈ N0 (δ)

}
, A2n =

{
zn : ϑ̂+ Σ1/2

n zn∈ Θ\N0 (δ)
}
,

and

Cn = ‖zn‖2
∣∣∣∣p(ϑ̂+ Σ1/2

n zn

)
exp

[
−1

2
z′n

[
Iq −Rn(ϑ̃1)

]
zn

]
− p

(
ϑ0
n

)
exp

(
−z′nzn

2

)∣∣∣∣ .
(41)

The integration of Cn over the support An can be decomposed into two areas, A1n and

A2n, that is,

J =

∫
An

Cndzn =

∫
A1n

Cndzn +

∫
A2n

Cndzn := J1 + J2.

In the following, we will show

J1 =

∫
A1n

Cndzn
p→ 0, J2 =

∫
A2n

Cndzn
p→ 0.

For J1, note that

Cn ≤ C1n + C2n,

where

C1n = ‖zn‖2
∣∣∣p(ϑ̂+ Σ1/2

n zn

)∣∣∣ ∣∣∣∣exp

[
−1

2
z′n [Iq −Rn (ϑ,y)] zn

]
− exp

(
−z′nzn

2

)∣∣∣∣ ,
C2n = ‖zn‖2

∣∣∣p(ϑ̂+ Σ1/2
n zn

)
− p

(
ϑ0
n

)∣∣∣ exp

(
−z′nzn

2

)
.
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Then, we have

0 ≤ J1 ≤ J11 + J12,

where

J11 =

∫
A1n

C1ndzn, J12 =

∫
A1n

C2ndzn.

Note that since δ ≤ δ1, from (39),
∣∣∣p(ϑ̂+ Σ

1/2
n zn

)∣∣∣ ≤ (1 + η) p
(
ϑ0
n

)
. Hence, we have

J11 ≤ (1 + η) p
(
ϑ0
n

) ∫
A1n

‖zn‖2
∣∣∣∣exp

[
−z′n [Iq −Rn (ϑ,y)] zn

2

]
− exp

(
−z′nzn

2

)∣∣∣∣ dzn.
Let r0 = zn/ ‖zn‖ so that ‖r0‖ = 1. Hence,

r′0Rn

(
ϑ̃1

)
r0 = r′0r0 + r′0Σ

1/2
∂2 log p

(
y|ϑ̃1

)
∂ϑ∂ϑ′

Σ1/2r0 = 1 + r′0Σ
1/2

∂2 log p
(
y|ϑ̃1

)
∂ϑ∂ϑ′

Σ1/2r0,

where ϑ̃1 lies between ϑ and ϑ̂. Since ϑ̂
p→ ϑ0

n, with probability approaching one, ϑ̂ ∈
N0 (δ) and hence ϑ̃1 ∈ N0 (δ).

Following (40), with probability approaching one, when ϑ ∈ N0 (δ), we have

‖zn‖2
∣∣∣∣exp

(
−1

2
z′n [Iq −Rn (ϑ,y)] zn

)
− exp

(
−z′nzn

2

)∣∣∣∣
= ‖zn‖2

∣∣∣∣exp

(
1

2
z′nRn (ϑ,y) zn

)
− 1

∣∣∣∣ exp

(
−z′nzn

2

)
≤ ‖zn‖2 exp

(∣∣∣∣12z′nRn (ϑ,y) zn

∣∣∣∣) ∣∣∣∣12z′nRn (ϑ,y) zn

∣∣∣∣ exp

(
−z′nzn

2

)
= ‖zn‖2 exp

(∣∣∣∣12z′nzn

∣∣∣∣ ∣∣r′0Rn (ϑ,y) r0

∣∣) ∣∣∣∣12z′nzn

∣∣∣∣ ∣∣r′0Rn (ϑ,y) r0

∣∣ exp

(
−z′nzn

2

)
≤ η

2
‖zn‖2 exp

(∣∣∣η
2
z′nzn

∣∣∣) ∣∣z′nzn∣∣ exp

(
−z′nzn

2

)
=

η

2
‖zn‖4 exp

(
−(1− η)z′nzn

2

)
. (42)

Let

J∗11 =

∫
A1n

‖zn‖2
∣∣∣∣exp

[
−1

2
z′n [Iq −Rn (ϑ,y)] zn

]
− exp

(
−z′nzn

2

)∣∣∣∣ dzn.
Following (42), we have

lim
n→∞

P

{
J∗11 ≤

η

2

∫
A1n

‖zn‖4 exp

(
−(1− η) z′nzn

2

)
dzn

}
= 1. (43)

By Lemma 8.2, we have∫
A1n

‖zn‖4 exp

(
−(1− η) z′nzn

2

)
dzn
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≤
∫
Rq
‖zn‖4 exp

(
−1− η

2
z′nzn

)
dzn ≤

∫
Rq

(
q∑
i=1

|zni|2
)2

exp

(
−1− η

2
z′nzn

)
dzn

≤ (2π)q/2 (1− η)−q/2 q4

∫
Rq

(
max

i∈{1,...,q}
|zni|

)4

(2π)−q/2 (1− η)q/2 exp

(
−1− η

2
z′nzn

)
dzn

≤
√

2e5/3

(
q + 1
√
q

)
q4 (2π)q/2 (1− η)−q/2

[∫
R
|t|8
√

1− η
2π

exp

(
−1− η

2
t2
)
dt

]1/2

=
√

2e5/3 (q + 1) qk+ 3
2 (2π)q/2 (1− η)−q/2 (1− η)−2 22

(
Γ
(

9
2

)
√
π

)1/2

= 2
5+q

2 e5/3 (q + 1) q2+ 3
2

√
Γ

(
9

2

)
π

2q−1
4

(
1

1− η

)(4+q)/2

= 2
5+q

2 e5/3 (q + 1) q2+ 3
2π

2q−1
4

√
35

4
Γ

(
5

2

)(
1

1− η

)(4+q)/2

,

where zni is the ith element of zn and the third last equality follows from the fact that

E {|X − µ|ν} = σν2ν/2
Γ
(
ν+1

2

)
√
π

, if X ∼ N(µ, σ2).

Hence,

lim
n→∞

P

(
J11

CJ1

≤ q2η (1 + η)
√

35

2 (1− η)
q+4

2

)
= 1, (44)

where

CJ1 = e5/3p
(
ϑ0
n

)
2
q+3

2 π
2q−1

4 (q + 1) q
3
2

√
Γ

(
5

2

)
.

We now deal with J12. From (39) and Lemma 8.2, we have

J12 ≤
∫
A1n

‖zn‖2
∣∣∣p(ϑ̂+ Σ1/2

n zn

)
− p

(
ϑ0
n

)∣∣∣ exp

(
−z′nzn

2

)
dzn

≤ ηp
(
ϑ0
n

) ∫
A1n

‖zn‖2 exp

(
−z′nzn

2

)
dzn

≤ ηp
(
ϑ0
n

) ∫
Rq
‖zn‖2 exp

(
−z′nzn

2

)
dzn

= ηp
(
ϑ0
n

)
(2π)q/2

∫
Rq
‖zn‖2 (2π)−q/2 exp

(
−z′nzn

2

)
dzn

≤ ηp
(
ϑ0
n

)
(2π)q/2 q2

∫
Rq

(
max
i
|zni|

)2

(2π)−q/2 exp

(
−1− η

2
z′nzn

)
dzn

≤
√

2e5/3

(
q + 1
√
q

)
ηp
(
ϑ0
n

)
(2π)q/2 q2

[∫
R
|t|4 (2π)−1/2 exp

(
− t

2

2

)
dt

]1/2

= η
√

2e5/3p
(
ϑ0
n

)
(2π)q/2 (q + 1) q

3
2 2

(
Γ
(

5
2

)
√
π

)1/2
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= ηe5/3p
(
ϑ0
n

)
2
q+3

2 π
2q−1

4 (q + 1) q
3
2

√
Γ

(
5

2

)
= CJ1η.

Similarly, we have

lim
n→∞

P

{
J12

CJ1

≤ η
}

= 1. (45)

From (44) and (45), we have

lim
n→∞

P

{
J11 + J12

CJ1

≤ η

(
q2 (1 + η)

√
35

2 (1− η)
q+4

2

+ 1

)}
= 1. (46)

By the way how η and ε are chosen, from (46), we have

lim
n→∞

P

{
J1

CJ1

≤ ε
}

= 1. (47)

Since ε is chosen arbitrarily and J1 ≥ 0, we have

J1
p→ 0.

Next we show that

J2
p→ 0. (48)

Using (41), we can write

0 ≤ J2 =

∫
A2n

Cndzn ≤ J21 + J22,

where

J21 =

∫
A2n

‖zn‖2 p
(
ϑ̂+ Σ1/2

n zn

)
exp

[
−1

2
z′n [Iq −Rn (ϑ,y)] zn

]
dzn,

J22 =

∫
A2n

‖zn‖2 p
(
ϑ0
n

)
exp

(
−z′nzn

2

)
dzn.

For J21, by (36), we have

J21 =

∫
A2n

‖zn‖2 p
(
ϑ̂+ Σ1/2

n zn

)
exp

[
log p

(
y|ϑ̂+ Σ1/2

n zn

)
− log p

(
y|ϑ̂

)]
dzn

=

∫
A2n

‖zn‖2 p
(
ϑ̂+ Σ1/2

n zn

)
exp

[
log p

(
y|ϑ̂+ Σ1/2

n zn

)
− log p

(
y|ϑ0

n

)]
dzn

× exp
[
log p

(
y|ϑ0

n

)
− log p

(
y|ϑ̂

)]
. (49)

According to Lemma 3.1 in Li et al. (2017), if zn∈A2n, log p
(
y|ϑ̂+ Σ1/2zn

)
−log p

(
y|ϑ0

n

)
<

−nK (δ) with probability approaching one. Note that exp
[
log p

(
y|ϑ0

n

)
− log p

(
y|ϑ̂

)]
≤

1. Hence, the integral on the right-hand side of (49) is less than

exp [−nK (δ)]

∫
A2n

‖zn‖2 p
(
ϑ̂+ Σ1/2

n zn

)
dzn,
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with probability approaching one. Then, we have

exp [−nK (δ)]

∫
A2n

‖zn‖2 p
(
ϑ̂+ Σ1/2

n zn

)
dzn

= exp [−nK (δ)]

∫
Θ\N0(δ)

∥∥∥Σ−1/2
n

(
ϑ− ϑ̂

)∥∥∥2
p (ϑ) |Σn|−1/2 dϑ

≤ exp [−nK (δ)]

∫
Θ\N0(δ)

∥∥∥Σ−1/2
n

∥∥∥2 ∥∥∥ϑ− ϑ̂∥∥∥2
p (ϑ) |Σn|−1/2 dϑ

≤ exp [−nK (δ)]
∥∥∥Σ−1/2

n

∥∥∥2
|Σn|−1/2

∫ ∥∥∥ϑ− ϑ̂∥∥∥2
p (ϑ) dϑ

≤ exp [−nK (δ)]
∥∥∥Σ−1/2

n

∥∥∥2
|Σn|−1/2

∫ (
‖ϑ‖+

∥∥∥ϑ̂∥∥∥)2
p (ϑ) dϑ

≤ exp [−nK (δ)]
∥∥∥Σ−1/2

n

∥∥∥2
|Σn|−1/2

2∑
s=0

(
2
s

)∥∥∥ϑ̂∥∥∥2−s
∫
‖ϑ‖s p (ϑ) dϑ.

Note that

exp [−nK (δ)]
∥∥∥Σ−1/2

n

∥∥∥2
|Σn|−1/2 = exp [−nK (δ)]n3/2

∥∥∥−H̄−1/2
n

∥∥∥2 ∣∣H̄n

∣∣−1/2 p→ 0.

Furthermore,
∫
‖ϑ‖2 p (ϑ) dϑ <∞ and ϑ̂− ϑ0

n
p→ 0 by Assumptions 1-8. Then, we have

J21
p→ 0. (50)

For J22, we can show that

J22 = p (ϑpn)

∫
A2n

‖zn‖2 exp

(
−z′nzn

2

)
dzn

≤ p
(
ϑ0
n

) ∫
‖zn‖>

√
nλnδ
‖zn‖2 exp

(
−z′nzn

2

)
dzn

≤ (2π)q/2 p
(
ϑ0
n

) ∫
∩qi=1{|zni|>

√
nλn
q+1

δ}
‖zn‖2 (2π)−q/2 exp

(
−z′nzn

2

)
dzn

≤ (2π)q/2 p
(
ϑ0
n

)
q2

∫
∩qi=1{|zni|>

√
nλn
q+1

δ}

(
max

i∈{1,...,q}
|zni|

)2

(2π)−q/2 exp

(
−z′nzn

2

)
dzn

= (2π)q/2 p
(
ϑ0
n

)
q2

∫
Rq

(
max

i∈{1,...,q}
|zni|

)2

1

(
∩qi=1

{
|zni| >

√
nλn
q + 1

δ

})
(2π)−q/2 exp

(
−z′nzn

2

)
dzn

= (2π)q/2 p
(
ϑ0
n

)
q2

∫
Rq

(
max

i∈{1,...,q}
|zni|

)2∏q

i=1
1

(
|zni| >

√
nλn
q + 1

δ

)
(2π)−q/2 exp

(
−z′nzn

2

)
dzn

≤ (2π)q/2 p
(
ϑ0
n

)
q2

[∫
Rq

(
max

i∈{1,...,q}
|zni|

)4

(2π)−q/2 exp

(
−z′nzn

2

)
dzn

]1/2

×


∫
Rq

[∏q

i=1
1

(
|zni| >

√
nλn
q + 1

δ

)]2

(2π)−q/2 exp

(
−z′nzn

2

)
dzn


1/2
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where λn is the smallest eigenvalue of −H̄n

(
ϑ̂
)

.

From (33), we have∫
Rq

(
max

i∈{1,...,q}
|zni|

)4

(2π)−q/2 exp

(
−z′nzn

2

)
dzn <∞. (51)

It can be shown that∫
Rq

[∏q

i=1
1

(
|zni| >

√
nλn
q + 1

δ

)]2

(2π)−q/2 exp

(
−z′nzn

2

)
dzn

=

∫
Rq

∏q

i=1
1

(
|zni| >

√
nλn
q + 1

δ

)
(2π)−q/2 exp

(
−z′nzn

2

)
dzn

=
∏q

i=1

[∫
R

1

(
|zni| >

√
nλn
q + 1

δ

)
(2π)−1/2 exp

(
−z2

ni

2

)
dzni

]

=
∏q

i=1

[∫
|zni|>

√
nλn
q+1

δ
(2π)−1/2 exp

(
−z2

ni

2

)
dzni

]

≤

(√
q + 1

exp
(
−nλnδ2/2(q + 1)

)
√
nλn2πδ

)q
= 2−

q
2 (q + 1)

q
2

(
1√
πδ

)q
(nλn)−

q
2 exp

(
−nλnqδ

2

q + 1

)
p→ 0, (52)

where the last inequality is due to

∫ ∞
x

1√
2π
e−

t2

2 dt ≤
∫ ∞
x

1√
2π

t

x
e−

t2

2 dt =
e−

x2

2

x
√

2π
.

From (51) and (52), we have

J22
p→ 0. (53)

From (50) and (53), we get (48). And from (47) and (48), we have

J
p→ 0.

�

8.1 Proof of Lemma 3.1

To prove E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]
− Σn = op

(
1
n

)
, it is sufficient to show that, for any

ε > 0,

lim
n→∞

P

(∫
An

∥∥znz′n∥∥ ∣∣∣∣p (zn|y)− (2π)−q/2 exp

(
−z′nzn

2

)∣∣∣∣ dzn> ε

)
= 0, (54)

38



where ‖An×n‖ = sup{x:‖x‖=1,x∈Rn} ‖Ax‖ is known as the matrix norm. By (54),∫
An

∥∥znz′n∥∥ ∣∣∣∣p (zn|y)− (2π)−q/2 exp

(
−z′nzn

2

)∣∣∣∣ dzn p→ 0.

Thus,
∣∣∣∫An znz

′
n

[
p (zn|y)− (2π)−q/2 exp

(
−z′nzn

2

)]
dzn

∣∣∣ p→ 0, which implies that∫
An

znz
′
np (zn|y) dzn −

∫
An

znz
′
n (2π)−q/2 exp

(
−z′nzn

2

)
dzn

p→ 0. (55)

From (35) we get∫
An

znz
′
np (zn|y) dzn =

∫
An

znz
′
np (y)−1 |Σn|1/2 p

(
y|ϑ̂+Σ1/2

n zn

)
p
(
ϑ̂+Σ1/2

n zn

)
dzn

=

∫
Σ−1/2
n

(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
Σ−1/2
n p (y)−1 |Σn|1/2 p (y|ϑ) p (ϑ) |Σn|−1/2 dϑ

=

∫
Σ−1/2
n

(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
Σ−1/2
n p (ϑ|y) dϑ

= Σ−1/2
n E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]

Σ−1/2
n , (56)

by the changing-of-variable technique. From (55) and (56), by Assumptions 1-9, we have

Σ−1/2
n E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]

Σ−1/2
n − Iq

p→ 0q×q.

Hence, we have

E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]
−Σn = E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]
+

∂2 log p
(
y|ϑ̂

)
∂ϑ∂ϑ′

−1

= op
(
n−1

)
.

Since ‖znz′n‖ ≤ ‖zn‖
2, Equation (34) holds so that (54) also holds. Similarly, it can

be derived that
√
n
(
ϑ̄−ϑ̂

)
p→ 0. This completes the proof.

8.2 Proof of Theorem 3.1

According to Lemma 3.1, we have

E
[(
ϑ− ϑ̂

)
|y
]

= op

(
n−

1
2

)
,

V
(
ϑ̂
)

= E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]

= − 1

n
H̄
−1
n (ϑ̂) + op

(
n−1

)
= Op(n

−1).

Hence, based on Lemma 3.1, we have

V
(
ϑ̄
)

= E
[
(ϑ− ϑ̄)(ϑ− ϑ̄)′|y

]
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= E

[(
ϑ− ϑ̂+ ϑ̂− ϑ̄

)(
ϑ− ϑ̂+ ϑ̂− ϑ̄

)′
|y
]

= E

[(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
|y
]

+ 2E

[(
ϑ̂− ϑ̄

)(
ϑ− ϑ̂

)′
|y
]

+ E

[(
ϑ̂− ϑ̄

)(
ϑ̂− ϑ̄

)′
|y
]

= V
(
ϑ̂
)
− E

[(
ϑ̂− ϑ̄

)(
ϑ̂− ϑ̄

)′
|y
]

= V
(
ϑ̂
)

+ op(n
−1/2)op(n

−1/2)

= − 1

n
H̄−1
n (ϑ̂) + op

(
n−1

)
= Op(n

−1). (57)

According to the classical asymptotic theory for MLE (White, 1996), θ̂−θ0 = Op(n
−1/2)

under H0. Thus,

(θ̂ − θ0)′
[
Vθθ(ϑ̄)

]−1
(θ̂ − θ0) = (θ̂ − θ0)′

[
−n−1H̄−1

n,θθ(ϑ̂n) + op(n
−1)
]−1

(θ̂ − θ0)

=
√
n(θ̂ − θ0)′

[
−H̄−1

n,θθ(ϑ̂) + op(1)
]−1√

n(θ̂ − θ0)

=
√
n(θ̂n − θ0)′

[
−H̄−1

n,θθ(ϑ̂)
]−1√

n(θ̂ − θ0) + op(1)
√
n(θ̂ − θ0)′

√
n(θ̂ − θ0)

=
√
n(θ̂ − θ0)′

[
−H̄−1

n,θθ(ϑ̂)
]−1√

n(θ̂ − θ0) + op(1)
√
nOp(n

−1/2)
√
nOp(n

−1/2)

=
√
n(θ̂ − θ0)′

[
−H̄−1

n,θθ(ϑ̂)
]−1√

n(θ̂ − θ0) + op(1)

= Wald + op(1). (58)

Under H0, we can further prove that

T (y,θ0) = qθ +
(
θ̄ − θ̂ + θ̂ − θ0

)′ [
Vθθ

(
ϑ̄
)]−1

(
θ̄ − θ̂ + θ̂ − θ0

)
= qθ +

(
θ̂ − θ0

)′ [
Vθθ

(
ϑ̄
)]−1

(
θ̂ − θ0

)
+2
(
θ̄ − θ̂

)′ [
Vθθ(ϑ̄)

]−1
(
θ̂ − θ0

)
+
(
θ̄ − θ̂

)′ [
Vθθ(ϑ̄)

]−1
(
θ̄ − θ̂

)
= qθ +

(
θ̂ − θ0

)′ [
Vθθ(ϑ̄)

]−1
(
θ̂ − θ0

)
+ 2op

(
1√
n

)
Op (n)Op

(
1√
n

)
+op

(
1√
n

)
Op (n) op

(
1√
n

)
= qθ +

(
θ̂ − θ0

)′ [
Vθθ

(
ϑ̄
)]−1

(
θ̂ − θ0

)
+ op(1). (59)

Thus, under H0, from (58) and (59), we have

T (y,θ0)− qθ = Wald + op(1).

Since T (y,θ0)− qθ = W, we have under H0,

T (y,θ0)− qθ = W = Wald + op(1)
d→ χ2(q).
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8.3 Proof of Theorem 3.3

Note that

T (y, r) =

∫
∆L (H0,ϑ) p (ϑ|y) dϑ

=

∫
(R (θ)− r)′

[
∂R
(
θ
)

∂θ′
Vθθ(ϑ̄)

∂R
(
θ
)

∂θ

]−1

(R (θ)− r) p (ϑ|y) dϑ

= tr


∫

[R (θ)− r] [R (θ)− r]′ p (ϑ|y) dϑ

[
∂R
(
θ
)

∂θ′
Vθθ(ϑ̄)

∂R
(
θ
)

∂θ

]−1


= tr

E [n (R (θ)− r) (R (θ)− r)′
∣∣y, H1

] [∂R (θ)
∂θ′

nVθθ(ϑ̄)
∂R
(
θ
)

∂θ

]−1
 .

We have

E
[
n (R (θ)− r) (R (θ)− r)′

∣∣y, H1

]
= E

[
n
(
R (θ)−R

(
θ̂
)

+R
(
θ̂
)
− r
)(

R (θ)−R
(
θ̂
)

+R
(
θ̂
)
− r
)′∣∣∣∣y, H1

]
= E

[
n
(
R (θ)−R

(
θ̂
))(

R (θ)−R
(
θ̂
))′∣∣∣∣y, H1

]
+2E

[
n
(
R (θ)−R

(
θ̂
))(

R
(
θ̂
)
− r

)′∣∣∣∣y, H1

]
+n
(
R
(
θ̂
)
− r
)(

R
(
θ̂
)
− r
)′
. (60)

Apply the Taylor expansion to R (θ), we have

√
n
(
R (θ)−R

(
θ̂
))

=
∂R
(
θ̂
)

∂θ

√
n
(
θ − θ̂

)
+

[√
n
(
θ − θ̂

)′
⊗ Im

] ∂R2
(
θ̃
)

∂θ∂θ′

(
θ − θ̂

)
,

where θ̃ lies between θ and θ̂. Note that
∂2R(θ)
∂θ∂θ′

is continuous and Θ is compact. Thus,

we have ∥∥∥∥∥∥
∂2R

(
θ̃
)

∂θ∂θ′

∥∥∥∥∥∥ ≤M ′, (61)

for some 0 < M ′ <∞. Furthermore, by the BvM theorem,
√
n
(
ϑ− ϑ̂

)
= Op(1). Hence,

from (61), we can further derive that

[√
n
(
θ − θ̂

)′
⊗ Im

] ∂R2
(
θ̃
)

∂θ∂θ′

(
θ−θ̂

)
= Op(1)O(1)

1√
n

= op (1) . (62)
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By Lemma 3.1, we have
∫ √

n
(
θ − θ̂

)
p (ϑ|y) dϑ =

√
n(θ̄ − θ̂) = op (1). By the Delta

method and the consistency of MLE, we have
√
n
(
R
(
θ̂
)
−R (θ0)

)
= Op (1). Conse-

quently, the second term of (60) is

E

[
n
(
R (θ)−R

(
θ̂
))(

R
(
θ̂
)
− r
)′∣∣∣∣y, H1

]
=

∫ √
n
[
R (θ)−R

(
θ̂
)]
p (ϑ|y) dϑ×

√
n
(
R
(
θ̂
)
−R (θ0)

)′
=

∫ √
n
[
R (θ)−R

(
θ̂
)]
p (ϑ|y) dϑ×

√
n
(
R
(
θ̂
)
−R (θ0)

)′
=

∂R
(
θ̂
)

∂θ

∫ √
n
(
θ − θ̂

)
p (ϑ|y) dϑ

√
n
(
R
(
θ̂
)
−R (θ0)

)
+ op (1)

= Op(1)op (1)Op(1) + op (1) = op(1).

For the first term of (60), after integrating out the nuisance parameters, by the Taylor

expansion, we have,

E

[
n
(
R (θ)−R

(
θ̂
))(

R (θ)−R
(
θ̂
))′∣∣∣∣y, H1

]
=

∫
Θθ

n
(
R (θ)−R

(
θ̂
))(

R (θ)−R
(
θ̂
))′

p (θ|y) dθ

=
∂R
(
θ̂n

)
∂θ′

∫
Θθ

n
(
θ − θ̂

)(
θ − θ̂

)′
p (θ|y) dθ

∂R
(
θ̂
)

∂θ
+ op (1) .

By Lemma 3.1, we have∫
Θθ

(
θ − θ̂

)(
θ − θ̂

)′
p (θ|y) dθ = − 1

n
H̄−1
n,θθ

(
ϑ̂
)

+ op
(
n−1

)
.

Therefore,

E

[
n
(
R (θ)−R

(
θ̂
))(

R (θ)−R
(
θ̂
))′∣∣∣∣y, H1

]
=
∂R
(
θ̂
)

∂θ′

[
−H̄−1

n,θθ

(
ϑ̂
)] ∂R(θ̂)

∂θ
+op (1) .

Since Vθθ
(
ϑ̄
)

= − 1
nH̄−1

n,θθ

(
ϑ̂
)

+ op
(
n−1

)
, θ = θ̂ + op

(
n−1/2

)
= θ0 +Op

(
n−1/2

)
, by (62),

we have

tr

E
[
n
(
R (θ)−R

(
θ̂
))(

R (θ)−R
(
θ̂
))′∣∣∣∣y, H1

][
∂R
(
θ
)

∂θ′
nVθθ

(
ϑ̄
) ∂R (θ)

∂θ

]−1


=
∂R
(
θ̂
)

∂θ′

[
−H̄−1

n,θθ

(
ϑ̂
)] ∂R(θ̂)

∂θ

[
∂R
(
θ
)

∂θ′
nVθθ

(
ϑ̄
) ∂R (θ)

∂θ

]−1

+ op (1)

=
∂R
(
θ̂
)

∂θ′

[
−H̄−1

n,θθ

(
ϑ̂
)] ∂R(θ̂)

∂θ

[
∂R
(
θ
)

∂θ′
nVθθ

(
ϑ̄
) ∂R (θ)

∂θ

]−1

+ op (1)
p→ m.
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Finally, the third term of (60) can be expressed as

tr

n(R(θ̂)− r
)(

R
(
θ̂
)
− r
)′ [∂R (θ)

∂θ′
nVθθ

(
ϑ̄
) ∂R (θ)

∂θ

]−1
+ op (1)

=
[
R
(
θ̂
)
− r
]′∂R

(
θ̂
)

∂θ′

[
−H̄−1

n,θθ

(
ϑ̂
)] ∂R(θ̂)

∂θ


−1 [

R
(
θ̂
)
− r
]

+ op (1)

= Wald + op (1) .

Therefore, under H0, we have

T (y, r)−m = Wald + op (1)
d→ χ2 (m) .

8.4 Proof of Theorem 3.4

Let
{
ϑ[j], j = 1, · · · , J

}
be effective random draws from p (ϑ|y). And let

V̄2 =
1

J

J∑
j=1

(
θ[j] − v̄1

)(
θ[j] − v̄1

)′
=

1

J

J∑
j=1

V
[j]
2 = V̄θθ

(
¯̄ϑ
)
.

Hence, T̂ (y,θ0) in (13) can be rewritten as

T̂ (y,θ0) = tr

[(
V̄θθ

(
¯̄ϑ
))−1

V̄θ(θ0)

]

= tr

[V̄θθ

(
¯̄ϑ
)]−1

 1

J

J∑
j=1

(
θ[j] − θ0

)(
θ[j] − θ0

)
= tr

{[
V̄θθ

(
¯̄ϑ
)]−1 [

V̄θθ

(
¯̄ϑ
)

+ (v̄1 − θ0) (v̄1 − θ0)′
]}

= qθ + tr
[
(v̄1 − θ0) (v̄1 − θ0)′ V̄−1

2

]
,

which is a consistent estimator of T (y,θ0).

Following the notations of Magnus and Neudecker (2002) about matrix derivatives, let

v
(j)
2 = vech

(
V

[j]
2

)
, v

[j]
1 = θ[j], v̄2 = vech

(
V̄2

)
, v̄ =

(
v̄′1, v̄

′
2

)′
.

Note that the dimension of v̄2 is q∗ × 1 where q∗ = qθ (qθ + 1) /2. Hence, we have

∂T̂ (y,θ0)

∂v̄
=vec (Iqθ)

′
{[(

(v̄1 − θ0)′ V̄−1
2

)′ ⊗ Iqθ

] ∂v̄1

∂v̄
+
[
V̄−1

2 ⊗ (v̄1 − θ0)
] ∂v̄′1
∂v̄

−
[
Iqθ ⊗ (v̄1 − θ0) (v̄1 − θ0)′

] (
V̄−1

2 ⊗ V̄−1
2

) ∂vec (V̄2

)
∂v̄

}

43



=vec (Iqθ)
′
[((

(v̄1 − θ0)′ V̄−1
2

)′ ⊗ Iqθ + V̄−1
2 ⊗ (v̄1 − θ0)

) ∂v̄1

∂v̄

−
[
Iqθ ⊗ (v̄1 − θ0) (v̄1 − θ0)′

] (
V̄−1

2 ⊗ V̄−1
2

) ∂V̄2

∂v̄

]
,

where

∂v̄1

∂v̄
=
∂v̄′1
∂v̄

= [Iqθ , 0qθ×q∗ ] ,
∂V̄2

∂v̄
=

0q2
θ×qθ

,

(
∂vec

(
V̄2

)
∂v̄2

)
q2
θ×q∗

 .
By the Delta method,

V ar
(
T̂ (y,θ0)

)
=
∂T̂ (y,θ0)

∂v̄
V ar (v̄)

(
∂T̂ (y,θ0)

∂v̄

)′
.

Similarly, the expression of the NSE for T̂ (y, r) can be obtained as in (12). By the

Delta method,

V ar
(
T̂ (y, r)

)
=
∂T̂ (y, r)

∂v̄
V ar (v̄)

∂T̂ (y, r)

∂v̄′
.

8.5 Proof of Theorem 4.1

Under H0, we have

TS (y,θ0) = qθ +
(
θ̄ − θ̂ + θ̂ − θ0

)′
n
[
Σ̄S,θθ

(
ϑ̄
)]−1

(
θ̄ − θ̂ + θ̂ − θ0

)
= qθ +

(
θ̂ − θ0

)′
n
[
Σ̄S,θθ

(
ϑ̄
)]−1

(
θ̂ − θ0

)
+2
(
θ̄ − θ̂

)′
n
[
Σ̄S,θθ

(
ϑ̄
)]−1

(
θ̂ − θ0

)
+
(
θ̄ − θ̂

)′
n
[
Σ̄S,θθ

(
ϑ̄
)]−1

(
θ̄ − θ̂

)
= qθ +

(
θ̂ − θ0

)′
n
[
Σ̄S,θθ

(
ϑ̄
)]−1

(
θ̂ − θ0

)
+2
(
θ̄ − θ̂

)′
n
[
Σ̄S,θθ

(
ϑ̄
)]−1

(
θ̂ − θ0

)
+ op

(
1√
n

)
Op (n) op

(
1√
n

)
= qθ +

(
θ̂ − θ0

)′
n
[
Σ̄S,θθ

(
ϑ̄
)]−1

(
θ̂ − θ0

)
+ op(1),

since (
θ̄ − θ̂

)′
n
[
Σ̄S,θθ

(
ϑ̄
)]−1 (

θ0
n − θ0

)
= op (1) .

Therefore, under H0, we have

TS (y,θ0)− qθ = WS = WaldS + op(1)
d→ χ2(q).

This completes the proof. Theorem 4.2 can be proved similarly.
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