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Factor Models: Kalman Filters

Learning Objectives

1. Understand dynamic factor models using Kalman filters.
2. Estimation of the parameters by maximum likelihood.
3. Applications to

(a) Ex ante real interest rates
(b) Stochastic volatility
(c) Term structure of interest rates

Background Reading

1. Previous lecture notes on factor models in finance.

EViews Computer Files

1. kalman__exante.wfl
2. stochastic_ volatility.wfl
3. yields us.wfl
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Introduction

@ The discussion so far has concentrated on specifying and estimating
factor models based on contemporaneous relationships amongst the
observed variables.

@ In the case of the principal components estimator the aim is to
decompose the covariance or correlation matrix of the N observable
variables in terms of a set of K latent factors

S1,t152,t0° " " SK t

@ However, an important feature of many financial time series is that
they exhibit dynamic patterns as the following example demonstrates.
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Introduction

Example (Term Structure of Interest Rates)

The following table gives the autocorrelations for up to 10 lags on the
1-month, 1-year and 5-year U.S. Treasury yields.

Autocorr. Lagl Lag2 Lag3 Lag4 Lagh Lagb6 Lag7 Lag8
1-month 0.977 0.948 0.921 0.887 0.852 0.819 0.778 0.731
1-year 0.980 0.950 0.917 0.883 0.849 0.815 0.779 0.739
5-year 0.936 0.855 0.786 0.727 0.670 0.630 0.600 0.576

Source: yields_us.wfl

The dynamics of the three series are very similar with the autocorrelations
slowly decaying at an exponential rate. This suggests that a single factor
could potentially capture the autocorrelation in all three yields.
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Introduction

As the previous example suggests that the dynamics of the interest
rates can be explained by a common factor it is necessary to expand
the factor structure as adopted in the principal components
framework and replace the assumption that the factors are
independent over time with a more dynamic specification.

In the case of N variables and K = 1 factor, a potential specification
is

Yie = &+ B;st+ uj;
St = ¢st1+ vy,
where uj; ~ N(0,02) and v; ~ N(0,1) are independent disturbance
terms and
{ar, a0, an; By By -+ ByiO1, 02, ON; P},
are the unknown parameters.

Not only are the contemporaneous relationships captured by the
factor s;, but the dynamic relationships are as well.
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Introduction

@ An important special case is where there is no autocorrelation
=0
The factor s; is now an Jid disturbance term given by
St = v

which is the specification underlying the principal components
framework.

@ The expansion of the factor model to include a dynamic factor means
that an alternative approach to the principal components estimator is
needed.

@ The approach presented here is based on the Kalman filter.
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Introduction

Historical Background: Rudolf Kalman (1930 -)

Rudy K&lman was born in Hungary but educated in the U.S. where he
spent most of his life. Is credited with inventing the filter commonly
known as the Kalman filter, although others also contributed to the
theory: often the filter is called the Kalman-Bucy filter.

The Kalman filter is applied in many areas, including econometrics,
Bayesian learning and even the Apollo space program!
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The Kalman Filter

The Univariate Model

@ To understand the Kalman filter a simple model is specified consisting
of a single observable variable (y; ) and a single latent factor (s; )

yi = PBst+u;
St = ¢si1+ v

where u; ~ N (0,02) and v; ~ N (0, 1) are independent disturbances,
and {,3,47,(72} are unknown parameters.

@ This representation of the model is also known as a state-space
system with the first equation representing the signal equation (the
equation of the observable variable y;) and the second representing
the state equation (the equation of the unobservable variable s;).
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The Kalman Filter

The Univariate Model

@ Define the conditional mean of y; based on information at time t — 1

Yijt—-1 = Ei 1 [yt]

with variance
2
Vt|t71 =E [(}/t _)/t|t71) ]
@ As s; is unknown the aim of the Kalman filter is to estimate the factor
st using the available information on the observable variable y; .

@ The best estimator of the factor s; based on information at time
t — 1, is the conditional mean

Stjt—1 = Ei 1 [st]

with variance
Pir1=E [(St - 5t|t—1)2]
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The Kalman Filter

The Univariate Model

@ But when information on y; becomes available then a better
estimator of s; is given by the updated conditional mean

Stlt = Et [st]

with variance
2
'Dt\t =E [(St - 5t|t) ]
@ This sequence of updating the estimate of s; as more information on
v: becomes available is an important feature of the Kalman filter.

@ To understand the recursive nature of the algorithm it is assumed
that the parameters

pood

are known, or at least represent some starting values. Issues of
estimation are discussed below.
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The Kalman Filter

The Univariate Model

@ For the 1-factor model the Kalman filter equations are summarized as

Prediction: Stlt-1 = PS¢ 1jt-1
Pt\tfl = ¢2Pt71|t71 +1

Observation:  y;; 1 = Bsy:1
2
Vi1 =B Py +0°

- ﬁPt t—1
Updating: St|t = Sejt—1 T Vil()/t - }/t|t—1)
5|t—21
:B Pt t—1
Pyt = Pyje—1 — Vet
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The Kalman Filter

The Univariate Model

@ At t =1, starting values are needed for the two prediction equations

s1j0. P1jo-

@ A typical choice of the mean of the factor is
110 =0

although other values can be used. A typical choice of the variance of
the factor is

Pio=1/(1-¢°)
which is the variance of the unconditional distribution of an AR(1)
process.

@ For given values of the parameters, the filter is computed for
t=12,---T.
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The Kalman Filter
The Univariate Model

Example (Numerical Example of the Filter)

Suppose that there are T = 2 observations on the variable y; given by

y: = {2,5} . Assume that the parameters are p = 0.5, ¢ = 0.1, ¢ = 0.8,
and the initial estimate of the factor is chosen as s;)g = 0.1. The first step
(t=1)is

Prediction: s10 = 0.1
1

(initialization) P, = ; =2.7778

¢?  1-08

Observation:  y;0 = fsyp = 0.5x 0.1 =10.05
Vi = B*P1jo + 0% = 0.5 X 2.7778 + 0.1> = 0.7045

v
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The Kalman Filter
The Univariate Model

Example (Numerical Example of the Filter continued)

. BP1jo
Updating: s;; = s;0+ Vio (n —Y1|0)
0.5 x 2.7778
=014 ———— x(2—-0.05) =3.9444
*11 T oq0es <! )
P = Prp Pl
11 1/0 V1‘02 :
0.5° x 2.7778
Py =27778 — —— = 0.
1 8 0.7045 0.03%
Intuitively, the initial estimate of 0.1 for the factor at t = 1, results in an
underestimate of the observed variable, 0.05 < 2. By updating the
estimate of the factor to 3.9444 this yields a better estimate of y;.
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The Kalman Filter
The Univariate Model

Example (Numerical Example of the Filter continued)

The second step (t = 2) is

Prediction: 52‘1 = (PSI|1
so = 0.8 x 3.9444 = 3.1555

P2|1 = 4)2P1|1 +1
Pyjp = 0.8% x 0.0396 + 1 = 1.0253

Observation: y,; = fBsy|;
yo1 = 0.5 % 3.1555 = 1.5778

Vo = ,32P2|1 +0°
Vo1 = 0.5% x 1.0253 +0.12 = 0.2663
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The Kalman Filter
The Univariate Model

Example (Numerical Example of the Filter continued)

The second step (t = 2) is
. BPap
Updating: s;p = sp); + V2‘1 (Y2 = y2p1)
.5 % 1.0253
=3.1556 + ———— 5—1.5778) = 9.7435
212 T o263 < )
Pojp = P PP
22 = Popn V2|12 2
0.5° x 1.0253
Py, = 1.0253 — ~> X =093 _ () g3gy
)2 = 1.0253 — 0.03840 |
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The Kalman Filter

The Multivariate Model

@ Consider a model where N = 3 variables and K = 2 factors

Yie = &1 +,51Yl51,t+,31'252,t+ ui ¢
Y = &2 + ,BQYlsl,t + ,32'252,t + up ¢
3 = a3+ ,33,151,1“ + 133,252,t + u3 ¢
St = $p1S1e-1+ Vi
2,6 = ProS2t-1+ Vo

or in matrix notation

Vit X1 51,1 51,2 [

Yo ay |+ | Po1 Pan
3.t a3 53,1 53,2

BEICEEANE
.t 0 ¢,, ,t-1 Vot

uit
S1,t
+ | Ut

us ¢
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The Kalman Filter

The Multivariate Model

@ For an extension the previous example, consider the case of N
variables {y1,¢, y2.t -+, yn¢} and K factors {s; ¢, 52+ ,sk,t}. The
multivariate version of the state-space system is

v: = A+ Bs;+ u;

st = Psi 1+ v

where the disturbances are distributed as
u ~ N(O,R)
vi ~ N(0,Q)

where E [u:u;] = R and E [v;v]] = Q are respectively the covariances
of u; and v;.

@ The dimensions of the parameter matrices are as follows: A is
(Nx1),Bis(NxK), ®is (KxK), Ris (Nx N)and Q is
(K x K).
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The Kalman Filter

The Multivariate Model

@ The recursions of the multivariate Kalman filter are

Prediction: Stjt—1 = Ps;1)t-1
Pt|t—1 = cDPt—l\t—ch/ +Q

Observation:  y,; 1 = Bs;;_;
Vt|t—1 = BPt|1:—1BI +R

Updating: St|t = St|t—1 T 'Dt\t—lB/ Vitl_l(}/t - )’t\t—l)
Pt|t = 'Dt|t71 - Pt\tle/Vt_‘,_},lBPﬂtfl
@ The formulae for the multivariate version of the Kalman filter contain
the univariate formulae with N = K = 1.
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The Kalman Filter

The Multivariate Model

@ To start the recursion two cases are considered.

1. Stationary Latent Factors
The initial values s;|g and Py|g for the multivariate K factor model are
given by

51|0 = 0
VeC(Pllo) = (IK><K - (q)®q)))7lvec(0)

2. Nonstationary Latent Factors
In the case the starting values for the variance would be undefined if
the previous approach is adopted. To circumvent this problem, starting
values are chosen as

Siop. = ¢
Pio = wvec(Q)
where 1p represents the best guess of starting value for the conditional

mean and w is a positive constant whereby larger values of w
correspond to the distribution of 51|y being more diffuse.
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The Kalman Filter

Identification

@ The state-space model is under-identified unless some restrictions are
imposed.

o The difficulty is seen by noting that the volatility in the factor is
controlled by @, but the impact of the factor on y; is given by B.

@ There is an infinite number of combinations of @ and B that will be
consistent with the volatility of y; ie in the case of N = K =1, then

var (y:) = /Szvar (st) + var (u:)

Thus it is necessary to fix one of these quantities.

- A common approach is to set
Q=1

- Another approach is to place restrictions on B and allow @ to be
estimated.
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Maximum Likelihood Estimator

@ The discussion so far has concentrated on extracting the factor s;,
assuming given values for the population parameters

0= {A B,® R, Q}

In general, however, it is necessary to estimate these parameters.

@ If the factors are known, then the parameters are estimated by simply
regressing y; on s; and regressing s; on s;_1. But as s; is
unobservable (latent), an alternative estimation strategy is needed.

@ The natural estimator of the parameters is the maximum likelihood
estimator which constructs the log-likelihood function based on

Ye ~ N(Yt|t—1v Vt\t—l)

As the likelihood is a nonlinear function of the parameters an iterative
algorithm is required to obtain the maximum likelihood estimates.
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Maximum Likelihood Estimator

@ For asample of t =1,2,---, T observations on y;, the log-likelihood
function for the t* observation using the multivariate normal
distribution is given by

N 1
logl; = ) log(277) — 5 log ! Vt‘t,l‘

1

=5 e = Yeje1) Ve (Ve = yejea)

@ For the entire sample, the log-likelihood function is

1T
logl = — log L
g thzl g Lt

@ This expression is a nonlinear function of the parameters
6 ={A B, PR Q}

via yy;—1 and Vi ,_; from the Kalman filter.
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Maximum Likelihood Estimator

Using EViews

o Consider estimating a one-factor model of the spread between the
one-year yield and the one-month yield

YIELD_Y1;— YIELD_M1, = a+Bs;+u, u;~ N(0,0%)
st = ¢se1+ve ve~N(0,1)
with starting values {a(g) = 0.1, B = 0.1, (T%O) =0.1,¢) = 0.9}.
@ The EViews commands are:
Object / New Object... / SSpace / OK
In the window type in the following commands

@signal yield yl-yield ml = ¢(1) + c(2)*s + [var = ¢(3)]
Ostate s = c(4)*s(-1) + [var = 1]
©@param ¢(1) 0.1 ¢(2) 0.1 ¢(3) 0.1 c¢(4) 0.9
Then click
Estimate / OK
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Factor Extraction

@ Once the algorithm has converged estimates of the latent factor s; at
each point in time are available.

@ In fact, three estimates can be calculated depending on the form of
the conditioning information set used

One-step-ahead : syp1 = Eio1]st]
Filtered : See = Et[st]
Smoothed © o syr = Erls]

- The first two estimates, s, 1 and sy, are a by-product of the
Kalman filter algorithm which are automatically available once the
algorithm has converged.

- The third estimator St|T is effectively obtained by running the Kalman
filter algorithm in the reverse direction (from T to t — 1) once the
maximum likelihood estimates are obtained.
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Factor Extraction

Using EViews

1. The one-step-ahead estimate of the factor sy, = Er—1 [st]

View / State Views / Graph State Series...
/ One-step-ahead: Predicted States / OK

2. The filtered estimate of the factor s;; = E; [s;]

View / State Views / Graph State Series...
/ Filtered: State Estimates / OK

3. The smoothed estimate of the factor s,|7 = Et [s¢]

View / State Views / Graph State Series...
/ Smoothed: State Estimates / OK
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Estimating the Ex Ante Real Interest Rate

@ There exist two broad types of real interest rates
(i) Ex post real interest rates (observed).
(i) Ex ante real interest rates (unobserved).
@ The ex post real interest rate is observed (as given in the following

Figure which gives the U.S. ex post 1-month real interest rate), but
the ex ante real interest rate is not.

T T T T T T T
1975 1980 1985 1990 1995 2000 2005

Source: kalman_exante.wfl
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Estimating the Ex Ante Real Interest Rate

@ But it is the ex ante real interest rate that is important in finance and
economics as it provides a measure of the real return on an asset
between the present and the future.

How can the ex ante interest rate be measured?

@ There are two strategies:
(i) Proxy
Use the ex post real interest rate as a proxy for the ex ante interest
rate.
(ii) Latent Factor
Treat the ex ante real interest rate as unknown using a latent factor
model.
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Estimating the Ex Ante Real Interest Rate

@ Formally the ex ante real interest rate is defined as
rf = it - 77.';,9

where j; is the nominal interest rate and 7§ is the expected inflation
rate defined as
7§ = log pry1 — log p:
e Whilst i; is observed, 7§ is not.

@ So it is the expected inflation rate that makes the ex ante real
interest rate unobservable.
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Estimating the Ex Ante Real Interest Rate

o Consider the ex post real interest rate
re =lg — Tt
which is observed where 77; = log p; — log p:—1 is the actual inflation

rate. Expanding this expression to allow for expected inflation, 7§,
gives

re = iy — T; + 7T — 7Ty
= it — 7-[? + uz
o Defining s; = iy — 71§ — « as the ex ante real interest rate (adjusted

by «) and u; = 71§ — 71; as the inflation expectations error, this
expression is written as a latent factor model as

ry = & + S + Uy, UtNN(O,U'%,)

@ The key advantage of this formulation of the model is that it avoids
the measurement error from using realized inflation and not expected
inflation.
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Estimating the Ex Ante Real Interest Rate

@ To estimate the ex ante real interest rate, monthly data starting in
January 1971 and ending in December 2009 on the following U.S.
series are used

EURO 1MTH : 1-month Eurodollar rate, (%, p.a.)
CPI . Consumer price index

@ The annualized percentage inflation rate is computed as
INF = 1200 x DLOG (CPI)
and the ex post real interest rate is computed as
R = EURO_1MTH — INF

This is the ex post real interest rate given in the previous Figure.
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Estimating the Ex Ante Real Interest Rate

@ Some summary statistics are given in the Figure below.

60
M Series: R

Sample 1971M01 2009M12

50 Observations 467

w0 Mean 2.173661
Median 2.258335
Maximum 25.28643

20 Minimum  -10.85508
Std. Dev.  4.333232
Skewness  0.376376

27 Kurtosis 4.984465

10 Jarque-Bera 8765467
Probability ~ 0.000000

o-FH T T — f - =
-10 5 ) 5 10 15 20 25
Source: kalman _exante.wfl

@ Here the average real ex post interest rate is 2.174% p.a. over the
sample period.
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Estimating the Ex Ante Real Interest Rate

@ The autocorrelation of the real ex post interest rate if given in the
following figure.

Date: 05/05/14 Time: 14:20
Sample: 1971M01 2009M12
Included observations: 467

Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob

| ! 1 0551 0.551 14261 0.000
| ! 2 0319 0.022 190.57 0.000
! ! 3 0211 0.039 21166 0.000
! ! 4 0206 0.101 23172 0.000
! ! 5 0177 0.023 246.53 0.000
! " 6 0152 0029 257.52 0.000
! ! 7 0193 0.115 27534 0.000
| ! 8 0.170 -0.001 289.07 0.000
| ! 9 0211 0116 310.30 0.000
| ! 0 0276 0.144 34688 0.000

Source: kalman_exante.wfl

@ The correlogram shows strong evidence of first order autocorrelation.
This result is important as identification of the parameters of the
model require that there is significant autocorrelation.
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Estimating the Ex Ante Real Interest Rate

@ The factor model of the ex ante real interest rate is specified as

re = o+ s+ ug, ug ~ N (0,07) [Signal equation]
St = ¢Pse—1 + v, vi ~ N (0, (73) [State equation]

where the unknown parameters are 6 = {«, ¢, 02,02 } .
@ The starting values for the parameters are chosen as follows:

- « is based on the sample mean of r¢, equal to 2.174.

- ¢ is based on the first autocorrelation coefficient of r¢, equal to 0.551.

- 0, and o, are both set equal to half of the standard deviation of ry,
equal to 4.333/2.
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Estimating the Ex Ante Real Interest Rate

@ The EViews window to estimate the model is given below.

[ViewlProcIObjectl [PrintINameIFreezel [SpeclEstimatelStatsIForecast]
@signal r = c(1) + s + [var = c(3)"2]

@state s = c(2)*s(-1) + [var = c(4)'2]
@param c(1) 2.174 c(2) 0.551 c(3) 2.167 c(4) 2.167

Source: kalman_ exante.wfl

where C (1) corresponds to «, C (2) corresponds to ¢, C (3)
corresponds to ¢, C (4) corresponds to 0.

@ Note that it is the standard deviations ¢, and ¢, that are being
estimated and not the variance. This choice of parameterization has
the advantage that the variance is guaranteed to be positive. If either
of the estimates of ¢, and o, happen to be negative, it is appropriate
to just change the sign and report a positive estimate.
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Estimating the Ex Ante Real Interest Rate

@ The parameter estimates are contained in the following window.

Sspace: EXANTE

Method: Maximum likelihood (Marquardt)
Date: 05/14/14 Time: 06:41

Sample: 1971M01 2009M12

Included observations: 468

Valid observations: 467

Convergence achieved after 18 iterations

Coefficient ~ Std Error  z-Statistic Prab.

C(1) 2173917 0.383756 5664847 0.0000
C(2) 0583044  0.046197 1262082 0.0000
C(3) 1.037080 0571235 1.815504 0.0694
C(4) 3.410909  0.231904 14.70830  0.0000

Final State  Root MSE  z-Statistic Prab.

s 0.065966 3.450736 0.019067 09848
Log likelihood -1262523  Akaike info criterion 5424083
Parameters 4 Schwarz criterion 5459598
Diffuse priors 0 Hannan-Quinn criter. 5438059

Source: kalman_ exante.wfl

@ The estimated model is
rr = 2174475 + U;
s: = 058351+ v
where 0, = 1.037, 7, = 3.411.
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Estimating the Ex Ante Real Interest Rate

@ As it is the ex ante estimate of the real interest rate that is required,
the one-step ahead factor s, 1, is the appropriate quantity as it
provides an estimate of the interest rate in the future at time t, based
on information at time t — 1, without using current or future
information.

@ The Eviews commands to extract the estimate of the one-step-ahead
estimate of the factor s, ;1 = Er—1[s¢] , are

Proc / Make State Series...

Choose One-step-ahead: Predicted states, then for Series names
choose
S _HAT
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Estimating the Ex Ante Real Interest Rate

@ As the factor is defined as
St =iy — T —
the ex ante real interest rate is given by rearranging this expression as
=i — 7 =S+«

o Given that s,;_; is the apropriate conditional mean estimate of the
factor, from the definition of the factor an estimate of the ex ante
real interest rate is given by

= §t|t—1 +u
@ This quantity is computed using Genr as

RE_HAT = S_HAT + 2.174
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Estimating the Ex Ante Real Interest Rate

@ The estimate of the ex ante real interest rate (77) and the ex post
real interest rate (r;) are compared in the following Figure.

T T T T T T T
1975 1980 1985 1990 1995 2000 2005

Source: kalman _exante.wfl

@ The estimate of the ex ante real interest rate 7§ follows r; closely but
exhibits less volatility.

Jun YU () ECONG671 Factor Models: Kalman Filters March 2, 2015 39 / 68



Estimating the Ex Ante Real Interest Rate

@ Alternatively, as the ex ante real interest rate is a function of the
expected inflation rate, then the latter can be estimated as

=i =T
@ Using the Genr command, 7§ is computed and plotted in the
following Figure together with the actual inflation rate 7t;.

20
— INFE_HAT
— INF

T T T T T T T
1975 1980 1985 1990 1995 2000 2005

Source: kalman_exante.wfl
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A Stochastic Volatility Model of the Exchange Rate

@ Volatility is an important input into financial decision-making as it
represents the risk of an asset.

o Consider the case where the asset is the UK/US exchange rate. The
(demeaned) return on the UK/US exchange rate (r;) is given in the
following Figure from January 2nd 1979 to February 13th 2014.

.06

-.06

1980 1985 1990 1995 2000 2005 2010

Source: stochastic_ volatility.wfl
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ochastic Volatility Model of the Exchange Rate

@ The aim is to extract a measure of the volatility of the exchange rate.
@ One approach is to assume constant volatility. The following Figure
yields an estimate of 0.005238.

6,000

m Series: R
Sample 1/02/1979 2/13/2014
5000 1 Observations 12826
Mean -5.89e-19
400 Median 1.60e-05
Maximum 0.046453
3000 - Minimum -0.039584

Std. Dev. 0.005238
Skewness  -0.029699
2000 4 Kurtosis 9.845047

1000 4 Jarque-Bera  25041.80
’ —h_’h Probability ~ 0.000000
4

T T T § j T T
-00375  -00250 -00125 00000 00125 00250 00375

Source: stochastic_ volatility.wfl

@ Another approach is to assume time-varying volatility by specifying a
GARCH model where the volatility is assumed to be a function of
lagged (squared) shocks.
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A Stochastic Volatility Model of the Exchange Rate

@ Another approach is the stochastic volatility model given by

re = OtW; [Mean equation]
log(c?) = a+¢log(c? |)+ v [Variance equation]

where r; is the (demeaned) exchange rate return, o represents the
exchange rate volatility, and w; and v; are disturbance terms with the
properties w; ~ N (0,1) and v¢ ~ N (0,02).

@ An important feature of this model is the additional stochastic term
given by v, in the variance equation. For this reason the model is
called the stochastic volatility model.

@ Estimating the stochastic volatility model is in general difficult arising
from the presence of the additional disturbance term v; as that now
makes the volatility 02 stochastic as well.

@ One solution is to express the model as a latent factor model and use
the Kalman filter to estimate the model by maximum likelihood
methods.
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A Stochastic Volatility Model of the Exchange Rate

@ The strategy consists of squaring both sides of the mean equation as
2 = 2w?
Now taking natural logarithms gives
log r? = log (0’%) + log (Wf)

@ Redefine the variables as

ye = logr
st = log (0’%)
ug = log (W,_?) +1.27

where the term 1.27 in the equation for u; appears as it can be shown
that E [log (w?)] = —1.27, so E [u] = 0.
@ Also, it can be shown that the variance of log (wtz) and hence uy, is

2

E[uf] = % = 4.9348
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A Stochastic Volatility Model of the Exchange Rate

@ The stochastic volatility model is rewritten as a latent factor model as

yi = —127T+ s+ u; [Mean equation]
St = &+¢Psi_1+ v [Variance equation]

where y; = log r?, the natural logarithm of the squared exchange rate.
@ The variable y; is constructed using Genr in EViews.

e To generate some starting values the following AR(1) model is
estimated

Yt = ,31 + ﬁz}/t—l + wy

where wy ~ N (O,(Ta,) .
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A Stochastic Volatility Model of the Exchange Rate

@ The parameter estimates are given in the following window.

Dependent Variable: Y

Method: Least Squares

Date: 05/04/14 Time: 13:51

Sample (adjusted): 1/04/1979 2/13/2014
Included observations: 12825 after adjustments

Variable Coefficient  Std. Error  t-Statistic Prob.

C -10.87204 0.134430  -80.87485 0.0000

Y(-1) 0.273568 0.008494 32.20855 0.0000

R-squared 0.074846 Mean dependent var -14.96627

Adjusted R-squared 0.074774 S.D. dependent var 5.149445

S.E. of regression 4953184  Akaike info criterion 6.038094

Sum squared resid 3145999  Schwarz criterion 6.039258

Log likelihood -38717.28  Hannan-Quinn criter. 6.038483

F-statistic 1037.391  Durbin-Watson stat 1783787
Prob(F-statistic) 0.000000

Source: stochastic_ volatility.wfl
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A Stochastic Volatility Model of the Exchange Rate

@ The EViews window to estimate the model is given below.

[View]PrchObject] [Prl’nt[Name[Freezel [Spec[Estimate[statleorecast]
@signal y =-1.27+ 5 + [var=4.9348]

(@state s = c(1)+c(2)"s(-1)+[var=c(3)*2]

param c(1) -10.8720 c(2) 0.2736 c(3) 4.9532

Source: stochastic_ volatility.wfl

where
C (1) corresponds to & with the starting value based on Bl = —10.872

C (2) corresponds to ¢ with the starting value Bz = 0.2736
C (3) corresponds to ¢, with starting value based on 7, = 4.9532
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A Stochastic Volatility Model of the Exchange Rate

@ The parameter estimates are contained in the following window.

Sspace: STVOL

Method: Maximum likelihood (Marquardt)
Date: 05/04/14 Time: 14:23

Sample: 1/02/1979 2/13/2014

Included observations: 12827

Valid observations: 12826

Convergence achieved after 9 iterations

Coefficient ~ Std. Error  z-Statistic Prob.

C(1) -9.885800 0179148 -56.18237  0.0000
C(2) 0277877  0.011185  24.84375  0.0000
C(3) 4475022  0.080811 5652466  0.0000

Final State  RootMSE  z-Statistic Prab.

S -12.86922 4510047  -2.853457 0.0043
Log likelihood -38801.18  Akaike info criterion 6.050862
Parameters 3 Schwarz criterion 6.052607
Diffuse priors 0  Hannan-Quinn criter. B8.051445

Source: stochastic_ volatility.wfl

@ The estimated model is

yi = —127475 +1; [Mean equation]
S = —9.8858+ 0.27795;_1 + V¢ [Variance equation]

where 77, = 4.4759.
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A Stochastic Volatility Model of the Exchange Rate

o As sy = log (02) , an estimate of the volatility is

- St
O't:exp(2>

o If the strategy is to derive an historical estimate of the volatility the
best estimates of the factor at each point in time is based on all of
the sample information, namely §t|7, which is the smoothed estimate.
Hence the volatility estimate is based on

0r = exp (gtT)
.= 2t
2
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A Stochastic Volatility Model of the Exchange Rate

@ The volatility estimate is given in the following figure.

.05

.03

.02 4

.01

.00

1980 1985 1990 1995 2000 2005 2010

Source: stochastic_ volatility.wfl

@ The increase in volatility during times of financial crises is clear where
the estimates of volatility reach 0.04.
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A Stochastic Volatility Model of the Exchange Rate

@ Descriptive statistics on the volatility series are given below.

7,000
Series: SIG_HAT
6,000 4[] Sample 1/02/1979 2/13/2014
: Observations 12827
5.000 1 Mean 0.003846
Median 0.002580
4,000 Maximum 0.043691
Minimum 4.56e-05
3,000 4 Std. Dev. 0.004388
Skew ness 1779310
2,000 Kurtosis 8.778992
Jarque-Bera  24617.43
1,000 4 Probability 0.000000
o T T T T
0.00 0.01 0.02 0.03 0.04
Source: stochastic_ volatility.wfl

@ An estimate of the mean of the volatility series is 0.0038 which is a
little it smaller than the constant volatility estimate of 0.005238.
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A Dynamic One-Factor Model of the Term Structure

@ Factor models are widely used in finance to model the term structure
of interest rates. An important example is Cox, Ingersoll and Ross
(1985) who derive a 1-factor model of the term structure of interest
rates where the unoserved factor is the instantaneous interest rate.

@ Consider the following one-factor model of the term structure of
interest rates

iy = DC/—FIB,-St—FU,',t, i=1,2,---,9
St = ¢si1t+ v
ue ~ N(0,07), v ~N(01)

@ There are 28 parameters. The starting parameters are chosen as

{a;,B;,07} = 0.1
¢ = 09
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A Dynamic One-Factor Model of the Term Structure

@ The EViews window to estimate the model is given below.

.Viewlproclobjectl [PrinthameIFreezel [SpeclEstimatelStatsIForecastl
@signal yield_m1 = c(1) + c(10y*s + [var = c(19)]
@signal yield_m3 = c(2) + c{11)*s + [var = c(20)]
@signal yield_m& = c(3) + c(12)*s + [var = c(21)]

@signal yield_y1 = c(4) + c(13)*s + [var = c(22)]
@signal yield_y2 = c(5) + c(14)*s + [var = c(23)]
@signal yield_y3 = c(6) + c(15)*s + [var = c(24)]

@signal yield_vy5 = c(7) + c(16)*s + [var = c(25)]
@signal yield_y7 = c(8) + c(17)*s + [var = c(28)]
@signal yield_y10 = c(9) + c(18)*s + [var = c(27)]

@state s = c(28)"s(-1) + [var = 1]

@param c(1) 0.1 ¢(2) 0.1 ¢(3) 0.1 c(4) 0.1 c(5) 0.1 c(8) 0.1 c(7) 0.1 c(8) 0.1 c(9) 0.1 c(10)
0.1c(11)0.1¢(12) 0.1 ¢(13) 0.1 c(14) 0.1 c(15) 0.1 c(16) 0.1 c(17) 0.1 c(18) 0.1 c(19) 01
c(20) 0.1 c(21) 0.1 c(22) 0.1 c(23) 0.1 c(24) 0.1 c(25) 0.1 c(26) 0.1 c(27) 0.1 c(28) 0.9

Source: yields _us.wfl
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namic One-Factor Model of the Term Stru

@ The parameter estimates are contained in the following window.

Sspace: KALMAN

Method: Maximum likelihood (Marguardt)
Date: 04/29/14 Time: 18:06

Sample: 200107 2010M09

Included observations: 111

Convergence achieved after 622 iterations

Coefficient  Std. Error  z-Statistic Prob.

1) -2.363971 13.09975 -0.180459  0.8568
2) -2.358248 13.27509 -0.177645  0.8590
3) -2.254918 13.42593  -0.167952  0.8666
4) -1.867111 1260488 -0.147333  0.8829
8) -0.966897 1096083 -0.088214  0.9297
6) -0.180924 9.449453  -0.019146  0.9847
7) 1.181755 8332502  0.141825  0.8872
8) 2.150556 5078758  0.423441 0.6720

9) 2833001 4382718 0669220 05034

0168607  0.015277 11.03670  0.0000
11) 0171208  0.010041 17.05155  0.0000
12) 0172858  0.009675 17.86644  0.0000
13) 0162808 0016945 9607756  0.0000

0139998 0056018 2499155 00124
0120449 0.080705 1492448 01356
0087738 0157020 0558769 05763
0064572 0165674 0389754 06967
18) 0046940 0078354 0599074 05491

QOO0 0000000
EEEEGEEE

=

(continued on the next slide)
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namic One-Factor Model of the Term

C(19) 0039689 0014213 2793184  0.0052
C(20) 0.013433  0.008783 1.980373  0.0477
C(21) 0.002336  0.002098 1113649  0.2654
C(22) 0.012359  0.007456 1657509  0.0974
C(23) 0.089894  0.113855  0.790937 04290
C(24) 0.149941 0267096 0561376 04745
C(25) 0210447 0437776 0480718 06307
C(26) 0231194 0418256 0552756  0.5804
C(27) 0204069 0262756 0776648 04374
C(28) 0999234 0007354 1358760  0.0000

Final State Root MSE  z-Statistic Prob

S 13.95279 1.025722 13.60290  0.0000
Log likelihood -122.7663  Akaike info criterion 2.716509
Parameters 28 Schwarz criterion 3.399994
Diffuse priors 0 Hannan-Quinn criter. 2993779

Source: yields _us.wfl
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A Dynamic One-Factor Model of the Term Structure

@ The log-likelihood value is
int (8) = —121.2888

@ The estimated loadings (B), given by parameters 10 to 18, show that
the latent factor has its greatest impact on the shorter maturities
(less than one year) which progressively diminishes in importance
across the maturity spectrum.

o The estimates of the idiosyncratic parameter (0?), given by
parameters 19 to 27, are smallest for the 6-month yield suggesting
that this yield follows the factor more closely than the other yields.

@ As the intercept estimates (), given by parameters 1 to 9, increase
over the maturity spectrum, this suggests an upward yield curve on
average.

@ The parameter estimate of ¢ is 0.999, suggesting that the latent
factor is nonstationary.
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A Dynamic One-Factor Model of the Term Structure

o The one-step ahead estimates of the latent factor s,,_1 = E;—1 [st],
are given in the following Figure.

[—s
e +2 RMSE

20

40

-60

T T T T T T T T T
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Source: yields _us.wfl
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A Dynamic One-Factor Model of the Term Structure

@ The confidence interval for the initial estimate of the factor is very
wide representing a lack of information at this point in time. The
confidence interval quickly narrows showing that the estimates for
later points in time are more precise.

@ The factor is relatively flat in the first part of the period, then rises
reaching a peak around by the end of 2006. As the loadings of the
factor are relatively larger on the smaller maturities than the longer
maturities, this increase in the factor is associated with a narrowing of
the spreads.

@ From about mid-2007 the factor falls resulting in a widening of
spreads, which eventually stabilize from 2009 onwards.
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A Dynamic One-Factor Model of the Term Structure

@ The prediction properties of the model are obtained by computing
Yitlt-1 = @+ Bi5t|t71
@ The EViews commands are
View / Actual,Predicted,Residual Graph / OK

@ This figure further highlights how the estimated factor follows the
shorter maturities very closely, while the longer maturities tend to
exhibit additional dynamics suggesting the need for a second factor.
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Source: yields us.wfl
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Extensions

Dynamics

@ The state-space model represents a flexible framework which can
easily accommodate a number of extensions.

@ Two important extensions are:

1. Dynamics
Have focussed on a AR(1) representations of s; with the idiosyncratic

disturbance u; being white noise. These restrictions can e relaxed.

2. Exogenous and Predetermined Variables
Can allow for exogenous and predetermined variables in the signal and

state equations.
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Extensions

Dynamics

An AR(2) Model of s;
@ Suppose that the latent factor is an AR(2) process

St = ¢1St-1+ PrSt—2 + vt
@ This equation can be written as a vector AR(1) model
St _ ¢ P St—1 + Vi
St—1 1 0 St—2 0

@ The Kalman filter proceeds as before except now there are two

factors, s; and s;_1, with
I
o= %Y

@ To accommodate the additional lag the signal equation becomes

yt:[ﬁo][st} +

St—1
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Maximum Likelihood Estimator

Using EViews

o Consider estimating a one-factor model of the spread between the
one-year yield and the one-month yield

YIELD Y1, - YIELD M1, = a+ s +u, ue~N(00?)
St = 4)151‘*1 +(P25t72 +vi vi~N (0, 1)

@ The EViews window to estimate the model is given below.

IV\'EWIPmcIOb}edI [Pn’ntINameIFreezel [SpecIEstimateIStatsIFurecast]
@signal yield_y1-yield_m1 = c(1) + c(2)*s1 + [var = c¢(3)]

@state s1 = c(4)*s1(-1) +c(5)*s2(-1) + [var = 1]
@state 52 = s1(-1)

@param c(1) 0.1 ¢(2) 0.1 c¢(3) 0.1 ¢(4) 0.9 c(5) 0.1

Source: yields_us.wfl

Note that the second factor s2, represents the lag of the first factor
s1, and thus does not have a disturbance term.
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Extensions

Dynamics

An AR(p) Model of s;
o Consider an AR(p) model of s;

St = 4)151‘71 + (P25t72 + T + (Ppstfp + V¢

@ The state equation is written as

St b1 P 0 Py P St—1 Vi
St—1 1 0 - 0 0 St—2 0
St—2 =0 1 -- 0 0 st3 |+ | O
St—p+1 o o .- 1 0 St—p 0
@ In this case, the model is viewed as having p factors
{St. St—1," " 15t7p+1}
although it is really just the first element of this set of factors that is

of interest.

Jun YU () ECONG671 Factor Models: Kalman Filters March 2, 2015 64 / 68



Extensions

Dynamics

Idiosyncratic Dynamics
o Consider the model

_yi,t = ﬁ,’st—{—o—iui,l’v i:1,2,"' 14
St = ¢1St-1+t P52+ vt
upp = Oiljr—1+ Wt

where uj ¢ ~ N(0,/) and w;; ~ N(0O, ).
@ The state equation is now augmented to accommodate the dynamics
in the idiosyncratic terms.

St ¢; ¢, 0 0 0 O St—1 1z
St—1 1 0 0 0 0 O St—2 0
ui.e o 0 0 (51 0 0 0 uie—1 + Wit
up ¢ 0O 0 0 4, 0 O Uy t—1 W ¢
us ¢ 0 0 0 0 (53 0 us¢—1 W3 ¢
L Uart | L 0 0 0 0 0 (54 1 L ust—1 | L W4t |
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Extensions

Dynamics
@ In this case, the model is viewed as having six factors

{Stv St—1, U1,t, U2,t, U3 ¢, U4,t}

@ In this scenario the idiosyncratic terms are redefined as factors.

@ As there are now no disturbances terms, then the covariance matrix of
the disturbances E [u:u;] = R, reduces to

R=0
@ The full model in this alternative parameterization is

y& = Bs
St = @St_]_ + vt Ve ~ N(O, l)

where s; represents the vector of six factors.
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Extensions

Exogenous and Predetermined Variables

@ The state-space model is easily extended to include M exogenous or
lagged dependent variables, x;. These variables can be included in
one of two different ways.

@ The first approach is to include exogenous or predetermined variables
in the signal equation

vyt = Bfy + I'x; + u,

where T is (N x M) and x; is (M x 1).

@ This class of model is called a factor VAR model (F-VAR), where
xt = yr—1 and I' is now a (N x N) diagonal matrix.

@ The second approach is to include the exogenous or predetermined
variables in the state equation

st = ®sp 1+ I'xp + uy,

where T' is now a (K x M) matrix of parameters.
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End of Lecture

YL
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