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Factor Models: Kalman Filters

Learning Objectives

1. Understand dynamic factor models using Kalman filters.
2. Estimation of the parameters by maximum likelihood.
3. Applications to

(a) Ex ante real interest rates
(b) Stochastic volatility
(c) Term structure of interest rates

Background Reading

1. Previous lecture notes on factor models in finance.

EViews Computer Files

1. kalman_exante.wf1
2. stochastic_volatility.wf1
3. yields_us.wf1
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Introduction

The discussion so far has concentrated on specifying and estimating
factor models based on contemporaneous relationships amongst the
observed variables.

In the case of the principal components estimator the aim is to
decompose the covariance or correlation matrix of the N observable
variables in terms of a set of K latent factors

s1,t , s2,t , · · · sK ,t

However, an important feature of many financial time series is that
they exhibit dynamic patterns as the following example demonstrates.
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Introduction

Example (Term Structure of Interest Rates)
The following table gives the autocorrelations for up to 10 lags on the
1-month, 1-year and 5-year U.S. Treasury yields.

Autocorr. Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8
1-month 0.977 0.948 0.921 0.887 0.852 0.819 0.778 0.731
1-year 0.980 0.950 0.917 0.883 0.849 0.815 0.779 0.739
5-year 0.936 0.855 0.786 0.727 0.670 0.630 0.600 0.576
Source: yields_us.wf1

The dynamics of the three series are very similar with the autocorrelations
slowly decaying at an exponential rate. This suggests that a single factor
could potentially capture the autocorrelation in all three yields.
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Introduction

As the previous example suggests that the dynamics of the interest
rates can be explained by a common factor it is necessary to expand
the factor structure as adopted in the principal components
framework and replace the assumption that the factors are
independent over time with a more dynamic specification.
In the case of N variables and K = 1 factor, a potential specification
is

yi ,t = αi + βi st + ui ,t
st = φst−1 + vt ,

where ui ,t ∼ N(0, σ2i ) and vt ∼ N(0, 1) are independent disturbance
terms and

{α1, α2, · · · , αN ; β1, β2, · · · , βN ; σ1, σ2, · · · , σN ; φ} ,
are the unknown parameters.
Not only are the contemporaneous relationships captured by the
factor st , but the dynamic relationships are as well.
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Introduction

An important special case is where there is no autocorrelation

φ = 0

The factor st is now an iid disturbance term given by

st = vt

which is the specification underlying the principal components
framework.

The expansion of the factor model to include a dynamic factor means
that an alternative approach to the principal components estimator is
needed.

The approach presented here is based on the Kalman filter.
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Introduction

Historical Background: Rudolf Kalman (1930 -)
Rudy Kálmán was born in Hungary but educated in the U.S. where he
spent most of his life. Is credited with inventing the filter commonly
known as the Kalman filter, although others also contributed to the
theory: often the filter is called the Kalman-Bucy filter.

The Kalman filter is applied in many areas, including econometrics,
Bayesian learning and even the Apollo space program!
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The Kalman Filter
The Univariate Model

To understand the Kalman filter a simple model is specified consisting
of a single observable variable (yt ) and a single latent factor (st )

yt = βst + ut
st = φst−1 + vt

where ut ∼ N
(
0, σ2

)
and vt ∼ N (0, 1) are independent disturbances,

and
{

β, φ, σ2
}
are unknown parameters.

This representation of the model is also known as a state-space
system with the first equation representing the signal equation (the
equation of the observable variable yt) and the second representing
the state equation (the equation of the unobservable variable st).
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The Kalman Filter
The Univariate Model

Define the conditional mean of yt based on information at time t − 1

y t |t−1 = Et−1 [yt ]

with variance
V t |t−1 = E

[
(yt − y t |t−1)2

]
As st is unknown the aim of the Kalman filter is to estimate the factor
st using the available information on the observable variable yt .

The best estimator of the factor st based on information at time
t − 1, is the conditional mean

s t |t−1 = Et−1 [st ]

with variance
P t |t−1 = E

[
(st − s t |t−1)2

]
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The Kalman Filter
The Univariate Model

But when information on yt becomes available then a better
estimator of st is given by the updated conditional mean

s t |t = Et [st ]

with variance
P t |t = E

[(
st − s t |t

)2]
This sequence of updating the estimate of st as more information on
yt becomes available is an important feature of the Kalman filter.

To understand the recursive nature of the algorithm it is assumed
that the parameters

β, σ, φ

are known, or at least represent some starting values. Issues of
estimation are discussed below.
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The Kalman Filter
The Univariate Model

For the 1-factor model the Kalman filter equations are summarized as

Prediction: s t |t−1 = φs t−1|t−1
P t |t−1 = φ2P t−1|t−1 + 1

Observation: y t |t−1 = βs t |t−1
V t |t−1 = β2P t |t−1 + σ2

Updating: s t |t = s t |t−1 +
βP t |t−1
V t |t−1

(yt − y t |t−1)

P t |t = P t |t−1 −
β2P2t |t−1
V t |t−1
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The Kalman Filter
The Univariate Model

At t = 1, starting values are needed for the two prediction equations

s 1|0,P 1|0.

A typical choice of the mean of the factor is

s 1|0 = 0

although other values can be used. A typical choice of the variance of
the factor is

P 1|0 = 1/
(
1− φ2

)
which is the variance of the unconditional distribution of an AR(1)
process.

For given values of the parameters, the filter is computed for
t = 1, 2, · · ·T .
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The Kalman Filter
The Univariate Model

Example (Numerical Example of the Filter)
Suppose that there are T = 2 observations on the variable yt given by
yt = {2, 5} . Assume that the parameters are β = 0.5, σ = 0.1, φ = 0.8,
and the initial estimate of the factor is chosen as s 1|0 = 0.1. The first step
(t = 1) is

Prediction: s 1|0 = 0.1

(initialization) P 1|0 =
1

1− φ2
=

1
1− 0.82 = 2.7778

Observation: y1|0 = βs 1|0 = 0.5× 0.1 = 0.05
V1|0 = β2P 1|0 + σ2 = 0.52 × 2.7778+ 0.12 = 0.7045
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The Kalman Filter
The Univariate Model

Example (Numerical Example of the Filter continued)

Updating: s 1|1 = s 1|0 +
βP 1|0
V 1|0

(y1 − y 1|0)

s 1|1 = 0.1+
0.5× 2.7778
0.7045

× (2− 0.05) = 3.9444

P 1|1 = P 1|0 −
β2P21|0
V 1|0

P 1|1 = 2.7778−
0.52 × 2.77782

0.7045
= 0.0396

Intuitively, the initial estimate of 0.1 for the factor at t = 1, results in an
underestimate of the observed variable, 0.05 < 2. By updating the
estimate of the factor to 3.9444 this yields a better estimate of y1.
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The Kalman Filter
The Univariate Model

Example (Numerical Example of the Filter continued)
The second step (t = 2) is

Prediction: s 2|1 = φs 1|1
s 2|1 = 0.8× 3.9444 = 3.1555

P 2|1 = φ2P 1|1 + 1
P 2|1 = 0.8

2 × 0.0396+ 1 = 1.0253

Observation: y 2|1 = βs 2|1
y 2|1 = 0.5× 3.1555 = 1.5778

V 2|1 = β2P 2|1 + σ2

V 2|1 = 0.5
2 × 1.0253+ 0.12 = 0.2663
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The Kalman Filter
The Univariate Model

Example (Numerical Example of the Filter continued)
The second step (t = 2) is

Updating: s 2|2 = s 2|1 +
βP 2|1
V 2|1

(y2 − y 2|1)

s 2|2 = 3.1555+
0.5× 1.0253
0.2663

× (5− 1.5778) = 9.7435

P 2|2 = P 2|1 −
β2P22|1
V 2|1

P 2|2 = 1.0253−
0.52 × 1.02532

0.2663
= 0.03840
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The Kalman Filter
The Multivariate Model

Consider a model where N = 3 variables and K = 2 factors

y1,t = α1 + β1,1s1,t + β1,2s2,t + u1,t
y2,t = α2 + β2,1s1,t + β2,2s2,t + u2,t
y3,t = α3 + β3,1s1,t + β3,2s2,t + u3,t

s1,t = φ1,1s1,t−1 + v1,t
s2,t = φ2,2s2,t−1 + v2,t

or in matrix notation y1,ty2,t
y3,t

 =

 α1
α2
α3

+
 β1,1 β1,2

β2,1 β2,2
β3,1 β3,2

 [ s1,t
s2,t

]
+

 u1,tu2,t
u3,t


[
s1,t
s2,t

]
=

[
φ1,1 0
0 φ2,2

] [
s1,t−1
s2,t−1

]
+

[
v1,t
v2,t

]
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The Kalman Filter
The Multivariate Model

For an extension the previous example, consider the case of N
variables {y1,t , y2,t · · · , yN ,t} and K factors {s1,t , s2,t · · · , sK ,t}. The
multivariate version of the state-space system is

yt = A+ Bst + ut
st = Φst−1 + vt

where the disturbances are distributed as

ut ∼ N(0,R)

vt ∼ N(0,Q)

where E [utu′t ] = R and E [vtv
′
t ] = Q are respectively the covariances

of ut and vt .
The dimensions of the parameter matrices are as follows: A is
(N × 1), B is (N ×K ), Φ is (K ×K ), R is (N ×N) and Q is
(K ×K ).
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The Kalman Filter
The Multivariate Model

The recursions of the multivariate Kalman filter are

Prediction: s t |t−1 = Φs t−1|t−1
Pt |t−1 = ΦP t−1|t−1Φ′ +Q

Observation: y t |t−1 = Bst |t−1
V t |t−1 = BP t |t−1B

′ + R

Updating: st |t = st |t−1 + P t |t−1B
′V−1t |t−1(yt − y t |t−1)

Pt |t = Pt |t−1 − Pt |t−1B ′V−1t |t−1BPt |t−1

The formulae for the multivariate version of the Kalman filter contain
the univariate formulae with N = K = 1.
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The Kalman Filter
The Multivariate Model

To start the recursion two cases are considered.
1. Stationary Latent Factors
The initial values s1|0 and P1|0 for the multivariate K factor model are
given by

s1|0 = 0

vec(P1|0) = (IK×K − (Φ⊗Φ))−1vec(Q)

2. Nonstationary Latent Factors
In the case the starting values for the variance would be undefined if
the previous approach is adopted. To circumvent this problem, starting
values are chosen as

s1|0 = ψ

P1|0 = ω vec(Q)

where ψ represents the best guess of starting value for the conditional
mean and ω is a positive constant whereby larger values of ω
correspond to the distribution of s1|0 being more diffuse.
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The Kalman Filter
Identification

The state-space model is under-identified unless some restrictions are
imposed.

The diffi culty is seen by noting that the volatility in the factor is
controlled by Q, but the impact of the factor on yt is given by B.

There is an infinite number of combinations of Q and B that will be
consistent with the volatility of yt ie in the case of N = K = 1, then

var (yt ) = β2var (st ) + var (ut )

Thus it is necessary to fix one of these quantities.

- A common approach is to set

Q = I

- Another approach is to place restrictions on B and allow Q to be
estimated.
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Maximum Likelihood Estimator

The discussion so far has concentrated on extracting the factor st ,
assuming given values for the population parameters

θ = {A,B,Φ,R,Q}

In general, however, it is necessary to estimate these parameters.

If the factors are known, then the parameters are estimated by simply
regressing yt on st and regressing st on st−1. But as st is
unobservable (latent), an alternative estimation strategy is needed.

The natural estimator of the parameters is the maximum likelihood
estimator which constructs the log-likelihood function based on

yt ∼ N(y t |t−1,V t |t−1)

As the likelihood is a nonlinear function of the parameters an iterative
algorithm is required to obtain the maximum likelihood estimates.
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Maximum Likelihood Estimator

For a sample of t = 1, 2, · · · ,T observations on yt , the log-likelihood
function for the tth observation using the multivariate normal
distribution is given by

log Lt = −N
2
log(2π)− 1

2
log
∣∣V t |t−1∣∣

−1
2
(yt − y t |t−1)′V−1t |t−1(yt − y t |t−1)

For the entire sample, the log-likelihood function is

log L =
1
T

T

∑
t=1
log Lt

This expression is a nonlinear function of the parameters

θ = {A,B,Φ,R,Q}

via y t |t−1 and V t |t−1 from the Kalman filter.
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Maximum Likelihood Estimator

Using EViews
Consider estimating a one-factor model of the spread between the
one-year yield and the one-month yield

YIELD_Y 1t − YIELD_M1t = α+ βst + ut , ut ∼ N
(
0, σ2

)
st = φst−1 + vt vt ∼ N (0, 1)

with starting values {α(0) = 0.1, β(0) = 0.1, σ2(0) = 0.1, φ(0) = 0.9}.
The EViews commands are:

Object / New Object... / SSpace / OK

In the window type in the following commands

@signal yield_y1-yield_m1 = c(1) + c(2)*s + [var = c(3)]
@state s = c(4)*s(-1) + [var = 1]
@param c(1) 0.1 c(2) 0.1 c(3) 0.1 c(4) 0.9

Then click
Estimate / OK
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Factor Extraction

Once the algorithm has converged estimates of the latent factor st at
each point in time are available.

In fact, three estimates can be calculated depending on the form of
the conditioning information set used

One-step-ahead : s t |t−1 = Et−1 [st ]
Filtered : s t |t = Et [st ]
Smoothed : s t |T = ET [st ]

- The first two estimates, s t |t−1 and s t |t , are a by-product of the
Kalman filter algorithm which are automatically available once the
algorithm has converged.

- The third estimator s t |T , is effectively obtained by running the Kalman
filter algorithm in the reverse direction (from T to t − 1) once the
maximum likelihood estimates are obtained.
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Factor Extraction

Using EViews

1. The one-step-ahead estimate of the factor s t |t−1 = Et−1 [st ]

View / State Views / Graph State Series...
/ One-step-ahead: Predicted States / OK

2. The filtered estimate of the factor s t |t = Et [st ]

View / State Views / Graph State Series...
/ Filtered: State Estimates / OK

3. The smoothed estimate of the factor s t |T = ET [st ]

View / State Views / Graph State Series...
/ Smoothed: State Estimates / OK
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Estimating the Ex Ante Real Interest Rate

There exist two broad types of real interest rates
(i) Ex post real interest rates (observed).
(ii) Ex ante real interest rates (unobserved).

The ex post real interest rate is observed (as given in the following
Figure which gives the U.S. ex post 1-month real interest rate), but
the ex ante real interest rate is not.
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Source: kalman_exante.wf1
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Estimating the Ex Ante Real Interest Rate

But it is the ex ante real interest rate that is important in finance and
economics as it provides a measure of the real return on an asset
between the present and the future.

How can the ex ante interest rate be measured?

There are two strategies:

(i) Proxy
Use the ex post real interest rate as a proxy for the ex ante interest
rate.

(ii) Latent Factor
Treat the ex ante real interest rate as unknown using a latent factor
model.
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Estimating the Ex Ante Real Interest Rate

Formally the ex ante real interest rate is defined as

r et = it − πet

where it is the nominal interest rate and πet is the expected inflation
rate defined as

πet = log pt+1 − log pt
Whilst it is observed, πet is not.

So it is the expected inflation rate that makes the ex ante real
interest rate unobservable.
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Estimating the Ex Ante Real Interest Rate

Consider the ex post real interest rate

rt = it − πt

which is observed where πt = log pt − log pt−1 is the actual inflation
rate. Expanding this expression to allow for expected inflation, πet ,
gives

rt = it − πet + πet − πt

= it − πet + ut

Defining st = it − πet − α as the ex ante real interest rate (adjusted
by α) and ut = πet − πt as the inflation expectations error, this
expression is written as a latent factor model as

rt = α+ st + ut , ut ∼ N(0, σ2u)
The key advantage of this formulation of the model is that it avoids
the measurement error from using realized inflation and not expected
inflation.
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Estimating the Ex Ante Real Interest Rate

To estimate the ex ante real interest rate, monthly data starting in
January 1971 and ending in December 2009 on the following U.S.
series are used

EURO_1MTH : 1-month Eurodollar rate, (%, p.a.)
CPI : Consumer price index

The annualized percentage inflation rate is computed as

INF = 1200×DLOG (CPI )

and the ex post real interest rate is computed as

R = EURO_1MTH − INF

This is the ex post real interest rate given in the previous Figure.
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Estimating the Ex Ante Real Interest Rate

Some summary statistics are given in the Figure below.
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Mean  2.173661
Median  2.258335
Maximum  25.28643
Minimum ­10.85508
Std. Dev .  4.333232
Skewness    0.376376
Kurtosis  4.984465

Jarque­Bera  87.65467
Probability  0.000000

Source: kalman_exante.wf1

Here the average real ex post interest rate is 2.174% p.a. over the
sample period.
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Estimating the Ex Ante Real Interest Rate

The autocorrelation of the real ex post interest rate if given in the
following figure.

Source: kalman_exante.wf1

The correlogram shows strong evidence of first order autocorrelation.
This result is important as identification of the parameters of the
model require that there is significant autocorrelation.
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Estimating the Ex Ante Real Interest Rate

The factor model of the ex ante real interest rate is specified as

rt = α+ st + ut , ut ∼ N
(
0, σ2u

)
[Signal equation]

st = φst−1 + vt , vt ∼ N
(
0, σ2v

)
[State equation]

where the unknown parameters are θ =
{

α, φ, σ2u , σ
2
v

}
.

The starting values for the parameters are chosen as follows:

- α is based on the sample mean of rt , equal to 2.174.
- φ is based on the first autocorrelation coeffi cient of rt , equal to 0.551.
- σu and σv are both set equal to half of the standard deviation of rt ,
equal to 4.333/2.
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Estimating the Ex Ante Real Interest Rate

The EViews window to estimate the model is given below.

Source: kalman_exante.wf1

where C (1) corresponds to α, C (2) corresponds to φ, C (3)
corresponds to σu , C (4) corresponds to σv .

Note that it is the standard deviations σu and σv that are being
estimated and not the variance. This choice of parameterization has
the advantage that the variance is guaranteed to be positive. If either
of the estimates of σu and σv happen to be negative, it is appropriate
to just change the sign and report a positive estimate.
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Estimating the Ex Ante Real Interest Rate

The parameter estimates are contained in the following window.

Source: kalman_exante.wf1

The estimated model is

rt = 2.174+ ŝt + ût
ŝt = 0.583ŝt−1 + v̂t

where σ̂u = 1.037, σ̂v = 3.411.
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Estimating the Ex Ante Real Interest Rate

As it is the ex ante estimate of the real interest rate that is required,
the one-step ahead factor s t |t−1, is the appropriate quantity as it
provides an estimate of the interest rate in the future at time t, based
on information at time t − 1, without using current or future
information.

The Eviews commands to extract the estimate of the one-step-ahead
estimate of the factor s t |t−1 = Et−1 [st ] , are

Proc / Make State Series...

Choose One-step-ahead: Predicted states, then for Series names
choose

S_HAT
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Estimating the Ex Ante Real Interest Rate

As the factor is defined as

st = it − πet − α

the ex ante real interest rate is given by rearranging this expression as

r et = it − πet = st + α

Given that s t |t−1 is the apropriate conditional mean estimate of the
factor, from the definition of the factor an estimate of the ex ante
real interest rate is given by

r̂ et = ŝ t |t−1 + α̂

This quantity is computed using Genr as

RE_HAT = S_HAT + 2.174
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Estimating the Ex Ante Real Interest Rate

The estimate of the ex ante real interest rate (r̂ et ) and the ex post
real interest rate (rt ) are compared in the following Figure.
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The estimate of the ex ante real interest rate r̂ et follows rt closely but
exhibits less volatility.
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Estimating the Ex Ante Real Interest Rate

Alternatively, as the ex ante real interest rate is a function of the
expected inflation rate, then the latter can be estimated as

π̂et = it − r̂ et
Using the Genr command, π̂et is computed and plotted in the
following Figure together with the actual inflation rate πt .
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A Stochastic Volatility Model of the Exchange Rate

Volatility is an important input into financial decision-making as it
represents the risk of an asset.
Consider the case where the asset is the UK/US exchange rate. The
(demeaned) return on the UK/US exchange rate (rt ) is given in the
following Figure from January 2nd 1979 to February 13th 2014.
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A Stochastic Volatility Model of the Exchange Rate

The aim is to extract a measure of the volatility of the exchange rate.
One approach is to assume constant volatility. The following Figure
yields an estimate of 0.005238.
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Source: stochastic_volatility.wf1

Another approach is to assume time-varying volatility by specifying a
GARCH model where the volatility is assumed to be a function of
lagged (squared) shocks.
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A Stochastic Volatility Model of the Exchange Rate

Another approach is the stochastic volatility model given by

rt = σtwt [Mean equation]
log(σ2t ) = α+ φ log(σ2t−1) + vt [Variance equation]

where rt is the (demeaned) exchange rate return, σt represents the
exchange rate volatility, and wt and vt are disturbance terms with the
properties wt ∼ N (0, 1) and vt ∼ N

(
0, σ2v

)
.

An important feature of this model is the additional stochastic term
given by vt , in the variance equation. For this reason the model is
called the stochastic volatility model.
Estimating the stochastic volatility model is in general diffi cult arising
from the presence of the additional disturbance term vt as that now
makes the volatility σ2t stochastic as well.
One solution is to express the model as a latent factor model and use
the Kalman filter to estimate the model by maximum likelihood
methods.
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A Stochastic Volatility Model of the Exchange Rate

The strategy consists of squaring both sides of the mean equation as

r2t = σ2tw
2
t

Now taking natural logarithms gives

log r2t = log
(
σ2t
)
+ log

(
w2t
)

Redefine the variables as

yt = log r2t
st = log

(
σ2t
)

ut = log
(
w2t
)
+ 1.27

where the term 1.27 in the equation for ut appears as it can be shown
that E

[
log
(
w2t
)]
= −1.27, so E [ut ] = 0.

Also, it can be shown that the variance of log
(
w2t
)
and hence ut , is

E
[
u2t
]
=

π2

2
= 4.9348
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A Stochastic Volatility Model of the Exchange Rate

The stochastic volatility model is rewritten as a latent factor model as

yt = −1.27+ st + ut [Mean equation]
st = α+ φst−1 + vt [Variance equation]

where yt = log r2t , the natural logarithm of the squared exchange rate.

The variable yt is constructed using Genr in EViews.

To generate some starting values the following AR(1) model is
estimated

yt = β1 + β2yt−1 + wt

where wt ∼ N
(
0, σ2w

)
.
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A Stochastic Volatility Model of the Exchange Rate

The parameter estimates are given in the following window.

Source: stochastic_volatility.wf1
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A Stochastic Volatility Model of the Exchange Rate

The EViews window to estimate the model is given below.

Source: stochastic_volatility.wf1

where

C (1) corresponds to α with the starting value based on β̂1 = −10.8720
C (2) corresponds to φ with the starting value β̂2 = 0.2736
C (3) corresponds to σv with starting value based on σ̂w = 4.9532
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A Stochastic Volatility Model of the Exchange Rate

The parameter estimates are contained in the following window.

Source: stochastic_volatility.wf1

The estimated model is
yt = −1.27+ ŝt + ût [Mean equation]
ŝt = −9.8858+ 0.2779ŝt−1 + v̂t [Variance equation]

where σ̂v = 4.4759.
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A Stochastic Volatility Model of the Exchange Rate

As st = log
(
σ2t
)
, an estimate of the volatility is

σ̂t = exp
(
ŝt
2

)
If the strategy is to derive an historical estimate of the volatility the
best estimates of the factor at each point in time is based on all of
the sample information, namely ŝ t |T , which is the smoothed estimate.
Hence the volatility estimate is based on

σ̂t = exp
(
ŝ t |T
2

)
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A Stochastic Volatility Model of the Exchange Rate

The volatility estimate is given in the following figure.

.00
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Source: stochastic_volatility.wf1

The increase in volatility during times of financial crises is clear where
the estimates of volatility reach 0.04.
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A Stochastic Volatility Model of the Exchange Rate

Descriptive statistics on the volatility series are given below.
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0.00 0.01 0.02 0.03 0.04

Series: SIG_HAT
Sample 1/02/1979 2/13/2014
Observations 12827

Mean  0.003846
Median  0.002580
Maximum  0.043691
Minimum  4.56e­05
Std. Dev.  0.004388
Skew ness  1.779310
Kurtosis  8.778992

Jarque­Bera  24617.43
Probability  0.000000

Source: stochastic_volatility.wf1

An estimate of the mean of the volatility series is 0.0038 which is a
little it smaller than the constant volatility estimate of 0.005238.
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A Dynamic One-Factor Model of the Term Structure

Factor models are widely used in finance to model the term structure
of interest rates. An important example is Cox, Ingersoll and Ross
(1985) who derive a 1-factor model of the term structure of interest
rates where the unoserved factor is the instantaneous interest rate.

Consider the following one-factor model of the term structure of
interest rates

ri ,t = αi + βi st + ui ,t , i = 1, 2, · · · , 9
st = φst−1 + vt
ui ,t ∼ N

(
0, σ2i

)
, vt ∼ N (0, 1)

There are 28 parameters. The starting parameters are chosen as{
αi , βi , σ

2
i

}
= 0.1

φ = 0.9
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A Dynamic One-Factor Model of the Term Structure

The EViews window to estimate the model is given below.

Source: yields_us.wf1
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A Dynamic One-Factor Model of the Term Structure

The parameter estimates are contained in the following window.

(continued on the next slide)
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A Dynamic One-Factor Model of the Term Structure

Source: yields_us.wf1
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A Dynamic One-Factor Model of the Term Structure

The log-likelihood value is

ln L
(

θ̂
)
= −121.2888

The estimated loadings (β), given by parameters 10 to 18, show that
the latent factor has its greatest impact on the shorter maturities
(less than one year) which progressively diminishes in importance
across the maturity spectrum.
The estimates of the idiosyncratic parameter

(
σ2
)
, given by

parameters 19 to 27, are smallest for the 6-month yield suggesting
that this yield follows the factor more closely than the other yields.
As the intercept estimates (α), given by parameters 1 to 9, increase
over the maturity spectrum, this suggests an upward yield curve on
average.
The parameter estimate of φ is 0.999, suggesting that the latent
factor is nonstationary.
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A Dynamic One-Factor Model of the Term Structure

The one-step ahead estimates of the latent factor s t |t−1 = Et−1 [st ] ,
are given in the following Figure.
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Source: yields_us.wf1
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A Dynamic One-Factor Model of the Term Structure

The confidence interval for the initial estimate of the factor is very
wide representing a lack of information at this point in time. The
confidence interval quickly narrows showing that the estimates for
later points in time are more precise.

The factor is relatively flat in the first part of the period, then rises
reaching a peak around by the end of 2006. As the loadings of the
factor are relatively larger on the smaller maturities than the longer
maturities, this increase in the factor is associated with a narrowing of
the spreads.

From about mid-2007 the factor falls resulting in a widening of
spreads, which eventually stabilize from 2009 onwards.
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A Dynamic One-Factor Model of the Term Structure

The prediction properties of the model are obtained by computing

yi , t |t−1 = α̂i + β̂i s t |t−1

The EViews commands are

View / Actual,Predicted,Residual Graph / OK

This figure further highlights how the estimated factor follows the
shorter maturities very closely, while the longer maturities tend to
exhibit additional dynamics suggesting the need for a second factor.
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A Dynamic One-Factor Model of the Term Structure
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Extensions
Dynamics

The state-space model represents a flexible framework which can
easily accommodate a number of extensions.

Two important extensions are:

1. Dynamics
Have focussed on a AR(1) representations of st with the idiosyncratic
disturbance ut being white noise. These restrictions can e relaxed.

2. Exogenous and Predetermined Variables
Can allow for exogenous and predetermined variables in the signal and
state equations.
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Extensions
Dynamics

An AR(2) Model of st
Suppose that the latent factor is an AR(2) process

st = φ1st−1 + φ2st−2 + vt

This equation can be written as a vector AR(1) model[
st
st−1

]
=

[
φ1 φ2
1 0

] [
st−1
st−2

]
+

[
vt
0

]
The Kalman filter proceeds as before except now there are two
factors, st and st−1, with

Φ =

[
φ1 φ2
1 0

]
To accommodate the additional lag the signal equation becomes

yt =
[

β 0
] [

st
st−1

]
+ ut
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Maximum Likelihood Estimator

Using EViews

Consider estimating a one-factor model of the spread between the
one-year yield and the one-month yield

YIELD_Y 1t − YIELD_M1t = α+ βst + ut , ut ∼ N
(
0, σ2

)
st = φ1st−1 + φ2st−2 + vt vt ∼ N (0, 1)

The EViews window to estimate the model is given below.

Source: yields_us.wf1

Note that the second factor s2, represents the lag of the first factor
s1, and thus does not have a disturbance term.
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Extensions
Dynamics

An AR(p) Model of st
Consider an AR(p) model of st

st = φ1st−1 + φ2st−2 + · · ·+ φpst−p + vt

The state equation is written as
st
st−1
st−2
...

st−p+1

 =


φ1 φ2 · · · φp−1 φp
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0




st−1
st−2
st−3
...

st−p

+

vt
0
0
...
0


In this case, the model is viewed as having p factors

{st , st−1, · · · , st−p+1}
although it is really just the first element of this set of factors that is
of interest.
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Extensions
Dynamics

Idiosyncratic Dynamics
Consider the model

yi ,t = βi st + σiui ,t , i = 1, 2, · · · , 4
st = φ1st−1 + φ2st−2 + vt
ui ,t = δiui ,t−1 + wi ,t

where ui ,t ∼ N(0, I ) and wi ,t ∼ N(0, I ).
The state equation is now augmented to accommodate the dynamics
in the idiosyncratic terms.

st
st−1
u1,t
u2,t
u3,t
u4,t

 =


φ1 φ2 0 0 0 0
1 0 0 0 0 0
0 0 δ1 0 0 0
0 0 0 δ2 0 0
0 0 0 0 δ3 0
0 0 0 0 0 δ4





st−1
st−2
u1,t−1
u2,t−1
u3,t−1
u4,t−1

+


vt
0
w1,t
w2,t
w3,t
w4,t


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Extensions
Dynamics

In this case, the model is viewed as having six factors

{st , st−1, u1,t , u2,t , u3,t , u4,t}

In this scenario the idiosyncratic terms are redefined as factors.

As there are now no disturbances terms, then the covariance matrix of
the disturbances E [utu′t ] = R, reduces to

R = 0

The full model in this alternative parameterization is

yt = Bst
st = Φst−1 + vt , vt ∼ N(0, I )

where st represents the vector of six factors.
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Extensions
Exogenous and Predetermined Variables

The state-space model is easily extended to include M exogenous or
lagged dependent variables, xt . These variables can be included in
one of two different ways.
The first approach is to include exogenous or predetermined variables
in the signal equation

yt = Bft + Γxt + ut ,

where Γ is (N ×M) and xt is (M × 1).
This class of model is called a factor VAR model (F-VAR), where
xt = yt−1 and Γ is now a (N ×N) diagonal matrix.
The second approach is to include the exogenous or predetermined
variables in the state equation

st = Φst−1 + Γxt + ut ,

where Γ is now a (K ×M) matrix of parameters.
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End of Lecture

Jun YU () ECON671 Factor Models: Kalman Filters March 2, 2015 68 / 68


