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Factor Models: Principal Components

Learning Objectives

1. Show how models in finance have a factor structure interpretation.

2. Understand principal components.
3. Deriving and interpreting an eigen decomposition.

4. A factor model of the term structure of interest rates.

Background Reading

1. "Matrices”, Handout on course website - especially the section on
eigenvalues and eigenvectors.

EViews Computer Files

1. yields us.wfl
2. yields us_loadings.wfl
3. capm.wfl
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Introduction

@ An important feature of many asset markets is that key variables
(returns, yields, spreads etc) often display similar features.

1. Mean
Asset markets tend to move together whereby the spreads between the
key variables are stationary, even though these key variables may be
nonstationary (cointegration).

2. Variance
Periods of turbulence and tranquility tend to coincide across asset
markets both locally and internationally, with the global financial crisis
representing an example of synchronized turbulence.

3. Dynamics
The dynamical behavior within classes of asset markets tend to exhibit
very similar autocorrelation patterns.
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Introduction

Example (Term Structure of Interest Rates)

The term structure of interest rates is the relationship between the yields
of a bond for differing maturities The Figure shows that U.S. Treasury
yields (%p.a.) for maturities from 1mthh to 10yrs, tend to move together.
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Introduction

@ Suggests that the time series characteristics of many financial
variables can be summarized by a small set of factors.
@ To formalise this model consider the following linear regression
equation
iy = & + B;st + uj ¢

where

- rj¢ is the return on the it asset

- st is the factor (or set of factors) with parameters (vectors) a;, B;

- uj ¢ is an unknown disturbance term representing idiosyncratic
movements in f; ;.

@ It is important to distinguish between two types of factors.

1. Observable s;
2. Unobservable s;

Jun YU () Econ671 Factor Models: Principal Componen April 8, 2016



Introduction

1. Observable s;
Time series are available on s;, whereby the parameter 8, is estimated
simply by regressing r; + on s;. Typical examples of this type of model
are CAPM, and the Fama-French three-factor model.

Example (CAPM)
The CAPM

Fit — rFe = & +,B,-(fm,t —rre) FuUie

is estimated for 6 assets using monthly data for the U.S. beginning May
1990 and ending July 2004. The OLS parameter estimates are summarised
below.

Asset: Exxon GE Gold IBM  Microsoft Walmart
w; 0.012 0.016 -0.003 0.004 0.012 0.007
B;: 0.502 1.144 -0.098 1.205 1.447 0.868
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Introduction

2. Unobservable s;
Time series are not directly available on s; making the application of
least squares to estimate «&; and B, unworkable. There are two
solutions:

(a) Proxy variables
A proxy variable is used instead of s¢, but this creates errors in
variables problems. In fact, this is a common strategy, if adopted only
implicitly, with the application of the CAPM being a typical example.
(b) Latent variables
The statistical solution is to still treat s; as an unobservable variable,
but to introduce additional structure on the model thereby providing
additional information to enable the parameters to be estimated.

This is the main focus of this and the next lecture!
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Introduction

o If s; is latent it is not immediately obvious how the parameters of
rit = n; + ﬁI-St -+ Uit

can be identified when all of the terms on the right hand-side of the

equation
(i)  Parameters Do, B
(i)  Explanatory variables : s;
(iii) Disturbance term L Ujy

are unknown.

@ Two broad methods are investigated to show how to address this
identification problem.

1. Principal Components (this lecture)
2. Kalman Filter (next lecture)
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The Role of Factors in Finance

@ To motivate the role of factors in finance various models are
presented, ranging from theoretical to purely statistical models.

@ An important feature of this discussion is the distinction between
factors that are observable and factors that are unobservable, that is
latent.

@ The examples consist of

1. Term Structure of Interest Rates
2. Capital Asset Pricing Model (CAPM)
3. Arbitrage Pricing Theory (APT)
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The Role of Factors in Finance

Term Structure of Interest Rates

@ Inspection of the U.S. Treasury yields (%p.a.) for maturities from 1
month to 10 years, reveals two important characteristics.

1. The levels of the yields tend to move together.

2. Neighboring yields move together more closely than yields with greater
differences in maturities. This latter empirical property of yields is
highlighted by the following correlation matrix.

1-mth 3-mth 6-mth 1-yr 2-yrs 3-yrs 5-yrs 7-yrs 10-yrs

[ 1.000 0.998 0.992 0.985 0.960 0.933 0.869 0.787 0.702 T
0.998 1.000 0.997 0.992 0.968 0.940 0.872 0.787 0.700
0.992 0.997 1.000 0.997 0.974 0.945 0.874 0.784 0.697
0.985 0.992 0.997 1.000 0.987 0.964 0.901 0.816 0.734
0.960 0.968 0.974 0.987 1.000 0.993 0.952 0.885 0.812
0.933 0.940 0.945 0.964 0.993 1.000 0.979 0.929 0.867
0.869 0.872 0.874 0.901 0.952 0.979 1.000 0.984 0.949
0.787 0.787 0.784 0.816 0.885 0.929 0.984 1.000 0.987

| 0.702 0.700 0.697 0.734 0.812 0.867 0.949 0.987 1.000

corr =
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The Role of Factors in Finance

Term Structure of Interest Rates

@ These two characteristics suggest that a potential model to explain
the term structure of interest rates is given by at least a two-factor
model

fig = Qi+ By St + By 2,6 + Uit i=1,2---,9,

where u; ; is the disturbance term and s; ; and s ; are the factors
designed to

Level factor (s1¢): Capture the level of yields

Slope factor (sp,+) : Capture the correlation between
neighbouring yields

@ As the two factors are implied by the data, they are latent factors.
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The Role of Factors in Finance

Capital Asset Pricing Model

e The CAPM
rie—ree =0+ B (rme —ree) + Uit
represents a single factor model given by the excess return on the
market ry, + — rr ¢, where the (market) factor is observable. Extending
the model to allow for other observable factors including Fama-French
factors, momentum, liquidity etc, generates a multi-factor CAPM.

@ From a theoretical point of view, the use of ry, + in the model actually
serves as a proxy for the excess return on all invested wealth. As this
is an unobservable variable, the excess return on the market portfolio,
rmt — If,¢, is essentially serving as a proxy.

@ This suggests that the more theoretically correct CAPM specification
is

fie—ree = &+ B;se + Uit
where s; is now a latent factor representing the excess return on all
invested wealth.
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The Role of Factors in Finance

Arbitrage Pricing Theory

@ This is an alternative form of the CAPM equation where the
(unknown) excess return on wealth is extended to the multi-factor
version of the CAPM where all factors are unknown

K
Jj=1

where there are K latent factors (si¢ 52,6, -+, Sk,t) and as before

uj ¢ is a disturbance term representing the idiosyncratic factor (risk).
@ This is the arbitrage pricing model (APT) of Ross (1976). The factors

and the disturbance term are assumed to have the following properties

Factors : Elsjt] =0, E [sjtsk¢] = { é j ; ,;
2 L i
Disturbance : E[uj:] =0, E[ujtug:] = { (gi : ; i

Covariance @ E[uj¢sj¢] =0
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The Role of Factors in Finance

Arbitrage Pricing Theory

Historical Background: Stephen Ross (1943-)
He is the inventor of Arbitrage Pricing Theory and also very well known

for his work in finance including the CIR model of interest rates (he is the
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The Role of Factors in Finance

Arbitrage Pricing Theory

@ These assumptions imply a decomposition of the covariance matrix of

re = {rl,t. Nty fN,t} .
@ In the case of a K = 1 factor model (let B, = B, ; for simplicity of
notation)

i = &+ PB;sie + ujy
the covariance matrix is of the form (see the next tutorial for the
derivation of this result)

2
i+ 03 ?1:322 o BB
BBy B+ 03 BaBw
cov(r) = ’ _ ]
Bunbs BuBy - Buton
@ This result shows that the covariance matrix can be reorganized into

a factor structure which may be more informative about the
movements in returns.
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Principal Components

Specification

@ Consider the following model containing N asset returns

re ={re.re -, v} and K < Nfactors sy = {s1+, 2,1, - . Sk,t }
.t 1 ,31,1 /51,2 T 131,K S1.t by,
r.t a2 Bo1i Bap - Pak 52,t uz,¢

. — . = . . _ . . + .
'n,t &N Bni PBno 0 Pnk SK.t Un,e

or in matrix notation
re —ap = Bs + uz
where
- wis a (N x 1) vector containing the means of r;.
- st is a (K x 1) vector containing the factors.

- Bisa (N x K) matrix containing the factor loadings.
- ur is a (N x 1) vector of disturbances.
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Principal Components

Specification

@ The vector of latent factors and the disturbance vector have the

properties
Elu] = 0, E [utuy] = O
Elss] = 0, E [sest] =1,
E [Stu;] = 0,

where Q) is a (N x N) covariance matrix.
@ As E [s;| = E [u] = 0, the mean of the returns is
Eln]=Elp+psc+u] =p+BE[s]+Efu]=p
@ The factor equation
rr —a = ‘BSt =+ u;

shows that r; — a can be decomposed into a systematic component
(Bst) and an idiosyncratic component (u;) .
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Principal Components

Specification

@ Given the properties of s; and u;, the covariance structure of r;
simplifies as

cov(r) = E[(r—a)(r—a)]
= E[(Bst+ ut) (Bst + ur)']
= BE [ses] B+ BE [seuy] + E [uesy] B+ E [upuy]
£ a8
Systematic Risk Idiosyncratic Risk

@ This equation shows that the covariance matrix can be decomposed
in terms of two sources of factors/risks.

1. Systematic risk (BB').
2. Idiosyncratic risk (Q2).
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Principal Components

Specification

@ In the special case where the number of variables matches the
number of factors (N = K), there is an exact decomposition of the
covariance matrix of r; as () = 0 in this case, with the covariance
matrix cov (r¢) reducing to

cov (re) = BP" = P1By + BBy + -+ BuBiy
@ An important property of principal components is that they exhibit
the same features as this equation

cov (rt) = MP1P{ +AaPyPy + - - -+ Ay Py Py

where A; is the it eigenvalue with (N x 1) orthonormal eigenvector
Pj, that is, P/P; =1 and P;P; =0, Vi # j.
@ A comparison of these equations suggests that the loading parameter

vector B, be chosen as

B, = /AP, i=12"--,N
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Principal Components

Specification

o Now consider the N variances of ry = {ri,¢, ¢, - , Nt}
corresponding to the diagonal elements of cov (r;)
var (r¢) Plz'l P1§,2 Plz,N
e ('fz,t) =M P?'l + A2 P?B + M "o
var (.0) ’Dlz;l,l P/Z;/,z P/%/,N

@ Given that the eigenvectors are normalized as P{P,- =1, then the sum
of the elements of each of the column vectors on the right hand-side
all equal unity, that is

Pl i+P 4Py, =1
Piy+Piy+--+Py, =1
Piy+Piy+-+Pyy = 1
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Principal Components

Specification

@ Thus a measure of the total volatility of all asset returns

N

Z var (ri¢) = var (n,t) +var () +-- -+ var (ry.t)
i=1

is achieved by combining all of the variance equations as
N
Y var(rie) = A (Pii+Pii+---+Piy)
i=1

+A2 (PEy 4+ Piy+ -+ PRy)
+o+ Ay (PEN+PIn+ -+ Pan)
Given the normalization of the eigenvectors, this equation simplifies to
N N
Zvar(r,-,t) =M+Ar+- -+ Ay = Z)\,’
i=1 i=1
That is, the total volatility of all r; equals the sum of all eigenvalues.

Jun YU () Econ671 Factor Models: Principal Componen April 8, 2016 21/



Principal Components

Specification

@ Instead of performing an eigen decomposition on the covariance
matrix cov (r:), to circumvent scaling issues when variables are
measured in different units for example, the correlation matrix cor (r;)
can be used instead.

@ In this case as the correlation matrix contains unity on the main
diagonal by definition, then the sum of correlations becomes

Ai=N

=

I
—

1

@ By inspecting the relative magnitude of the largest eigenvalues it is
possible to quantify the proportion of the total variance of the data
that is explained by K < N principal components. Bai and Ng (2002,
Econometrica) propose a formal test of the number of factors based
on information criteria.
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The Role of Factors in Finance

Specification

Historical Background: Karl Pearson (1857 — 1936)
Inventor of Principal Components plus many other well-used and
well-loved statistical techniques.

Portrait of Karl Pearson, by Ellictt & Fry, 1500.
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Principal Components

Estimation

@ In practice it is necessary to estimate the eigenvalues and the
eigenvectors from the data.

@ As an example consider the following correlation matrix of the
1-month, 1-year and 5-year U.S. Treasury yields given earlier

1.000 0.985 0.869
cor(r) = | 0.985 1.000 0.901
0.869 0.901 1.000

@ The EViews commands to estimate the eigenvalues and eigenvectors
of cor (r¢), highlight the 3 series and double click the shaded region
and then click

Open Group / View / Principal Components... / Calculation

For Type: choose
Correlation / OK

The output is given in the following window.
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Principal Compone

Estimation

Principal Components Analysis

Date: 03/23/14 Time: 15:57

Sample: 2001M07 2010M09

Included observations: 111

Computed using: Ordinary correlations
Extracting 3 of 3 possible components

Eigenvalues: (Sum = 3, Average = 1)
Cumulative Cumulative

Number Value Difference Proportion Value Proportion
1 2.837472 2686832 09458 2.837472 0.8458
2 0.150640 0.138751 00502 2988111 0.9960
3 0.011889 — 0.0040  3.000000 1.0000

Eigenvectors (loadings):

Variable PC1 PC2 FC3
YIELD_M1 0581282 -0.490485 0649258
YIELD_Y1 0.587635 -0.298881 -0.751901
YIELD_Y5 0.562847 0818593 0.114492

Ordinary correlations:

| YELD M1 YIELD Y1 YELD Y5

YIELD_M1 1.000000
YIELD_Y1 0.985507 1.000000
YIELD_YS 0.868743 0.900611 1.000000

Source: EViews yields us.wfl

71 Factor Models: Principal Componen April 8, 2016



Principal Components

Estimation

@ The estimated eigenvalues and eigenvectors of the correlation matrix
are respectively

R 2.837 R 0.581 —0.490 0.649
A= 0151 |, P= 0588 —0.299 —0.752
0.012 0.563 0.819 0.114

with the columns of P representing the three eigenvectors

R 0.581 R —0.490 R 0.649
P = | 0588 |, P,=| —0.299 |, P; = | —0.752
0.563 0.819 0.114

corresponding to the order of the three eigenvalues in A.

@ The use of the “~" emphasises that the population parameters A and
P are estimated from the data.
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Principal Components

Estimation

Recovering the Correlation Matrix from the Decomposition

@ The correlation matrix is recovered as follows:

1. Diagonal elements (ie own correlations)

cor(ne) =

cor(my) =

cor(r3e) =

2.837 x (0.581)% + 0.151 x (—0.490)°

+0.012 x (0.649)°
1.000

2.837 x (0.588)% + 0.151 x (—0.299)*

+0.012 x (—0.752)?
1.000

2.837 x (0.563) + 0.151 x (0.819)?

+0.012 x (0.144)?
1.000
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Principal Components

Estimation

2. Off-diagonal elements

cor(r my) = 2.837x (0.581) x (0.588)
+0.151 x (—0.490) x (—0.299)
+0.012 x (0.649) x (—0.752)

= 0.985

cor(r ¢ ) = 2.837x(0.581) x (0.563)
+0.151 x (—0.490) x (0.819)
+0.012 x (0.649) x (0.144)

= 0.869

cor(m ¢, ) = 2.837x (0.588) x (0.563)
+0.151 x (—0.299) x (0.819)
+0.012 x (—0.752) x (0.144)

= 0.901
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Principal Components

Estimation

Properties of the Estimates

@ Some key properties of the parameter estimates are as follows.

1. Normalization of eigenvectors

0.581% +0.588% +0.563> = 1.000
(—0.490)% + (—0.299)? +0.819° = 1.000
0.6492 + (—0.752)% +0.114> = 1.000
2. Orthogonality of eigenvectors
P|P, = 0581 x (—0.490) + 0.588 x (—0.299) + 0.563 x 0.819
=0
P|P; = 0.581 x 0.649 + 0.588 x (—0.752) + 0.563 x 0.114
=0
PyP; = (—0.490) x (0.649) + (—0.299) x (—0.752) + 0.819 x 0.114
0

Jun YU () Econ671 Factor Models: Principal Componen April 8, 2016 29 / 59



Principal Components

Estimation

3. Eigenvalues
As it is the correlation matrix that is being used in the eigen
decomposition, the eigenvalues sum to N =3

3
Y Aj=283740.151+0.012 =3
i=1

The normalized eigenvalues are

2.837 n 0.151 n 0.012
3 3 3
The first eigenvalue explains 94.6% of the total variance, the second

explains an additional 5%, while the contribution of the third and last
eigenvalue is 0.4%.

= 0.946 - 0.050 +0.004 =1
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Principal Components

Estimation

4. Factor loadings

[ 0.581 0.979
B, = \A1PL=+v2837| 058 | = | 0.990
| 0.563 0.948
—0490 1 [ —0.190 ]
B, = VAP, =+10151| 0299 | = | —0.116
| 0819 | | 0318
~ — 0649 7 [ 0071
By = \/AsP3=+0012 | —0752 | = | —0.082
0114 | | 0012

5. Intercepts

As E [r{] = a, an estimate of « is given by the sample mean of r; given
by

~

A=7=[2038 2393 3472 ]
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Principal Components

Estimation

The K = 1 Estimated Factor Model

@ The estimated model is

ng = o1+ 31’151,t + Ut
2.038+0.979s; + + Uy ¢
wo + 32’151,t + Up¢
2.393+0.990s; ; + U3 ¢
a3+ 331151,15 + a3,t
= 34724094851+ + U3¢

n.:

3¢

@ An increase in the factor s; ¢, results in all 3 yields increasing by
similar amounts.

@ This suggests that s ¢ is a LEVEL factor.
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Principal Components

Estimation

o As E [sft] =1, the systematic risks are

B = B, =009792 = 00958
By = Byq = 09902 = 0.980
hs = B, = 0.948% = 0.899

@ The idiosyncratic risks are

var (:) = var(r.) — hye = 1.000 — 0.958 = 0.042
var () = var(ra:) — hae = 1.000 — 0.980 = 0.020
var (Izs) = var(rs) — hs: = 1.000 — 0.899 = 0.101
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Principal Components

Estimation

The K = 2 Estimated Factor Model

@ The estimated model is

ne = 2.038+0.979s, ¢ —0.190s) ¢ + Tt ¢
e = 2.393+0.990s, ; — 0.1165) ; + T
rse = 3.472+40.948s;, + 03185, + Us ¢

@ An increase in the factor s, ¢, widens the spreads between all 3 yields
as n ¢ falls, as does r; ¢ but by a smaller amount, whilst r3 ; increases.

@ This suggests that s, ; is a SLOPE factor as it changes the slope of
the yield curve.
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Principal Components

Estimation

o As E [sft] =E [522,15] = 1, the systematic risks are

B = Biy+Pi, = 0.979% + (—0.190)> = 0.994
Ro = PBoy+Byo = 0.990> + (—0.116)2 = 0.993
hy = Bg,l +B§,2 = 0.948% +0.318% = 0.999

@ The idiosyncratic risks are

var (T,;) = var(n,)— hy = 1.000 —0.994 = 0.006
var (Tir) = var(r¢) — hy = 1.000 — 0.993 = 0.007
var (i) = var(r3¢) — h3 = 1.000 — 0.999 = 0.001
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Principal Components

Estimation

The K = 3 Estimated Factor Model
@ The estimated model is
rt = 2.038+0.979s;; —0.190sy + 4+ 0.071s3 +
rpy = 2.393+0.990s; ; —0.116s5 + — 0.082s3 +
3y = 3.472+40.948s; + 4+ 0.318s, ¢ + 0.012s3 ¢.

There are no idiosyncratic terms in this model as 3 factors perfectly
explain the movements of the 3 interest rates.

Nonetheless it is sometimes hard to diversify all latent factors!
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Principal Components

Estimation

o As E [sf’t] =E [522’t] =E [532't] = 1, the systematic risks now equal
the diagonal components of the correlation matrix as
i = Bii+Biot By = 0979+ (—0.190)2 +0.0712 = 1.000
By = Bay+Bay+Bas = 0.990% + (—0.116)% + (—0.082)? = 1.000
By = Boy+Bas+Bas = 00482 +0.3182 4 0.0122 = 1.000
@ In which case the idiosyncratic risks are all zero
var (,;) = var(n,)— hy = 1.000 —1.000 = 0.000
var (,;) = var(rm,;) — hy = 1.000 — 1.000 = 0.000
var (i) = var(r¢) — h3 = 1.000 — 1.000 = 0.000
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Principal Components

Factor Extraction

Method

@ Since rj; = a; + B;s1,+ + ujt, i =1, ..., N, having estimated the
factor model, estimates of the vector of factor loadings at time t are
obtained as

~ _ 2A'Aa-1ay-177A-1 ~

ss=(BQB) B (n—})
where 5 is a (K x 1) vector of the estimated factors at time t, B is a
(N x K) estimated matrix of factor loadings, ) is the (N x N)
covariance matrix of Ug, ry is a (N X 1) vector of interest rates and i

is a (N x 1) vector of sample means corresponding to the vector of
interest rates.
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Principal Components

Factor Extraction

~ N 2, _=
o IfQ=0%,K=1,thens = w The bigger the factor
=1

loading, the more importance of the variable in determining the factor.

@ This expression shows that the factors at time ¢ are a (weighted)
linear function of the actual interest rates at time t.
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Principal Components

Factor Extraction

EViews Commands

@ The EViews commands to extract the factors, highlight the 3 series
and double click the shaded region and then click

Open Group / Proc / Make Principal Components...
For Scores series names:, write in the window
Level Slope Curvature
Then click Calculation and for Type: choose
Correlation / OK

The output will be presented in a spreadsheet.
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Principal Components

Factor Extraction

Interpretation
@ The three factors are plotted over time.

—— LEVEL

SLOPE
7| —— CURVATURE

w

~
h

-
!

o
I

a4

2

3 T T T T T T T T T
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Source: EViews file yields us.wfl

@ The results show that:
(i) The LEVEL factor dominates the SLOPE and CURVATURE factors.
(i) As the LEVEL factor tracks the three yields this suggests that a
1-factor model suffices to explain the three yields.
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A Multi-Factor Model of Interest Rates

o Consider the N =9, U.S. Treasury yields (percentage, annualized)
from July 2001 to September 2010, presented in the Figure earlier.

@ The N = 9 eigenvalues of the correlation matrix from highest to
lowest are

A= {8.2339, 0.7123, 0.0427,0.0078, 0.0018,
0.0006, 0.0005, 0.0002, 0.0001 }

@ The proportionate contributions of the first three eigenvalues are

~ 2 ~ .0427
A =220 o015 A, = 0.0
9
@ This suggest that a K = 3 factor model explains the U.S. term
structure with the first three eigenvalues explaining
0.915 4 0.079 + 0.005 = 0.999, or 99.9% of the total

variance/correlation in the yields.

0.7123

=0.079, A3 = = 0.005
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A Multi-Factor Model of Interest Rates

@ The estimated factor loadings on the first factor are computed as

Pra 03340 7 [ 0.9583 ]
Baa 0.3351 0.9617
Bsa 0.3355 0.9626
Bu1 0.3400 0.9757
Bs. | =/82339| 03460 | = | 0.9928
Box 0.3464 0.9941
B, 0.3389 0.9724
B | 0.3214 0.9221
B | 03003 ] [ 0.8617 |

@ The other factor loadings are computed in a similar way.
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A Multi-Factor Model of Interest Rates

@ The following Figure plots the loadings of the first three factors which
are identified respectively as level, slope and curvature.

LEVEL SLOPE

Il S R i

e e g e e e e S e e g

2
CURVATURE

Source: EViews file yields us.wfl
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A Multi-Factor Model of Interest Rates

Factor Interpretation

1. Level Factor
The first factor represents a levels effect as a shock to this factor
raises all yields by approximately the same amount.

2. Slope Factor
The second factor is a slope factor as a positive shock twists the yield
curve by lowering short rates (negative loadings) and raising long
rates (positive loadings).

3. Curvature Factor
The third factor is a curvature factor which bends the yield curve by
simultaneously raising the very short and long rates (positive
loadings), while lowering (negative loadings) the intermediate rates at
around 2 years (24 months) and 3 years (36 months).
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A Multi-Factor Model of Interest Rates

@ The three factors are plotted over time.

34[— LEVEL

LOPE
—— CURVATURE

4 T T T T T T T T T
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Source: EViews file yields us.wfl

@ During the recent crisis:
(i) The LEVEL factor falls showing that all yields were falling.
(i) The SLOPE factor becomes negative suggesting an inverted yield curve.
(iii) The CURVATURE factor becomes negative at the end of 2008,
suggesting that short and long yields fall relative to intermediate yields.
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A Latent Factor CAPM

@ The latent multi-factor CAPM is

K
fit— rFe = o+ Z ﬁ,-,jsj,t + ujt
j=1
where s; ; are unobserved latent factors.

@ The data are the excess returns on 6 stocks consisting of Exxon, GE,
Gold, IBM, Microsoft and Walmart. The data are monthly beginning
in April 1990 and ending in July 2004.

@ The covariance matrix is

0.0019 0.0009 -0.0002 0.0014 0.0009 0.0006
0.0009 0.0053 -0.0004 0.0020 0.0032 0.0018
-0.0002 -0.0004 0.0009 -0.0005 -0.0006 -0.0004
0.0014 0.0020 -0.0005 0.0088 0.0048 0.0011
0.0009 0.0032 -0.0006 0.0048 0.0113 0.0024
0.0006 0.0018 -0.0004 0.0011 0.0024 0.0057

cov (r) =
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A Latent Factor CAPM

The EViews output from the principal components decomposition based
on the covariance matrix is

Principal Components Analysis

Date: 04/22/14 Time: 13:53

Sample (adjusted): 1990M05 2004M07

Included observations: 171 after adjustments
Balanced sample (listwise missing value deletion)
Computed using: Ordinary covariances
Extracting 6 of 6 possible components

Eigenvalues: (Sum = 0.03397365, Average = 0.005662275)
Cumulative  Gumulative

Number Value Difference Proportion Value Proportion
1 0.017418 0.011541 0.5127 0.017418 0.5127
2 0.005877 0.001127 01730 0.023294 06857
3 0.004750 0.001161 0.1398 0.028045 0.8255
4 0.003589 0.002078 0.1057 0.031634 09311
5 0.001511 0.000683 0.0445 0.033145 09756
] 0.000828 — 0.0244 0.033974 1.0000

Eigenvectors (loadings):

Variable PC1 PG2 PC3 PC4 PC5 PC6
E_EXXON 0122268 -0.018438 0.207953 0.105001 0964524 0011610

E_GE 0.330706 0.337231 0232868 0831073 -0.176505 0.029067
E_GOLD -0.056703 -0.013811 -0.034159 0.003252 0.001925 0997704

E_IBM 0535891 -0.665271 0475793 -0.114318 -0.171247 0038241
E_MSOFT 0720721 0.108083 -0.668593 -0.129414 0.088703 0019855
E_WNART 0.256614 0.656869 0.477457 -0.518136 -0.067011 0.041842

Source: EViews file capm.wfl
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A Latent Factor CAPM

@ The N = 6 eigenvalues of the covariance matrix from highest to
lowest are

A= {0.017418, 0.005877, 0.004750, 0.003589, 0.001511, 0.000828 }
@ The total sum of the eigenvalues is

0.033973 = 0.017418 + 0.005877 + 0.004750 + 0.003589
+0.001511 + 0.000828

@ This sum equals the total volatility of all 6 excess returns as given by
the sum of their variances

0.033973 = 0.001913 + 0.005358 +- 0.000887 + 0.008771
+0.011307 + 0.005737
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A Latent Factor CAPM

@ The proportionate contributions of the first three eigenvalues to total
volatility are

~ 0.017418
M= Gozzers T 0O
~ 0.005877

= >0 _ o1
A2 0.033073 01730
~ 0.004750

- The first factor explains 51.27% of total volatility (equal to 0.033973).
- The second factor explains 17.30% of total volatility.
- The third factor explains 13.98% of volatility.

@ So the first three factors explain jointly

0.5127 +0.1730 + 0.1398 = 0.8255

or 82.55% of total volatility. This suggests that a 1-factor CAPM is
potentially inappropriate and there is a need for a 3-factor model

maybe even higher).
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A Latent Factor CAPM

@ To estimate the multi-factor CAPM, the intercepts («;) are estimated
using the sample means as given by the EViews output.

EEXXON | EGE | EGOLD | E_BM | E_MSOFT | E_WMART
Mean 0.013836 0019874 -0 003052 0.008706 0.017464 0.010084
Median 0.016349 0011553 -0.006375 0.008115 0.017968 0.014281
Maximum 0.159486 0.270685 0156079 0301615 0.337298 0.230868
Minimum 0108606 | -0.195864  -0.065345  -0.308635 = -0425440 | -0.237609
Std. Dev. 0.043870 0.073412 0.029877 0.093927 0.108647 0.075968
Skewness 0.039693 0125928 1118160  -0078041 0177437 | -0.177876
Kurtosis 3.484690 3501747 7.281451 3.764451 4563176 3.243565
Jarque-Bera 1718736 2 245671 166.2401 42337322 18.30736 1.324417
Probability 0.423430 0.325356 0.000000 0.114331 0.000106 0.515711
Sum 2365874 3398516  -0521932 1.488642 2986310 1.724319
Sum Sq. Dev. | 0327176 0.916176 0.151744 1.499796 1.933503 0.981098
Observations 171 171 171 171 171 171
Source: EViews file capm.wfl
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A Latent Factor CAPM

@ Using the first eigen vector, the K = 1 factor CAPM is estimated as

0.122268 [ 1.6137 x 1072 ]
0.330706 4.3646 x 1072
/ —0.056703 —7.4835 x 1073
B =\ MPL = V0017418 0.535891 | 7.0725 x 1072
0.720721 9.5119 x 102
0.256614 | | 3.3867 x 1072

@ These results show that

(i) Gold moves in the opposite direction to the other assets, which is
consistent with the asset representing a hedge stock.

(i) Microsoft has the highest loading, equal to 9.5119 x 10~2, showing
that this asset responds the most to changes in the factor sy ¢,
compared to the other stocks. This result is consistent with Microsoft
being an aggressive stock at least relative to the other stocks.
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A Latent Factor CAPM

@ Using the sample means and the loadings on the first factor, the
estimated K = 1 factor model is then

Exxon © 1 = 0.013836 + 1.6137 x 10725 ; + Ty ¢
GE ;= 0.019874 + 4.3646 X 107 2s; ; + T,
Gold © r3; = —0.003052 — 7.4835 x 107351+ + T3 ¢
IBM © 1y = 0.008706 + 7.0725 X 10725y ; + Tg s
Microsoft : r5; = 0.017464 + 9.5119 x 10 2s; ; + Ts,
Walmart  :  r5; = 0.010084 + 3.3867 x 1025 ; + Up ¢

@ For comparison the OLS estimates of the CAPM with the excess
return on the market as the (observable) factor are given below.

@ The beta-risk estimates are very different from the two models. Part
of the reason for this is that the variance of s; ; by construction is
normalized to be unity, whereas the variance of the excess return on
the market rpy, ¢+ — rr ¢, is not.
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A Latent Factor CAPM

Dependent Variable: E_EXXON Dependent Variable: E_GE
lethod: Least Squares Mettog: Least S
Date 03/02/14Time: ate:
Sample (adjusted). 1990M05 2004M07 Sample (ad}usted) oo 200807
Included observations 171 after adustments Included observations: 171 after adjustments
Variable Coeficient_ Std Eror _t-Statistic _Prob. Variable Coefficient _ Std. Error _ tStatistic _Prob,
c 0012018 0002945 4080185 00001 c 0015731 0004214 3732752 00003
E_MARKET 0501768 0068830 7289990  0.0000 E_NARKET 1143629 0098484 1161238 00000
R-squared 0239232 Mean dependentvar 0013836 R-squared 0443800 Mean dependentvar 0019874
Adjusted R-squared 0234730  S.D. dependent var 0.043870 Adjusted R-squared 0440509 Jependent var 0.073412
S:E of regression 0038377 Akaike info criterion -3671078 S.E. of regression 0054911 Akaike info criterion 2954568
Sumsquaredresid 0248905  Schwarz criterion 3634333 um squared resid 0509577 Schwarz crterion 2917824
Log likelinood 3158771 Hannan-Quinn crter.  -3656168 Log ikelihood 2546156 Hannan-Quinn crter.  -2.939659
F.statistic 5314396 DurbinWatsonstat 2094047 Fstatistic 1348474 Durbin-Watson stat  2.348651
ProbiF.statistc) 0.000000 Prob(Fstatistic) 0.000000
Dependent Variable: £ GOLD Dependent Variable: E_IBM
Nethod: Least Squares Method: Least Squares
Date 03/02/14 Time: 06:37 ate: 14 Time: 06:37
‘Sample (adjusted). 1990M05 2004M07 Sample (adjusted): 1990M05 20041107
Included observations: 171 after adjustments Included observations: 171 after adjustments
Variable Coeffiient _ Std. Emor _ tStatistic _Prob. Variable Coefficient _ Std. Error _ t-Statistic _Prob,
c 0002805 0002277 1183889 02381 c 0004340 0008045 0717930 04738
E£_MARKET 0098431 0053205 1850054 00650 E_MARKET 1205004 0141260 8530396 00000
R.squared 0.019870  Mean dependentvar -0.003052 R-square 0300062 tean dependem var 87
Adjusted R-squared 0014070  S.D. dependentvar  0.029877 Adjusted S squared 0296846 fentvar 0093027
SE. of regression 0020686 Akaike info criterion  -4.186027 SE ofregression Torcs  ficke o entnon 223144
Sum squaredresid 0148729  Schwarz criterion 4149282 um squared resi 1048385 Schwarz criterion 1963
Log likelihood 59.9053  Hannan-Quinn criter. 4171117 Log Feihood 1929338 Hamnan-Quincrter. 2218235
F-statistic 3426023 DurbinWatsonstat 1814118 Fost 7276766 Dt Watson sat 12796
Prob(Fstatistic) 0.065921 ProbF sitstc 0.000000
Dependent Variable: E_MSOFT Dependent Variable: E WMART
Nethod: Least Squares Method: Least Squares
Date 0302/14 Time: Date 03/02/14 Time
Sample (adjusted): 1990M0S 2004M07 Sample (adjusted). 199005 20041407
Included observations: 171 after adjustments Included observations: 171 after adjustments.
Variable Coeffient_ Std. Error _t Statistic _Prob. Variable Coefficient _ Std. Emor _ t-Statistic _Prob
c 0012220 0008685 1827943 00693 c 0006937 0005101 1350933  0.1757
E_MARKET 1447368 0156223 9264771 00000 E_MARKET 0868455 0119200 7285115 0.0000
Rsqua 0336828 Mean dependentvar 0017464 R.squared 0238989 Mean dependentvar 0010084
Aqus‘ea Rsquared 0322904 SD._dependent var 066 Adjusted R-squared 0234468 S dependentvar  0.075968
of regression 67105 Acave o teron 2091763 SE. of regression 0086467 Akaike nfo criterion 2672584
msquaredresid 1282245  Schwarz criter 1995038 umsquared resid  0.746627  Schwarz criterion 2535840
Lug fcihood 57174 Hannan Gum crter 2016873 Log likelihood 2219560 Hannan-Quinn criter. 2557675
8583598 Durbin-Watsonstat 2266318 F-statistic 5307290 Durbin-Watsonstal 2168152
Frob(Fstsic) Prob(F-statistic) 0.000000
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A Latent Factor CAPM

@ To make the beta-risk estimates commensurate across the two
estimated models the approach is to rescale s; ; to make it equivalent
to the variance of rpy + — rr ;.

@ The EViews output of the descriptive statistics of ry + — rr,+ shows
that the variance is

Jun YU ()

var (rm¢ — rr.t) = 0.042764°

Source: EViews file capm.wfl

Series: E_MARKET
Sample 1990M04 2004M07
Observations 171

Mean 0.003623
Median 0.007557
Maximum  0.102398
Minimum -0.161669

Std. Dev. 0.042764
Skewness  -0.620553
Kurtosis 3.897964

JarqueBera  16.72012
Probability  0.000234
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A Latent Factor CAPM

@ Reconsider the 1-factor CAPM
fie—rfe =+ B 1S1e + Uit

@ Defining 0, as the standard deviation of the excess return on the
market, then the model is rewritten as

Fig —rfe = ‘X/""ﬁ,l 51t+U:t

‘Bi,l

m

(Omsi,t) + Uit

Here the factor know has a variance equal to the variance of the
excess return on the market as
2
E [(Umsl,t) ] =02 Elsi,] =0l x1=02
@ Thus, the rescaled beta-risk estimates are obtained by dividing the
loading vector f3;, by the standard deviation of 0, = 1y ¢ — rr ;.
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@ These rescaled beta estimates are

1.6137 x 1072/0.042764 [ 0.3773 ]
R 4.3646 x 102/0.042764 1.0206
~ By | —7.4835x1073/0.042764 | | —0.1750
P = 0.042764 7.0725 x 1072/0.042764 | 1.6538
9.5119 x 1072/0.042764 2.2243

3.3867 x 1072/0.042764 | | 0.7919 |

@ Interpretation:

(i) GE tracks the market with a beta-risk of 1.0206.
(ii) Exxon and Walmart are conservative stocks with estimates between 0
and 1.
(iii) The tech-stocks of IBM and Microsoft are aggressive stocks with
estimates greater than 1.
(iv) Gold is a hedge stock with a beta-risk of —0.1750.

Jun YU () Econ671 Factor Models: Principal Componen April 8, 2016 57 / 59



A Latent Factor CAPM

@ The estimate of the first factor (5 ¢) is plotted over time (note that
the two factors are not scaled to have the same variances).

S1T E_MARKET
4 15
.10
24 05
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]
2] -10 4
5]
-4 T T T T T T T T T T T T T T -20 T T T T T T T T T T T T T T
1990 1992 1994 1996 1998 2000 2002 2004 1990 1992 1994 1996 1998 2000 2002 2004
Source: EViews file capm.wfl

@ These results show that there are some similarities in the two factors
as well as some differences.

@ The correlation between the two factors is 0.7614 showing that the
first factor is highly correlated with the excess returns on the market.
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End of Lecture
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