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Factor Models: Principal Components

Learning Objectives

1. Show how models in finance have a factor structure interpretation.

2. Understand principal components.

3. Deriving and interpreting an eigen decomposition.

4. A factor model of the term structure of interest rates.

Background Reading

1. “Matrices”, Handout on course website - especially the section on
eigenvalues and eigenvectors.

EViews Computer Files

1. yields_us.wf1

2. yields_us_loadings.wf1

3. capm.wf1
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Introduction

An important feature of many asset markets is that key variables
(returns, yields, spreads etc) often display similar features.

1. Mean
Asset markets tend to move together whereby the spreads between the
key variables are stationary, even though these key variables may be
nonstationary (cointegration).

2. Variance
Periods of turbulence and tranquility tend to coincide across asset
markets both locally and internationally, with the global financial crisis
representing an example of synchronized turbulence.

3. Dynamics
The dynamical behavior within classes of asset markets tend to exhibit
very similar autocorrelation patterns.
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Introduction

Example (Term Structure of Interest Rates)
The term structure of interest rates is the relationship between the yields
of a bond for differing maturities The Figure shows that U.S. Treasury
yields (%p.a.) for maturities from 1mthh to 10yrs, tend to move together.
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Introduction

Suggests that the time series characteristics of many financial
variables can be summarized by a small set of factors.

To formalise this model consider the following linear regression
equation

ri ,t = αi + βi st + ui ,t

where

- ri ,t is the return on the i th asset
- st is the factor (or set of factors) with parameters (vectors) αi , βi
- ui ,t is an unknown disturbance term representing idiosyncratic
movements in ri ,t .

It is important to distinguish between two types of factors.

1. Observable st
2. Unobservable st
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Introduction

1. Observable st
Time series are available on st , whereby the parameter βi is estimated
simply by regressing ri ,t on st . Typical examples of this type of model
are CAPM, and the Fama-French three-factor model.

Example (CAPM)
The CAPM

ri ,t − rf ,t = αi + βi (rm,t − rf ,t ) + ui ,t
is estimated for 6 assets using monthly data for the U.S. beginning May
1990 and ending July 2004. The OLS parameter estimates are summarised
below.

Asset: Exxon GE Gold IBM Microsoft Walmart
αi : 0.012 0.016 -0.003 0.004 0.012 0.007
βi : 0.502 1.144 -0.098 1.205 1.447 0.868
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Introduction

2. Unobservable st
Time series are not directly available on st making the application of
least squares to estimate αi and βi unworkable. There are two
solutions:

(a) Proxy variables
A proxy variable is used instead of st , but this creates errors in
variables problems. In fact, this is a common strategy, if adopted only
implicitly, with the application of the CAPM being a typical example.

(b) Latent variables
The statistical solution is to still treat st as an unobservable variable,
but to introduce additional structure on the model thereby providing
additional information to enable the parameters to be estimated.

This is the main focus of this and the next lecture!
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Introduction

If st is latent it is not immediately obvious how the parameters of

ri ,t = αi + βi st + ui ,t

can be identified when all of the terms on the right hand-side of the
equation

(i) Parameters : αi , βi
(ii) Explanatory variables : st
(iii) Disturbance term : ui ,t

are unknown.

Two broad methods are investigated to show how to address this
identification problem.

1. Principal Components (this lecture)
2. Kalman Filter (next lecture)
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The Role of Factors in Finance

To motivate the role of factors in finance various models are
presented, ranging from theoretical to purely statistical models.

An important feature of this discussion is the distinction between
factors that are observable and factors that are unobservable, that is
latent.

The examples consist of

1. Term Structure of Interest Rates
2. Capital Asset Pricing Model (CAPM)
3. Arbitrage Pricing Theory (APT)
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The Role of Factors in Finance
Term Structure of Interest Rates

Inspection of the U.S. Treasury yields (%p.a.) for maturities from 1
month to 10 years, reveals two important characteristics.
1. The levels of the yields tend to move together.
2. Neighboring yields move together more closely than yields with greater
differences in maturities. This latter empirical property of yields is
highlighted by the following correlation matrix.

corr =

1-mth 3-mth 6-mth 1-yr 2-yrs 3-yrs 5-yrs 7-yrs 10-yrs

1.000 0.998 0.992 0.985 0.960 0.933 0.869 0.787 0.702
0.998 1.000 0.997 0.992 0.968 0.940 0.872 0.787 0.700
0.992 0.997 1.000 0.997 0.974 0.945 0.874 0.784 0.697
0.985 0.992 0.997 1.000 0.987 0.964 0.901 0.816 0.734
0.960 0.968 0.974 0.987 1.000 0.993 0.952 0.885 0.812
0.933 0.940 0.945 0.964 0.993 1.000 0.979 0.929 0.867
0.869 0.872 0.874 0.901 0.952 0.979 1.000 0.984 0.949
0.787 0.787 0.784 0.816 0.885 0.929 0.984 1.000 0.987
0.702 0.700 0.697 0.734 0.812 0.867 0.949 0.987 1.000


.
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The Role of Factors in Finance
Term Structure of Interest Rates

These two characteristics suggest that a potential model to explain
the term structure of interest rates is given by at least a two-factor
model

ri ,t = αi + β1,i s1,t + β2,i s2,t + ui ,t , i = 1, 2, · · · , 9,

where ui ,t is the disturbance term and s1,t and s2,t are the factors
designed to

Level factor (s1,t ) : Capture the level of yields

Slope factor (s2,t ) : Capture the correlation between
neighbouring yields

As the two factors are implied by the data, they are latent factors.
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The Role of Factors in Finance
Capital Asset Pricing Model

The CAPM

ri ,t − rf ,t = αi + βi (rm,t − rf ,t ) + ui ,t
represents a single factor model given by the excess return on the
market rm,t − rf ,t , where the (market) factor is observable. Extending
the model to allow for other observable factors including Fama-French
factors, momentum, liquidity etc, generates a multi-factor CAPM.
From a theoretical point of view, the use of rm,t in the model actually
serves as a proxy for the excess return on all invested wealth. As this
is an unobservable variable, the excess return on the market portfolio,
rm,t − rf ,t , is essentially serving as a proxy.
This suggests that the more theoretically correct CAPM specification
is

ri ,t − rf ,t = αi + βi st + ui ,t
where st is now a latent factor representing the excess return on all
invested wealth.
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The Role of Factors in Finance
Arbitrage Pricing Theory

This is an alternative form of the CAPM equation where the
(unknown) excess return on wealth is extended to the multi-factor
version of the CAPM where all factors are unknown

ri ,t = αi +
K

∑
j=1

βi ,j sj ,t + ui ,t

where there are K latent factors (s1,t , s2,t , · · · , sK ,t ) and as before
ui ,t is a disturbance term representing the idiosyncratic factor (risk).
This is the arbitrage pricing model (APT) of Ross (1976). The factors
and the disturbance term are assumed to have the following properties

Factors : E [sj ,t ] = 0, E [sj ,tsk ,t ] =
{
1 : j = k
0 : j 6= k

Disturbance : E [ui ,t ] = 0, E [ui ,tuk ,t ] =
{

σ2i : i = k
0 : i 6= k

Covariance : E [ui ,tsj ,t ] = 0
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The Role of Factors in Finance
Arbitrage Pricing Theory

Historical Background: Stephen Ross (1943-)
He is the inventor of Arbitrage Pricing Theory and also very well known
for his work in finance including the CIR model of interest rates (he is the
“R”).
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The Role of Factors in Finance
Arbitrage Pricing Theory

These assumptions imply a decomposition of the covariance matrix of
rt = {r1,t , r2,t , · · · , rN ,t} .
In the case of a K = 1 factor model (let βi = βi ,1 for simplicity of
notation)

ri ,t = αi + βi s1,t + ui ,t

the covariance matrix is of the form (see the next tutorial for the
derivation of this result)

cov(rt ) =


β21 + σ21 β1β2 · · · β1βN

β2β1 β22 + σ22 β2βN
...

. . .
...

βN β1 βN β2 · · · β2N + σ2N


This result shows that the covariance matrix can be reorganized into
a factor structure which may be more informative about the
movements in returns.
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Principal Components
Specification

Consider the following model containing N asset returns
rt = {r1,t , r2,t , · · · , rN ,t} and K ≤ N factors st = {s1,t , s2,t , · · · , sK ,t}


r1,t
r2,t
...
rN ,t

−


α1
α2
...

αN

 =


β1,1 β1,2 · · · β1,K
β2,1 β2,2 · · · β2,K
...

...
. . .

...
βN ,1 βN ,2 · · · βN ,K



s1,t
s2,t
...
sK ,t

+

u1,t
u2,t
...
uN ,t


or in matrix notation

rt − αµ = βst + ut

where
- α is a (N × 1) vector containing the means of rt .
- st is a (K × 1) vector containing the factors.
- β is a (N ×K ) matrix containing the factor loadings.
- ut is a (N × 1) vector of disturbances.
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Principal Components
Specification

The vector of latent factors and the disturbance vector have the
properties

E [ut ] = 0, E
[
utu′t

]
= Ω

E [st ] = 0, E
[
sts ′t
]
= I ,

E
[
stu′t

]
= 0,

where Ω is a (N ×N) covariance matrix.
As E [st ] = E [ut ] = 0, the mean of the returns is

E [rt ] = E [µ+ βst + ut ] = µ+ βE [st ] + E [ut ] = µ

The factor equation
rt − α = βst + ut

shows that rt − α can be decomposed into a systematic component
(βst ) and an idiosyncratic component (ut ) .
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Principal Components
Specification

Given the properties of st and ut , the covariance structure of rt
simplifies as

cov (rt ) = E
[
(rt − α) (rt − α)′

]
= E

[
(βst + ut ) (βst + ut )

′]
= βE

[
sts ′t
]

β′ + βE
[
stu′t

]
+ E

[
uts ′t

]
β′ + E

[
utu′t

]
=

ββ′︸︷︷︸
Systematic Risk

+
Ω︸︷︷︸

Idiosyncratic Risk

This equation shows that the covariance matrix can be decomposed
in terms of two sources of factors/risks.

1. Systematic risk
(

ββ′
)
.

2. Idiosyncratic risk (Ω) .
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Principal Components
Specification

In the special case where the number of variables matches the
number of factors (N = K ) , there is an exact decomposition of the
covariance matrix of rt as Ω = 0 in this case, with the covariance
matrix cov (rt ) reducing to

cov (rt ) = ββ′ = β1β′1 + β2β′2 + · · · βN β′N

An important property of principal components is that they exhibit
the same features as this equation

cov (rt ) = λ1P1P ′1 + λ2P2P ′2 + · · ·+ λNPNP
′
N

where λi is the i th eigenvalue with (N × 1) orthonormal eigenvector
Pi , that is, P ′iPi = 1 and PiPj = 0, ∀i 6= j .
A comparison of these equations suggests that the loading parameter
vector βi be chosen as

βi =
√

λiPi , i = 1, 2, · · · ,N
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Principal Components
Specification

Now consider the N variances of rt = {r1,t , r2,t , · · · , rN ,t} ,
corresponding to the diagonal elements of cov (rt )
var (r1,t )
var (r2,t )

...
var (rN ,t )

 = λ1


P21,1
P22,1
...

P2N ,1

+ λ2


P21,2
P22,3
...

P2N ,2

+ · · ·+ λ1


P21,N
P22,N
...

P2N ,N


Given that the eigenvectors are normalized as P ′iPi = 1, then the sum
of the elements of each of the column vectors on the right hand-side
all equal unity, that is

P21,1 + P
2
2,1 + · · ·+ P2N ,1 = 1

P21,2 + P
2
2,2 + · · ·+ P2N ,2 = 1
...

...
...

P21,N + P
2
2,N + · · ·+ P2N ,N = 1
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Principal Components
Specification

Thus a measure of the total volatility of all asset returns
N

∑
i=1
var (ri ,t ) = var (r1,t ) + var (r2,t ) + · · ·+ var (rN ,t )

is achieved by combining all of the variance equations as
N

∑
i=1
var (ri ,t ) = λ1

(
P21,1 + P

2
2,1 + · · ·+ P2N ,1

)
+λ2

(
P21,2 + P

2
2,2 + · · ·+ P2N ,2

)
+ · · ·+ λN

(
P21,N + P

2
2,N + · · ·+ P2N ,N

)
Given the normalization of the eigenvectors, this equation simplifies to

N

∑
i=1
var (ri ,t ) = λ1 + λ2 + · · ·+ λN =

N

∑
i=1

λi

That is, the total volatility of all rt equals the sum of all eigenvalues.
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Principal Components
Specification

Instead of performing an eigen decomposition on the covariance
matrix cov (rt ), to circumvent scaling issues when variables are
measured in different units for example, the correlation matrix cor (rt )
can be used instead.

In this case as the correlation matrix contains unity on the main
diagonal by definition, then the sum of correlations becomes

N

∑
i=1

λi = N

By inspecting the relative magnitude of the largest eigenvalues it is
possible to quantify the proportion of the total variance of the data
that is explained by K < N principal components. Bai and Ng (2002,
Econometrica) propose a formal test of the number of factors based
on information criteria.
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The Role of Factors in Finance
Specification

Historical Background: Karl Pearson (1857 —1936)
Inventor of Principal Components plus many other well-used and
well-loved statistical techniques.
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Principal Components
Estimation

In practice it is necessary to estimate the eigenvalues and the
eigenvectors from the data.
As an example consider the following correlation matrix of the
1-month, 1-year and 5-year U.S. Treasury yields given earlier

cor (rt ) =

 1.000 0.985 0.869
0.985 1.000 0.901
0.869 0.901 1.000


The EViews commands to estimate the eigenvalues and eigenvectors
of cor (rt ), highlight the 3 series and double click the shaded region
and then click

Open Group / View / Principal Components... / Calculation

For Type: choose
Correlation / OK

The output is given in the following window.
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Principal Components
Estimation

Source: EViews yields_us.wf1
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Principal Components
Estimation

The estimated eigenvalues and eigenvectors of the correlation matrix
are respectively

λ̂ =

 2.8370.151
0.012

 , P̂ =

 0.581 −0.490 0.649
0.588 −0.299 −0.752
0.563 0.819 0.114

 .
with the columns of P̂ representing the three eigenvectors

P̂1 =

 0.5810.588
0.563

 , P̂2 =

 −0.490−0.299
0.819

 , P̂3 =

 0.649
−0.752
0.114

 ,
corresponding to the order of the three eigenvalues in λ̂.

The use of the “^”emphasises that the population parameters λ and
P are estimated from the data.
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Principal Components
Estimation

Recovering the Correlation Matrix from the Decomposition
The correlation matrix is recovered as follows:
1. Diagonal elements (ie own correlations)

cor (r1,t ) = 2.837× (0.581)2 + 0.151× (−0.490)2

+0.012× (0.649)2

= 1.000

cor (r2,t ) = 2.837× (0.588)2 + 0.151× (−0.299)2

+0.012× (−0.752)2

= 1.000

cor (r3,t ) = 2.837× (0.563)2 + 0.151× (0.819)2

+0.012× (0.144)2

= 1.000
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Principal Components
Estimation

2. Off-diagonal elements

cor (r1,t , r2,t ) = 2.837× (0.581)× (0.588)
+0.151× (−0.490)× (−0.299)
+0.012× (0.649)× (−0.752)

= 0.985

cor (r1,t , r3,t ) = 2.837× (0.581)× (0.563)
+0.151× (−0.490)× (0.819)
+0.012× (0.649)× (0.144)

= 0.869

cor (r2,t , r3,t ) = 2.837× (0.588)× (0.563)
+0.151× (−0.299)× (0.819)
+0.012× (−0.752)× (0.144)

= 0.901
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Principal Components
Estimation

Properties of the Estimates

Some key properties of the parameter estimates are as follows.
1. Normalization of eigenvectors

0.5812 + 0.5882 + 0.5632 = 1.000

(−0.490)2 + (−0.299)2 + 0.8192 = 1.000

0.6492 + (−0.752)2 + 0.1142 = 1.000

2. Orthogonality of eigenvectors

P̂ ′1P̂2 = 0.581× (−0.490) + 0.588× (−0.299) + 0.563× 0.819
= 0

P̂ ′1P̂3 = 0.581× 0.649+ 0.588× (−0.752) + 0.563× 0.114
= 0

P̂ ′2P̂3 = (−0.490)× (0.649) + (−0.299)× (−0.752) + 0.819× 0.114
= 0

Jun YU () Econ671 Factor Models: Principal Components April 8, 2016 29 / 59



Principal Components
Estimation

3. Eigenvalues
As it is the correlation matrix that is being used in the eigen
decomposition, the eigenvalues sum to N = 3

3

∑
i=1

λ̂i = 2.837+ 0.151+ 0.012 = 3

The normalized eigenvalues are

2.837
3

+
0.151
3

+
0.012
3

= 0.946+ 0.050+ 0.004 = 1

The first eigenvalue explains 94.6% of the total variance, the second
explains an additional 5%, while the contribution of the third and last
eigenvalue is 0.4%.
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Principal Components
Estimation

4. Factor loadings

β̂1 =

√
λ̂1P̂1 =

√
2.837

 0.581
0.588
0.563

 =
 0.979
0.990
0.948


β̂2 =

√
λ̂2P̂2 =

√
0.151

 −0.490−0.299
0.819

 =
 −0.190−0.116

0.318


β̂3 =

√
λ̂3P̂3 =

√
0.012

 0.649
−0.752
0.114

 =
 0.071
−0.082
0.012


5. Intercepts
As E [rt ] = α, an estimate of α is given by the sample mean of rt given
by

α̂ = r =
[
2.038 2.393 3.472

]′
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Principal Components
Estimation

The K = 1 Estimated Factor Model

The estimated model is

r1,t = α̂1 + β̂1,1s1,t + û1,t
= 2.038+ 0.979 s1,t + û1,t

r2,t = α̂2 + β̂2,1s1,t + û2,t
= 2.393+ 0.990 s1,t + û3,t

r3,t = α̂3 + β̂3,1s1,t + û3,t
= 3.472+ 0.948 s1,t + û3,t

An increase in the factor s1,t , results in all 3 yields increasing by
similar amounts.

This suggests that s1,t is a LEVEL factor.
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Principal Components
Estimation

As E
[
s21,t
]
= 1, the systematic risks are

ĥ1 = β̂
2
1,1 = 0.979

2 = 0.958

ĥ2 = β̂
2
2,1 = 0.990

2 = 0.980

ĥ3 = β̂
2
3,1 = 0.948

2 = 0.899

The idiosyncratic risks are

var (û1,t ) = var (r1,t )− ĥ1,t = 1.000− 0.958 = 0.042
var (û2,t ) = var (r2,t )− ĥ2,t = 1.000− 0.980 = 0.020
var (û3,t ) = var (r3,t )− ĥ3,t = 1.000− 0.899 = 0.101
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Principal Components
Estimation

The K = 2 Estimated Factor Model

The estimated model is

r1,t = 2.038+ 0.979s1,t − 0.190s2,t + û1,t
r2,t = 2.393+ 0.990s1,t − 0.116s2,t + û2,t
r3,t = 3.472+ 0.948s1,t + 0.318s2,t + û3,t

An increase in the factor s2,t , widens the spreads between all 3 yields
as r1,t falls, as does r2,t but by a smaller amount, whilst r3,t increases.

This suggests that s2,t is a SLOPE factor as it changes the slope of
the yield curve.
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Principal Components
Estimation

As E
[
s21,t
]
= E

[
s22,t
]
= 1, the systematic risks are

ĥ1 = β̂
2
1,1 + β̂

2
1,2 = 0.979

2 + (−0.190)2 = 0.994

ĥ2 = β̂
2
2,1 + β̂

2
2,2 = 0.990

2 + (−0.116)2 = 0.993

ĥ3 = β̂
2
3,1 + β̂

2
3,2 = 0.948

2 + 0.3182 = 0.999

The idiosyncratic risks are

var (û1,t ) = var (r1,t )− ĥ1 = 1.000− 0.994 = 0.006
var (û2,t ) = var (r2,t )− ĥ2 = 1.000− 0.993 = 0.007
var (û3,t ) = var (r3,t )− ĥ3 = 1.000− 0.999 = 0.001
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Principal Components
Estimation

The K = 3 Estimated Factor Model
The estimated model is

r1,t = 2.038+ 0.979s1,t − 0.190s2,t + 0.071s3,t
r2,t = 2.393+ 0.990s1,t − 0.116s2,t − 0.082s3,t
r3,t = 3.472+ 0.948s1,t + 0.318s2,t + 0.012s3,t .

There are no idiosyncratic terms in this model as 3 factors perfectly
explain the movements of the 3 interest rates.

Nonetheless it is sometimes hard to diversify all latent factors!
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Principal Components
Estimation

As E
[
s21,t
]
= E

[
s22,t
]
= E

[
s23,t
]
= 1, the systematic risks now equal

the diagonal components of the correlation matrix as

ĥ1 = β̂
2
1,1 + β̂

2
1,2 + β̂

2
1,3 = 0.979

2 + (−0.190)2 + 0.0712 = 1.000

ĥ2 = β̂
2
2,1 + β̂

2
2,2 + β̂

2
2,3 = 0.990

2 + (−0.116)2 + (−0.082)2 = 1.000

ĥ3 = β̂
2
3,1 + β̂

2
3,2 + β̂

2
3,3 = 0.948

2 + 0.3182 + 0.0122 = 1.000

In which case the idiosyncratic risks are all zero

var (û1,t ) = var (r1,t )− ĥ1 = 1.000− 1.000 = 0.000
var (û2,t ) = var (r2,t )− ĥ2 = 1.000− 1.000 = 0.000
var (û3,t ) = var (r3,t )− ĥ3 = 1.000− 1.000 = 0.000
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Principal Components
Factor Extraction

Method

Since ri ,t = αi + βi s1,t + ui ,t , i = 1, ...,N, having estimated the
factor model, estimates of the vector of factor loadings at time t are
obtained as

ŝt = (β̂
′
Ω̂−1 β̂)−1 β̂

′
Ω̂−1 (rt − µ̂)

where ŝt is a (K × 1) vector of the estimated factors at time t, β̂ is a
(N ×K ) estimated matrix of factor loadings, Ω̂ is the (N ×N)
covariance matrix of ût , rt is a (N × 1) vector of interest rates and µ̂
is a (N × 1) vector of sample means corresponding to the vector of
interest rates.
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Principal Components
Factor Extraction

If Ω̂ = σ2I ,K = 1, then ŝt =
∑N
i=1 β̂i (rit−µ̂i )

∑N
i=1 β̂

2
i

. The bigger the factor

loading, the more importance of the variable in determining the factor.

This expression shows that the factors at time t are a (weighted)
linear function of the actual interest rates at time t.
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Principal Components
Factor Extraction

EViews Commands

The EViews commands to extract the factors, highlight the 3 series
and double click the shaded region and then click

Open Group / Proc / Make Principal Components...

For Scores series names:, write in the window

Level Slope Curvature

Then click Calculation and for Type: choose

Correlation / OK

The output will be presented in a spreadsheet.
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Principal Components
Factor Extraction

Interpretation
The three factors are plotted over time.
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Source: EViews file yields_us.wf1

The results show that:
(i) The LEVEL factor dominates the SLOPE and CURVATURE factors.
(ii) As the LEVEL factor tracks the three yields this suggests that a

1-factor model suffi ces to explain the three yields.
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A Multi-Factor Model of Interest Rates

Consider the N = 9, U.S. Treasury yields (percentage, annualized)
from July 2001 to September 2010, presented in the Figure earlier.

The N = 9 eigenvalues of the correlation matrix from highest to
lowest are

λ̂ = {8.2339, 0.7123, 0.0427, 0.0078, 0.0018,
0.0006, 0.0005, 0.0002, 0.0001}

The proportionate contributions of the first three eigenvalues are

λ̂1 =
8.2339
9

= 0.915, λ̂2 =
0.7123
9

= 0.079, λ̂3 =
0.0427
9

= 0.005

This suggest that a K = 3 factor model explains the U.S. term
structure with the first three eigenvalues explaining
0.915+ 0.079+ 0.005 = 0.999, or 99.9% of the total
variance/correlation in the yields.
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A Multi-Factor Model of Interest Rates

The estimated factor loadings on the first factor are computed as

β̂1,1
β̂2,1
β̂3,1
β̂4,1
β̂5,1
β̂6,1
β̂7,1
β̂8,1
β̂9,1


=
√
8.2339



0.3340
0.3351
0.3355
0.3400
0.3460
0.3464
0.3389
0.3214
0.3003


=



0.9583
0.9617
0.9626
0.9757
0.9928
0.9941
0.9724
0.9221
0.8617


The other factor loadings are computed in a similar way.
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A Multi-Factor Model of Interest Rates

The following Figure plots the loadings of the first three factors which
are identified respectively as level, slope and curvature.
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A Multi-Factor Model of Interest Rates

Factor Interpretation

1. Level Factor
The first factor represents a levels effect as a shock to this factor
raises all yields by approximately the same amount.

2. Slope Factor
The second factor is a slope factor as a positive shock twists the yield
curve by lowering short rates (negative loadings) and raising long
rates (positive loadings).

3. Curvature Factor
The third factor is a curvature factor which bends the yield curve by
simultaneously raising the very short and long rates (positive
loadings), while lowering (negative loadings) the intermediate rates at
around 2 years (24 months) and 3 years (36 months).
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A Multi-Factor Model of Interest Rates

The three factors are plotted over time.
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Source: EViews file yields_us.wf1

During the recent crisis:
(i) The LEVEL factor falls showing that all yields were falling.
(ii) The SLOPE factor becomes negative suggesting an inverted yield curve.
(iii) The CURVATURE factor becomes negative at the end of 2008,

suggesting that short and long yields fall relative to intermediate yields.
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A Latent Factor CAPM

The latent multi-factor CAPM is

ri ,t − rf ,t = αi +
K

∑
j=1

βi ,j sj ,t + ui ,t

where sj ,t are unobserved latent factors.
The data are the excess returns on 6 stocks consisting of Exxon, GE,
Gold, IBM, Microsoft and Walmart. The data are monthly beginning
in April 1990 and ending in July 2004.
The covariance matrix is

cov (rt ) =



0.0019 0.0009 -0.0002 0.0014 0.0009 0.0006
0.0009 0.0053 -0.0004 0.0020 0.0032 0.0018
-0.0002 -0.0004 0.0009 -0.0005 -0.0006 -0.0004
0.0014 0.0020 -0.0005 0.0088 0.0048 0.0011
0.0009 0.0032 -0.0006 0.0048 0.0113 0.0024
0.0006 0.0018 -0.0004 0.0011 0.0024 0.0057


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A Latent Factor CAPM

The EViews output from the principal components decomposition based
on the covariance matrix is

Source: EViews file capm.wf1
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A Latent Factor CAPM

The N = 6 eigenvalues of the covariance matrix from highest to
lowest are

λ̂ = {0.017418, 0.005877, 0.004750, 0.003589, 0.001511, 0.000828}

The total sum of the eigenvalues is

0.033973 = 0.017418+ 0.005877+ 0.004750+ 0.003589

+0.001511+ 0.000828

This sum equals the total volatility of all 6 excess returns as given by
the sum of their variances

0.033973 = 0.001913+ 0.005358+ 0.000887+ 0.008771

+0.011307+ 0.005737
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A Latent Factor CAPM

The proportionate contributions of the first three eigenvalues to total
volatility are

λ̂1 =
0.017418
0.033973

= 0.5127

λ̂2 =
0.005877
0.033973

= 0.1730

λ̂3 =
0.004750
0.033973

= 0.1398

- The first factor explains 51.27% of total volatility (equal to 0.033973).
- The second factor explains 17.30% of total volatility.
- The third factor explains 13.98% of volatility.

So the first three factors explain jointly

0.5127+ 0.1730+ 0.1398 = 0.8255

or 82.55% of total volatility. This suggests that a 1-factor CAPM is
potentially inappropriate and there is a need for a 3-factor model
(maybe even higher).
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A Latent Factor CAPM

To estimate the multi-factor CAPM, the intercepts (αi ) are estimated
using the sample means as given by the EViews output.

Source: EViews file capm.wf1
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A Latent Factor CAPM

Using the first eigen vector, the K = 1 factor CAPM is estimated as

β̂1 =

√
λ̂1P̂1 =

√
0.017418



0.122268
0.330706
−0.056703
0.535891
0.720721
0.256614

 =


1.6137× 10−2
4.3646× 10−2
−7.4835× 10−3
7.0725× 10−2
9.5119× 10−2
3.3867× 10−2


These results show that

(i) Gold moves in the opposite direction to the other assets, which is
consistent with the asset representing a hedge stock.

(ii) Microsoft has the highest loading, equal to 9.5119× 10−2, showing
that this asset responds the most to changes in the factor s1,t ,
compared to the other stocks. This result is consistent with Microsoft
being an aggressive stock at least relative to the other stocks.
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A Latent Factor CAPM

Using the sample means and the loadings on the first factor, the
estimated K = 1 factor model is then

Exxon : r1,t = 0.013836+ 1.6137× 10−2s1,t + û1,t
GE : r2,t = 0.019874+ 4.3646× 10−2s1,t + û2,t
Gold : r3,t = −0.003052− 7.4835× 10−3s1,t + û3,t
IBM : r4,t = 0.008706+ 7.0725× 10−2s1,t + û4,t
Microsoft : r5,t = 0.017464+ 9.5119× 10−2s1,t + û5,t
Walmart : r6,t = 0.010084+ 3.3867× 10−2s1,t + û6,t

For comparison the OLS estimates of the CAPM with the excess
return on the market as the (observable) factor are given below.

The beta-risk estimates are very different from the two models. Part
of the reason for this is that the variance of s1,t by construction is
normalized to be unity, whereas the variance of the excess return on
the market rm,t − rf ,t , is not.
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A Latent Factor CAPM
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A Latent Factor CAPM

To make the beta-risk estimates commensurate across the two
estimated models the approach is to rescale s1,t to make it equivalent
to the variance of rm,t − rf ,t .
The EViews output of the descriptive statistics of rm,t − rf ,t shows
that the variance is

var (rm,t − rf ,t ) = 0.0427642
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Source: EViews file capm.wf1
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A Latent Factor CAPM

Reconsider the 1-factor CAPM

ri ,t − rf ,t = αi + βi ,1s1,t + ui ,t

Defining σm as the standard deviation of the excess return on the
market, then the model is rewritten as

ri ,t − rf ,t = αi + βi ,1
σm
σm
s1,t + ui ,t

= αi +
βi ,1
σm

(σms1,t ) + ui ,t

Here the factor know has a variance equal to the variance of the
excess return on the market as

E
[
(σms1,t )

2
]
= σ2mE

[
s21,t
]
= σ2m × 1 = σ2m

Thus, the rescaled beta-risk estimates are obtained by dividing the
loading vector βi ,1, by the standard deviation of σm = rm,t − rf ,t .
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These rescaled beta estimates are

β̃1 =
β̂1

0.042764
=



1.6137× 10−2/0.042764
4.3646× 10−2/0.042764
−7.4835× 10−3/0.042764
7.0725× 10−2/0.042764
9.5119× 10−2/0.042764
3.3867× 10−2/0.042764

 =


0.3773
1.0206
−0.1750
1.6538
2.2243
0.7919


Interpretation:

(i) GE tracks the market with a beta-risk of 1.0206.
(ii) Exxon and Walmart are conservative stocks with estimates between 0

and 1.
(iii) The tech-stocks of IBM and Microsoft are aggressive stocks with

estimates greater than 1.
(iv) Gold is a hedge stock with a beta-risk of −0.1750.
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A Latent Factor CAPM

The estimate of the first factor (ŝ1,t ) is plotted over time (note that
the two factors are not scaled to have the same variances).

­.4

­.2

.0

.2

.4

1990 1992 1994 1996 1998 2000 2002 2004

S1T

­.20

­.15

­.10

­.05

.00

.05

.10

.15

1990 1992 1994 1996 1998 2000 2002 2004

E_MARKET

Source: EViews file capm.wf1

These results show that there are some similarities in the two factors
as well as some differences.
The correlation between the two factors is 0.7614 showing that the
first factor is highly correlated with the excess returns on the market.
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End of Lecture
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