
Econ 623 Econometrics II

Topic 3: Non-stationary Time Series

1 Types of non-stationary time series models often

found in economics

• Deterministic trend (trend stationary):

Xt = f(t) + εt,

where t is the time trend and εt represents a stationary error term (hence both the

mean and the variance of εt are constant. Usually we assume εt ∼ ARMA(p, q)

with mean 0 and variance σ2)

– f(t) is a deterministic function of time and hence the model is called the

deterministic trend model.

– Why non-stationary? E(Xt) = f(t)(depends on t, hence not a constant),

V ar(Xt) = σ2(constant)

– Since εt is stationary, Xt is fluctuating around f(t), the deterministic trend.

Xt has no obvious tendency for the amplitude of the fluctuations to increase

or decrease since V ar(Xt) is a constant. (Xt could increase or decrease,

however.)

– Xt− f(t) is stationary. For this reason a deterministic trend model is some-

times called a trend stationary model.

– Assume εt = φ(L)et, et ∼ iid(0, σ2
e). If we label et the innovation or the shock

to the system, the innovation must have a transient, diminishing effect on

X. Why?
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Example: Xt = δ0 + δ1t + φ(L)et, with φ(L) = 1 + αL + α2L2 + · · · and

|α| < 1

So Xt = δ0 + δ1t+ εt, εt = αεt−1 + et

εt = φ(L)et measures the deviation of the series from trend in period t. We

wish to examine the effect of an innovation et on εt, εt+1, ...

εt = et + αet−1 + α2et−2 + ...

which gives ∂εt+s
∂et

= αs (impulse response)

Therefore, when there is a shock to the economy, a deterministic trend model

implies the shock has a transient effect. Sooner or later the system will be

back to the deterministic trend.

– If f(t) = c1 + c2t, we have a linear trend model. It is widely used.

– If f(t) = Aert, we have an exponential growth curve
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– If f(t) = c1 + c2t+ c3t
2, we have a quadratic trend model

– If f(t) = 1
k+abt

, we have a logistic curve
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• Stochastic trend (unit root or difference stationarity):

Xt = µ+Xt−1 + εt

where εt is a stationary process (hence both the mean and the variance of εt are

constant. Usually we assume εt ∼ ARMA(p, q) with mean 0 and variance σ2)

– Another representation: (1− L)Xt = µ+ εt

– Solving 1 − L = 0 for L, we have L = 1, justifying the terminology “unit

root”.

– Pure random walk: Xt = Xt−1 + et, et
iid

˜N(0, σ2
e)

1. Xt =
∑t−1

j=0 et−j if we assume X0 = 0 with probability 1

2. E(Xt) = 0, V ar(Xt) = tσ2
e →∞

3. Non-stationarity. Xt is wandering around and can be anywhere.
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– Random walk with a drift: Xt = µ+Xt−1 + et, et
iid∼ N(0, σ2

e)

1. Xt = tµ+
∑t−1

j=0 et−j if we assume X0 = 0 with probability 1

2. E(Xt) = tµ→∞, V ar(Xt) = tσ2
e →∞

3. Non-stationarity.

4. As E(Xt) = tµ, a stochastic trend (or unit root) model could behave

similar to a model with a linear deterministic trend.

– In a random walk model, Xt = tµ+
∑t

j=0 et−j. If we label et−j the innovation

or the shock to the system, the innovation has a permanent effect on Xt

because
∂Xt

∂et−j
= 1, ∀ j > 0.

This is true for all models with a unit root. Therefore, when there is a shock

to the economy, a unit root model implies that the shock has a permanent

effect. The system will begin with a new level every time.

– In a trend-stationary model

Xt = δ0 + δ1t+ φXt−1 + et, |φ| < 1,

we have
∂Xt

∂et−j
= φj → 0.

So the innovation has a transient effect on Xt
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– A deterministic trend model and a stochastic trend (or unit root) model

could behave similar to each other. However, knowing whether non-stationarity

in the data is due to a deterministic trend or a stochastic trend (or unit

root) would seem to be a very important question in economics. For ex-

ample, macroeconomists are very interested in knowing whether economic

recessions have permanent consequences for the level of future GDP, or in-

stead represent temporary downturns with the lost output eventually made

up during the recovery.

– If (1− L)Xt = εt ∼ ARMA(p, q), we say Xt ∼ ARIMA(p, 1, q) or Xt is an

I(1) process.

– If (1−L)dXt = εt ∼ ARMA(p, q), we say Xt ∼ ARIMA(p, d, q) or Xt is an

I(d) process.

6



• Why linear time trends and unit roots?

– Why linear trends? Indeed most GDP series, such as many economic and

financial series seem to involve an exponential trend rather than a linear

trend (apart from a stochastic trend). Suppose this is true, then we have

Yt = exp(δt)

However, if we take the natural log of this exponential trend function, we

will have,

lnYt = δt

Thus, it is common to take logs of the data before attempting to describe

them. After we take logs, most economic and financial time series exhibit a

linear trend. This is why researchers often take the logarithmic transforma-

tion before doing analysis.

– Why unit roots? After taking logs, Suppose a time series follows a unit root

rather than a linear trend, we have (1−L) lnYt = εt, where εt is a stationary

process, such as ARMA(p,q). However, (1−L) lnYt = ln(Yt/Yt−1) = ln(1 +

Yt−Yt−1

Yt−1
) ≈ Yt−Yt−1

Yt−1
. So the rate of growth of the series Yt is stationary. For

example, if Yt represents CPI and lnYt is a I(1) process, then (1 − L) lnYt

represent inflation rate and is a stationary process.
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• Explosive trend: Xt+1 = φXt + εt, φ > 1, X0 = 0.

• Why explosive trends?

– Let Pt be the stock price (or house price) at time t before the dividend

payout or rental, Dt be the dividend payoff from the asset at time t, and r

be the discount rate (r > 0). The standard no arbitrage condition implies

that

Pt =
1

1 + r
Et(Pt+1 +Dt+1), (1.1)

and recursive substitution yields

Pt = Ft +Bt, (1.2)

where Ft =
∞∑
i=1

(1 + r)−iEt(Dt+i) and

Et(Bt+1) = (1 + r)Bt. (1.3)

the asset price is decomposed into two components, a “fundamental” com-

ponent, Ft, that is determined by expected future dividends, and a sup-

plementary solution corresponding to the “bubble” component, Bt. When

Bt = 0, Pt = Ft. Otherwise, Pt = Ft + Bt and price embodies the explosive

component Bt. Consequently, under bubble conditions, Pt will manifest the

explosive behavior inherent in Bt.

• Other forms of nonstationarity: structural break in mean, structural break in

variance.
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2 Processes with Deterministic Trends

• Model with a simple linear trend

Xt = δt+ et, t = 1, ..., T.

• Let the OLS estimator of δ be δ̂T , ie,

δ̂T =

∑
Xtt∑
t2

= δ +

∑
ett∑
t2
.

• If et ∼ N(0, σ2), then

δ̂T ∼ N

(
δ,

σ2∑
t2

)
= N

(
δ,

6σ2

T (T + 1)(2T + 1)

)
.

This is the exact small-sample normal distribution. The corresponding t statistic√
T (T + 1)(2T + 1)δ̂T√

6σ̂2
T

has exact small-sample t distribution, where σ̂2
T = 1

T−1

∑(
Xt − δ̂T t

)
.
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• If et
iid∼ (0, σ2) and has finite fourth moment, we have to find the asymptotic

distributions for δ̂T .

• Note that

T 3/2
(
δ̂T − δ

)
=
T−1/2

∑
ett/T

T−3
∑
t2

.

• Also note that {ett/T} is a MDS with (1) σ2
t = E(e2

t t
2/T 2) = σ2t2/T 2 and

1
T

∑
σ2t2/T 2 → σ2/3; (2) E|ett/T |4 < ∞; (3) 1

T

∑
e2
t t

2/T 2 p→ σ2/3. The reason

for (3) to hold is because

E

(
1

T

∑
e2
t t

2/T 2 − 1

T

∑
σ2
t

)2

= E

(
1

T

∑(
e2
t − σ2

)
t2/T 2

)2

=
1

T 6
E
(
e2
t − σ2

)2
∑

t4 → 0.

• Applying CLT for MDS to {ett/T}, we get T−1/2
∑
ett/T

d→ N(0, σ2/3). Since

T−3
∑
t2 → 1/3, T 3/2

(
δ̂T − δ

)
d→ N(0, 3σ2).

• Consider the t statistic:√
T (T + 1)(2T + 1)

(
δ̂T − δ

)
√

6σ̂2
T

=

√
T (T + 1)(2T + 1)T 3/2

(
δ̂T − δ

)
√

6σ̂2
T

d→ N (0, 1) .

.
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• Model with a simple linear trend

Xt = α + δt+ et.

• If et
iid∼ (0, σ2) and has finite fourth moment, then[

T−1/2
∑
et

T−1/2
∑

(t/T ) et

]
d→ N

([
0
0

]
, σ2

[
1 1

2
1
2

1
3

])
.

• Need to find the asymptotic distributions for α̂T and δ̂T and the rate of conver-

gence is different.[
T 1/2 (α̂T − α)

T 3/2
(
δ̂T − δ

) ] d→ N

([
0
0

]
, σ2

[
1 1

2
1
2

1
3

]−1
)
.

• The corresponding t statistics converge to N (0, 1).
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3 Unit Root Tests and A Stationarity Test

• The theory of ARMA method relies on the assumption of stationarity.

• The assumption of stationarity is too strong for many macroeconomic time series.

For example, many macroeconomic time series involve trend (both deterministic

trends and stochastic trends – unit root).

• Tests for a unit root. Various test statistics are often used in practice: Augmented

Dickey-Fuller (ADF) test, Phillips and Perron (PP) test.

• Test for stationarity: Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test.

• Three possible alternative hypotheses for the unit root tests

1. no constant and no trend: Xt = φXt−1 + et, |φ| < 1

2. constant but no trend: Xt = α + φXt−1 + et, |φ| < 1

3. constant and trend: Xt = α + φXt−1 + δt+ et, |φ| < 1
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• First consider the AR(1) process, Xt = φXt−1 + et, ut
iid∼ N(0, σ2)

• Stationarity requires |φ| < 1

• If |φ| = 1, Xt is nonstationary and has a unit root

• Test H0 : φ = 1 against H1 : |φ| < 1

• How to estimate φ? OLS estimation, ie, φ̂ =
∑
XtXt−1∑
X2
t−1

= φ +
∑
Xt−1et∑
X2
t−1

. Stock

(1994) shows that the OLS estimator of φ is superconsistent.

• What is the distribution or asymptotic distribution of φ̂− φ?

• Recall from the standard model, y = Xβ + e

– If X is non-stochastic, β̂ − β ∼ N(0, σ2(X
′
X)−1)

– If X is stochastic and stationary with some restrictions on autocovariance,
√
T (β̂ − β)

d→ N(0, σ2Q−1) where Q = p lim X′X
T
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3.1 Classical Asymptotic Theory for Covariance Stationary
Process

• Consider the AR(1) process, Xt = φXt−1 + et, et ∼ iidN(0, σ2) with |φ| < 1

• For this model E(Xt) = 0, V ar(Xt) = σ2

1−φ2 ≡ σ2
X , γj = φjV ar(Xt).

• What is the asymptotic property of X = 1
T

∑T
t=1Xt?

• We haveE(X) = 0, V ar(X) = E(X
2
) = V ar(Xt)

T

(
1 + 2T−1

T
φ+ 2T−2

T
φ2 + · · ·+ 2 1

T
φT−1

)
→

0. So X
r2→ 0⇒ X

p→ 0

• Also, TV ar(X)→
∑∞

j=−∞ γj, which is called the long-run variance.

• The consistency is generally true for any covariance stationary process with con-

dition
∑∞

j=0 |γj| <∞.

• Martingale Difference Sequence (MDS): E(Xt|Xt−1, ..., X1) = 0 for all t

• MDS is serially uncorrelated but not necessarily independent.

• MDS does not need to be stationary.
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• Theorem (White, 1984): Let {Xt} be a MDS with XT = 1
T

∑T
t=1 Xt Suppose

that (a) E(X2
t ) = σ2

t > 0 with 1
T

∑T
t=1 σ

2
t → σ2 > 0, (b) E|Xt|r < ∞ for some

r > 2 and all t, and (c) 1
T

∑T
t=1X

2
t

p→ σ2. Then
√
TXT

d→ N(0, σ2).

• Theorem (Andersen, 1971): Let

Xt =
∑∞

t=0 ψjεt−j

where {εt} is a sequence of iid variables with E(ε2
t ) < ∞ and

∑∞
j=0 |ψj| < ∞.

Let γj be the jth order autocovariance. Then

√
TXT

d→ N(0,
∑∞

j=−∞ γj)

• To know more about asymptotic theory for linear processes, read Phillips and

Solo (1991).
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3.2 Dickey-Fuller Test

• Under H0, however, we cannot claim
√
T (φ̂− φ)

d→ N(0, σ2Q−1) because Xt−1 is

not stationary.

• If Xt = φXt−1 + et, and H0 : φ = 1, we have φ̂− 1 =
∑
Xt−1et∑
X2
t−1

• Consider X2
t = (Xt−1 + et)

2 =⇒ Xt−1et = 1
2
(X2

t − X2
t−1 − e2

t ) =⇒
∑
Xt−1et =

1
2
(X2

T −X2
0 −

∑
e2
t )

• Let X0 = 0,
∑
Xt−1et = 1

2
(X2

T −
∑
e2
t )

• et
iid∼ (0, σ2) =⇒ e2

t ∼ iid with E(e2
t ) = σ2. By LLN, 1

T

∑
e2
t

p→ σ2

• XT = X0 +
∑T

t=1 et =
∑
et

a∼ N(0, Tσ2) =⇒ XT√
Tσ

d→ N(0, 1) =⇒ X2
T

Tσ2

d→ χ2
(1)

• 1
Tσ2

∑
Xt−1et = 1

2
(
X2
T

Tσ2 −
∑
e2t

Tσ2 )
d→ 1

2
(χ2

(1) − 1)

• What is the limit behavior of
∑
X2
t−1? We need to introduce the Brownian Mo-

tion.
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3.2.1 Brownian Motion

• Consider Xt = Xt−1 + et, X0 = 0, et ∼ iidN(0, 1) =⇒ Xt =
∑t

j=1 ej ∼ N(0, t)

• ∀t > s,Xt −Xs =
∑t

j=1 ej −
∑s

j=1 ej = es+1 + ...+ et ∼ N(0, (t− s))

• Also note that, Xt −Xs is indept of Xr −Xq if t > s > r > q

• What happen if we go from the discrete case to the continuous case? We have

the standard Brownian Motion (BM). It is denoted by B(t)

• A stochastic process Bt over time is a standard Brownian motion if for small

time interval ∆, the change in Bt,∆Bt(≡ Bt+∆−Bt), follows the following prop-

erties:

1. ∆Bt = e
√

∆ where e ∼ N(0, 1)

2. ∆Bt and ∆Bs for changes over any non-overlapping short intervals are in-

dependent

• The above two properties imply the following:

1. E(∆Bt) = 0

2. Var(∆Bt) = ∆

3. σ(∆Bt) =
√

∆
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• In general we have

BT −B0 =
N∑
i=1

ei
√

∆

• Due to the above, we have

E(BT −B0) = 0

Var(BT −B0) = T

σ(BT −B0) =
√
T

18



• Therefore, for the Brownian motion, results for the mean and variance in small

intervals also apply to large intervals.

• When ∆→ 0, we write the Brownian motion as:

dBt = e
√

∆

where dBt should be interpreted as the change in the Brownian motion over an

arbitrarily small time interval.
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• Sample paths of the Brownian motion are continuous everywhere but not smooth

anywhere.

• Derivative of the Brownian motion does not exist anywhere and the process is

infinitely “kinky”.

• A Brownian motion is nonstationary as Var(BT ) drifts up with t. The transition

density is

BT+∆|BT ∼ N(BT ,∆).

• A Brownian motion is also called a Wiener process. It has no drift. Now we

extend it to the generalized Wiener process.

• We can define et = e1t + e2t, e1t, e2t ∼ N(0, 1/2), yt+ 1
2

= yt + e1t

• Definition of the BM: W (t) = σB(t)
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• Note:

1. B(0) = 0

2. B(t) ∼ N(0, t) or B(t) is a Gaussian process

3. E(B(t+ h)−B(t)) = 0, E(B(t+ h)−B(t))2 = |h|

4. E(B(t)B(s)) = min{t, s}

5. If t > s > r > q,B(t) − B(s) is indept of B(r) − B(q), ie, B(t) has indept

increment

6. Since B(t) is a Gaussian process, it is completely specified by its covariance

matrix

7. If B(t) is a BM, then so is B(t+ a)−B(a), λ−1B(λ2t),−B(t)

8. The sample path of BM is continuous in time with probability 1

9. No point differentiable
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• Return to the unit root test. Xt = X0 +
∑t

j=1 ej. Define pt =
∑t

j=1 ej = pt−1 + et

• Change the time index from T = {1, ..., T} to t with 0 ≤ t ≤ 1

• Define YT (t) = 1
σ
√
T
p[Tt], if j−1

T
≤ t ≤ j

T
, j = 1, ..., T. [Tt] = integer part of Tt

• For instance, YT (1) = 1
σ
√
T
pT

• YT (t) =


0 if 0 ≤ t ≤ 1

T
p1
σ
√
T

if 1
T
≤ t ≤ 2

T
pj−1

σ
√
T

if j−1
T
≤ t ≤ j

T

• Two important theorems

1. Functional CLT: YT (·) d→ B(·)

2. Continuous mapping theorem: if f is a continuous function, f(YT (t))
d→

f(B(t))
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• Note that YT (1)
d→ N(0, 1), YT (1/2)

d→ N(0, 1/2), YT (r)
d→ N(0, r), ∀r ∈ [0, 1].

• ∀r1, r2 ∈ [0, 1], r2 > r1, YT (Tr2)− YT (Tr2)
d→ N(0, r2 − r1).

•
∑T

t=1 Xt =
∑T

t=1 pt−1 +
∑T

t=1 et if X0 = 0.

•
∫ j/T

(j−1)/T
YT (t)dt =

pj−1

σT
√
T

=⇒
∑
pj−1 = σT

√
T
∑T

j=1

∫ j/T
(j−1)/T

YT (t)dt = σT
√
T
∫ 1

0
YT (t)dt

•
∑T

t=1 Xt = σT
√
T
∫ 1

0
YT (t)dt+

√
T
∑
ej√
T

=⇒
∑T
t=1Xt

T
√
T

= σ
∫ 1

0
YT (t)dt+ 1

T

∑
ej√
T

• By FCLT and CMT,
∑T
t=1Xt

T
√
T

d→ σ
∫ 1

0
B(t)dt
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•
∑T

t=1 X
2
t−1 = X2

0 + · · ·+X2
T−1 = X2

1 + · · ·+X2
T−1 =

∑T
t=1X

2
t −X2

T =
∑T

t=1 p
2
t−p2

T

• Recall p2
j−1 = σ2T 2

∫ j/T
j−1/T

Y 2
T (t)dt =⇒

∑
p2
j−1 = σ2T 2

∫ 1

0
Y 2
T (t)dt and p2

T =

σ2TY 2
T (1)

• Therefore,
∑T
t=1X

2
t−1

T 2

d→ σ2
∫ 1

0
B2(t)dt

• Under H0, T (φ̂− φ)
d→

1/2(χ2
(1)
−1)∫ 1

0 B
2(t)dt

• Phillips (1987) proved the above result under very general conditions.

• Note:

1. This limiting distribution is non-standard

2. The numerator and denominator are not independent.

3. It is called the Dickey-Fuller distribution since Dickey and Fuller (1976) uses

Monte-Carlo simulation to find the critical values of
χ2
(1)
−1

2
∫ 1
0 B

2(t)dt
and tabulate

them.
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1. T−1/2
∑T

t=1 et
d→ σB(1);

∑T
t=1 et ∼ Op(T

1/2)

2. T−1
∑T

t=1 pt−1et
d→ 1

2
σ2 {B2(1)− 1} ;

∑T
t=1 pt−1et ∼ Op(T )

3. T−3/2
∑T

t=1 tet
d→ σB(1)− σ

∫ 1

0
W (r)dr;

∑T
t=1 tet ∼ Op(T

3/2)

4. T−3/2
∑T

t=1 pt−1
d→ σ

∫ 1

0
B(r)dr;

∑T
t=1 pt−1 ∼ Op(T

3/2)

5. T−2
∑T

t=1 p
2
t−1

d→ σ2
∫ 1

0
B2(r)dr;

∑T
t=1 p

2
t−1 ∼ Op(T

2)

6. T−5/2
∑T

t=1 tpt−1
d→ σ

∫ 1

0
rB(r)dr;

∑T
t=1 tpt−1 ∼ Op(T

5/2)

7. T−3
∑T

t=1 tp
2
t−1

d→ σ2
∫ 1

0
rB2(r)dr;

∑T
t=1 tp

2
t−1 ∼ Op(T

3)

8.
∑T

t=1 t = T (T + 1)/2 ∼ O(T 2)
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3.2.2 Case 1 (no drift or trend in the regression):

• In case 1, we test{
H0 : Xt = Xt−1 + et
H1 : Xt = φXt−1 + et with |φ| < 1

• This is equivalent to{
H0 : ∆Xt = et
H1 : ∆Xt = βXt−1 + et with β < 0

• We estimate the following model using the OLS method:

∆Xt = βXt−1 + et, et
iid∼ (0, σ2

e).
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• The OLS estimator of β is defined by β̂T , which is biased but consistent.

• The test statistic (known as the DF Z test or the coefficient statistic) is defined

as T β̂T . Under H0, T β̂T
d→

1/2(χ2
(1)
−1)∫ 1

0 B
2(r)dr

.

•
1/2(χ2

(1)
−1)∫ 1

0 B
2(r)dr

is not a normal distribution. See Table B.5 for the critical values of

this distribution. The finite sample distribution of β̂T is not normal. See Table

B.5 for the critical values for different sample sizes.

• Alternatively, we can use t-statistic β̂T
ŝe(β̂T )

. Under H0, it can be shown that

β̂T

ŝe(β̂T )
=
T β̂T

(
T−2

∑
X2
t−1

)1/2

σ̂T

d→
1/2

(
χ2

(1) − 1
)

[∫ 1

0
B2(r)dr

]1/2
.

Although it is called the Dickey-Fuller t-statistic, it is no longer a t distribution.

See Table B.6 for the critical values of this distribution and the critical values of

the finite sample distribution for different sample sizes.
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3.2.3 Case 2 (constant but no trend in the regression):

• We test{
H0 : ∆Xt = et
H1 : ∆Xt = α + βXt−1 + et with β < 0

• In case 2, we estimate the following model using the OLS method:

∆Xt = α + βXt−1 + et, et
iid∼ N(0, σ2

e)

• The DF Z test statistic is T β̂T . Under H0, T β̂T
d→

1/2(χ2
(1)
−1)−B(1)

∫ 1
0 B(r)dr∫ 1

0 B
2(r)dr−(

∫ 1
0 B(r)dr)

2 . See

Table B.5 for the critical values of this distribution and the critical values of the

finite sample distribution for different sample sizes.

• Proof of the Asymptotic Distribution:

The OLS estimates are[
α̂T
β̂T

]
=

[
T

∑
Xt−1∑

Xt−1

∑
X2
t−1

]−1 [ ∑
et∑

Xt−1et

]
=

[
Op(T ) Op(T

3/2)
Op(T

3/2) Op(T
2)

]−1 [
Op(T

1/2)
Op(T )

]
.
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Let g(T ) = diag(T 1/2, T ), then[
T 1/2α̂T
T β̂T

]
= g(T )

[
T

∑
Xt−1∑

Xt−1

∑
X2
t−1

]−1 [ ∑
et∑

Xt−1et

]
=

{
g−1(T )

[
T

∑
Xt−1∑

Xt−1

∑
X2
t−1

]
g−1(T )

}−1

g−1(T )

[ ∑
et∑

Xyt−1et

]
=

[
1 T−3/2

∑
Xt−1

T−3/2
∑
Xt−1 T−2

∑
X2
t−1

]−1 [
T−1/2

∑
et

T−1
∑
Xt−1et

]
d→

[
1 σ

∫ 1

0
B(r)dr

σ
∫ 1

0
B(r)dr σ2

∫ 1

0
B2(r)dr

]−1 [
σB(1)

1
2
σ2 {B2(1)− 1}

]
.

• Alternatively, we can use t-statistic β̂T
ŝe(β̂T )

d→
1/2(χ2

(1)
−1)−B(1)

∫ 1
0 B(r)dr(∫ 1

0 B
2(r)dr−(

∫ 1
0 B(r)dr)

2
)1/2 under H0.

Although it is called the Dickey-Fuller t-statistic, it is no longer a t distribution.

See Table B.6 for the critical values of this distribution and the critical values of

the finite sample distribution for different sample sizes.

29



3.2.4 Case 2b (H0: Random Walk with Drift):

• What if the true model is a random walk with drift, ie, Xt = α + Xt−1 + et =

X0 + tα +
∑t

j=1 ej? (α 6= 0)

•
∑
Xt−1 = TX0 + T (T − 1)α/2 +

∑
pt−1 ∼ Op(T

2)

• T−2
∑
Xt−1

p→ α/2, T−3
∑
X2
t−1

p→ α2/3,
∑
Xt−1et ∼ Op(T

3/2)

• Let g(T ) = diag(T 1/2, T 3/2), then[
T 1/2α̂T
T 3/2β̂T

]
=

{
g−1(T )

[
T

∑
Xt−1∑

Xt−1

∑
X2
t−1

]
g−1(T )

}−1 [
T−1/2

∑
et

T−3/2
∑
Xt−1et

]

• The first term converges to

[
1 α/2
α/2 α2/3

]−1

. Since T−3/2
∑
Xt−1et

p→ T−3/2
∑
α(t−

1)et, the second term converges to[
T−1/2

∑
et

T−3/2
∑
Xt−1et

]
d→ N

([
0
0

]
, σ2

[
1 α/2
α/2 α2/3

])
.

And hence, [
T 1/2α̂T
T 3/2β̂T

]
d→ N

([
0
0

]
, σ2

[
1 α/2
α/2 α2/3

]−1
)
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3.2.5 Case 3 (constant and trend in the regression):

• We test{
H0 : ∆Xt = et
H1 : ∆Xt = α + βXt−1 + δt+ et with β < 0

or{
H0 : ∆Xt = α + et
H1 : ∆Xt = α + βXt−1 + δt+ et with β < 0

• In this case, we estimate the following model using the OLS method:

Xt = α + φXt−1 + δt+ et, et
iid∼ N(0, σ2

e)

• Xt = α(1−φ) +φ(Xt−1−α(t− 1)) + (δ+φα)t+ et = α∗+φpt−1 + δ∗t+ et, where

pt−1 = Xt−1 − α(t− 1) is a pure random walk if φ = 1 (ie β = 0) and δ = 0.
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• Let g(T ) = diag(T 1/2, T, T 3/2), then
T 1/2α̂∗T

T
(
φ̂T − 1

)
T 3/2

(
δ̂∗T − α

)
 =

g−1(T )

 T
∑
pt−1

∑
t∑

pt−1

∑
p2
t−1

∑
tpt−1∑

t
∑
tpt−1

∑
t2

 g−1(T )


−1  T−1/2

∑
et

T−1
∑
pt−1et

T−3/2
∑
tet


d→

 1 σ
∫
Bdr 1/2

σ
∫
B(r)dr σ2

∫
B2dr σ

∫
rBdr

1/2 σ
∫
rBdr 1/3

−1  σB(1)
1
2
σ2 [B2(1)− 1]

σ
[
B(1)−

∫
Bdr

]


=

 σ 0 0
0 1 0
0 0 σ

 1
∫
Bdr 1/2∫

Bdr
∫
B2dr

∫
rBdr

1/2
∫
rBdr 1/3

−1  B(1)
1
2

[B2(1)− 1]
B(1)−

∫
Bdr

 .
• So the aymptotic distribution of φ̂T (and hence β̂T ) is independent of σ and α.
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• The Dickey-Fuller Z test statistic is T β̂T . Under H0, the asymptotic distribution

is not a normal distribution. See Table B.5 for the critical values of the asymptotic

distribution distribution and the critical values of the finite sample distribution

for different sample sizes.

• Alternatively, we can use the Dickey-Fuller t-statistic β̂T
ŝe(β̂T )

whose asymptotic

distribution distribution is no longer a t distribution. See Table B.6 for the

critical values of this distribution for different sample sizes.

Test Statistic 1% 2.5% 5% 10%
Case 1 -2.56 -2.34 -1.94 -1.62
Case 2 -3.43 -3.12 -2.86 -2.57
Case 3 -3.96 -3.66 -3.41 -3.13

When the sample size is 100, the critical values for the Dickey-Fuller t-statistic

are given in the table below

Test Statistic 1% 2.5% 5% 10%
Case 1 -2.60 -2.24 -1.95 -1.61
Case 2 -3.51 -3.17 -2.89 -2.58
Case 3 -4.04 -3.73 -3.45 -3.15

33



3.2.6 Which case to use in practice?

• Use Case 3 test for a series with an obvious trend, such as GDP

• Use Case 2 test for a series without an obvious trend, such as interest rates. For

variables such as interest rate we should use Case 2 rather than Case 1 since if

the data were to be described by a stationary process, surely the process would

have a positive mean. However, if you strongly believe a series has a zero mean

when it is stationary, use Case 1.
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3.3 Augmented DF (ADF) Test

• The model in the null hypothesis considered in the DF test is a class of highly

restrictive unit root models.

• Suppose the model in the null hypothesis is Xt = Xt−1 + ut, ut = κut−1 + et.

Unless κ = 0, the DF test is not applicable.

• The above model implies the following AR(2) model for Xt,

Xt = (1 + κ)Xt−1 − κXt−2 + et = Xt−1 + κ∆Xt−1 + et

• In general, if

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + et, et ∼ iid(0, σ2
e), (3.4)

then the DF test is not applicable.

• Model (3.4) can be represented by

Xt = φXt−1 + φ1∆Xt−1 + ...+ φp−1∆Xt−p+1 + et, et ∼ iid(0, σ2
e),

where φ =
∑p

i=1 φi

• So if φ = 1, {Xt} is a unit root process; if |φ| < 1, {Xt} is a stationary process.
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• In Case 2, the ADF test is based on the OLS estimator of β from the following

regression model,

∆Xt = α + βXt−1 + φ1∆Xt−1 + ...+ φp−1∆Xt−p+1 + et, et ∼ iid(0, σ2
e)

• In Case 3, the ADF test is based on the OLS estimator of β from the following

regression model,

∆Xt = α + δt+ βXt−1 + φ1∆Xt−1 + ...+ φp−1∆Xt−p+1 + et, et ∼ iid(0, σ2
e)

• Based on the OLS estimator of β, the ADF test statistic, β̂T
ŝe(β̂T )

, can be used. It

has the same asymptotic distribution as the DF t statistic.
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3.4 Phillips-Perron (PP) Test

• Xt = Xt−1 + ut,Φ(L)ut = Θ(L)et, et ∼ iidN(0, σ2
e), so ut is an ARMA process.

Phillips and Perron (1988) proposed a nonparametric method of controlling for

possible serial correlation in ut.

• There are two PP test statistics. One of them (so-called PP Z test) is the

analogue of T β̂T . The other (so-called PP t test) is the analogue of β̂T
ŝe(β̂T )

. PP

Z test has the same sampling distribution as T β̂T under all three cases in the

previous section. PP t test has the same sampling distribution as β̂T
ŝe(β̂T )

under all

three cases in the previous section.

• In Case 2, both PP tests are based on the OLS estimator of β from the following

regression model,

∆Xt = α + βXt−1 + εt, where εt ∼ ARMA

• In this case, the PP Z test statistic is defined by T β̂T − 1
2
(T 2σ̂2

β̂T
÷ s2

T )(λ2 − γ0),

where s2
T = (T − 2)−1

∑
(Xt − α̂T − φ̂TXt−1)2, λ = σΘ(1), γ0 = E(u2

t )

• In Case 3, both PP tests are based on the OLS estimator of β from the following

regression model,

∆Xt = α + δt+ βXt−1 + εt, where εt ∼ ARMA
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3.5 Kwiatkowski, Phillips, Schmidt, and Shin (KPSS, 1992)
Test

• Unlike the tests we have thus far introduced, KPSS test is a test for stationarity or

trend-stationarity, that is, it tests for the null of stationarity or trend stationarity

against the alternative of a unit root.

• It is assumed that one can decompose Xt into the sum of a deterministic trend,

a random walk and a stationary error

Xt = ξt+ rt + ut (3.5)

rt = rt−1 + et (3.6)

where et
iid∼ N(0, σ2

e). The initial value r0 is assumed to be fixed.

• If σ2
e = 0, Xt is trend-stationary. If σ2

e > 0, Xt is a non-stationary.
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• KPSS test is a one-sided Lagrange Multiplier (LM) test

• The KPSS statistic is based on the residuals from the OLS regression of Xt on

the exogenous variables Zt = 1 or (1, t):

Xt = δ′Zt + εt

• The LM statistic is be defined as: ∑T
t=1 S(t)2

T 2f0

,

where f0 is an estimator of the long-run variance and S(t) is a cumulative residual

function:

S(t) =
t∑

s=1

ε̂s

• Critical values for the KPSS test statistic are:

Level of Significance 10% 5% 2.5% 1%
Crit value (case 2) 0.347 0.463 0.574 0.739
Crit value (case 3) 0.119 0.146 0.176 0.216
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• If the LM test statistic is larger than the critical value, we have to reject the null

of stationarity (or trend-stationarity).

• In general εt is not a white noise. As a result, the long run variance is different

from the short run variance. One way to estimate the long run variance is to

nonparametrically estimate the spectral density at frequency zero, that is, com-

pute a weighted sum of the autocovariances, with the weights being defined by a

kernel function. For example, a nonparametric estimate based on Bartlett kernel

is

f̂0 =
T−1∑

h=−(T−1)

γ̂(h)K(h/l),

where l is a bandwidth parameter (which acts as a truncation lag in the covariance

weighting), and γ̂(h) is the h-th sample autocovariance of the residuals ε̂, defined

as,

γ̂(h) =
T∑

t=h+1

ε̂tε̂t−h/T,

and K is the Barlett kernel function defined by

K(x) =

{
1− |x| if |x| ≤ 1

0 otherwise
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4 Revisit to Box-Jenkins

• If the null hypothesis cannot be rejected, difference the data (ie, Xt−Xt−1 = ut)

to achieve stationarity.

• In the case where both a stochastic trend and a linear deterministic trend are

involved, the first difference transformation leads to a stationary process.

• Test for a unit root in the differenced data. If the null hypothesis cannot be

rejected, difference the differenced data until stationarity is achieved.

• ARMA(p, q)+one unit root =ARIMA(p, 1, q)

• ARMA(p, q)+d unit roots =ARIMA(p, d, q)

5 Limitations of Box-Jenkins

• The Data Generating Process has to be time-invariant. This assumption can be

too restrictive for an economy undergoing a period of transition and for data

covering a long sample period.

• What if the data is explosive, ie φ > 1.

• What if a nonlinear deterministic trend is involved.

• What if the data follow a trend stationary process.

• Unit root tests and model selection are done in two separate steps.
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6 Explosive Models

• Model: Xt+1 = φXt + εt, φ > 1, X0 = 0. Let φ̂ be the LS estimator of φ. We will

show that when εt ∼ N(0, σ2),

φT

φ2−1

(
φ̂− φ

)
⇒ Cauchy. (6.7)

When εt
iid∼ (0, σ2) but is not necessarily normally distributed, then

φT

φ2−1

(
φ̂− φ

)
⇒ P/Q,

where P and Q are the limits of PT and QT defined by

PT =
T∑
t=1

φ−tεt and QT =
T∑
t=1

φ−(T−t)εt. (6.8)

• To prove (6.7), note that

Xt = εt + φεt−1 + . . .+ φt−1ε1 + φtX0 = εt + φεt−1 + . . .+ φt−1ε1.

• Let Pt = Xt/φ
t = φ−tεt + φ−t+1εt−1 + . . .+ φ−1ε1 which is normally distributed.

Pt is a martingale since E(Pt|It−1) = φ−t+1εt−1 + . . .+φ−1ε1 = Pt−1 and E(P 2
t ) =∑t

s=1 φ
−2sσ2 =

∑t
s=1 σ

2(1−φ2(t−1))/(1−φt), and hence suptE(P 2
t ) =

∑∞
s=1 σ

2(1−

φ2(t−1))/(1− φ2) = σ2/(φ2 − 1).
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• By the Martingale Convergence Theorem, Pt
a.s.→ P = φ−1ε1 + . . .+ φ−tεt + . . . ∼

N(0, σ2/(φ2 − 1)).

• Let L be an integer and satisfies 1
L

+ L
T
→ 0 as T →∞. Consider

1

φ2T

T∑
t=1

X2
t−1 =

1

φ2T

T∑
t=1

(
Xt−1

φt−1

)2

φ2(t−1)

=
1

φ2T

T∑
t=L+1

(
Xt−1

φt−1

)2

φ2(t−1) +
1

φ2T

L∑
t=1

(
Xt−1

φt−1

)2

φ2(t−1)

=
1

φ2T

T∑
t=L+1

(P + oa.s.(1))2 φ2(t−1) +Oa.s.

(
Lφ2L

φ2T

)

=
1

φ2T

T∑
t=1

P 2φ2(t−1) + oa.s. (1) =
1

φ2T
P 2φ

2T − 1

φ2 − 1

a.s.→ P 2

φ2 − 1
.
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• Consider

1

φT

T∑
t=1

Xt−1εt =
1

φT

T∑
t=1

(
Xt−1

φt−1

)
εtφ

t−1

=
1

φT

T∑
t=L+1

(
Xt−1

φt−1

)
εtφ

t−1 +
1

φT

L∑
t=1

(
Xt−1

φt−1

)(
εtφ

t−1
)

=
1

φT

T∑
t=L+1

(P + oa.s.(1)) εtφ
t−1 +Oa.s.

(
LφL

φT

)

=
1

φT

T∑
t=1

Pεtφ
t−1 + oa.s. (1) = P

1

φT

T∑
t=1

εtφ
t−1 + oa.s. (1)

= P
[
φ−1εt + φ−2εt−1 + . . .+ φ−T ε1

]
+ oa.s. (1) .

• Qt = φ−1εt + φ−2εt−1 + . . . + φ−tε1 is normally distributed and Qt
a.s.→ Q ∼

N(0, σ2/(φ2 − 1)).

• Note that Cov(PT , QT ) =
∑T

t=1 σ
2/φT+1 = Tσ2/φT+1 → 0. So PT and QT are

asymptotically independent, and P and Q are independent.

• So
φT

φ2−1

(
φ̂− φ

)
=

1
φ2−1

1
φT

∑T
t=1Xt−1εt

1
φ2T

∑T
t=1 X

2
t−1

a.s.→ PQ

P 2
=
Q

P
= Cauchy.
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• Asymptotic distribution of OLS estimator of AR coefficient

Model Asymptotic distribution

Xt = φXt + εt, |φ| < 1, X0 ∼ Op(1)
√
T
(
φ̂− φ

)
⇒ N(0, 1− φ2)

Xt = d+ φXt + εt, |φ| < 1, X0 ∼ Op(1)
√
T
(
φ̂− φ

)
⇒ N(0, 1− φ2)

Xt = φXt + εt, φ = 1, X0 ∼ Op(1) T
(
φ̂− 1

)
⇒
∫
BdB/

∫
B2

Xt = d+ φXt + εt, φ = 1, d = 0, X0 ∼ Op(1) T
(
φ̂− 1

)
⇒

∫
BdB−B(1)

∫
B∫

B2−[
∫
B]

2

Xt = d+ φXt + εt, φ = 1, d 6= 0, X0 ∼ Op(1) T 3/2
(
φ̂− 1

)
⇒ N

(
0, 12σ2

d2

)
Xt = φXt + εt, X0 = 0, |φ| > 1, εt

iid∼ N(0, σ2) φT

φ2−1

(
φ̂− φ

)
⇒ Cauchy
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