
Econ 623 Econometrics II
Topic 2: Stationary Time Series

1 Introduction

• In the regression model we can model the error term as an autoregression —AR(1)

process. That is, we can use the past value of the error term to explain the current

value of the error term. This idea can be generalized to any variable, such as,

Yt = φYt−1 + et

• Time series model: a series is modeled only in terms of its own past values, time

trend and some disturbance. Often, a series which is modeled only in terms of it

own past values and some disturbance is referred to as a time series model.

• Why time series? Difference between regression models and time series models?

—Regression: assume one variable is related to another variable. Once we

know the relationship, we know how to make inference and we know how to

use one variable(s) to predict another variable. In the regression world, all

different variables are related to each other according to economic theories,

intuition or expectation.
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—Time series: assume one variable is related to its history. There is something

which triggers the series to evolve over time. We are not making any attempt

to discover the relationships between different variables probably because

the relationships are too complicated or the underlying economic theory is

not so clear. However, we try to find out the underlying dynamic behavior

of one variable over time (time series pattern triggered by any system).

The mechanism which produces an economic varible over time is referred

to as the data generating process (DGP). If we know DGP, we know

everything about the time series properties of any variable. Hence we can

make inferences about the variable and use the realised values of this variable

to forecast future values of this variable since we believe the new series will

be also generated by the same DGP.

—GDP=f(monetary policy, fiscal policy, inflation, real interest, import, ex-

port,...)

—GDPt=f(GDPt−1,GDPt−2, ...)

• Xt = f(Xt−1, Xt−2, ..., εt, εt−1, ...)
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2 Important Concepts

• A stochastic process is a set of random variable, typically indexed by time.

• {Xt}Tt=1 is a Gaussian white noise procesess if Xt ∼ N(0, σ2)

• A realization is a set of T observations, say {X(k)
t }Tt=1. If we have K independent

realizations, ie {X(k)
t }Tt=1, k = 1, ..., K, then X(1)

t , ..., X
(K)
t can be described as a

sample of K realizations of random variable Xt. This random variable has some

density which is typically called the marginal density or unconditional density

(f(x)). From the unconditional density, one can obtained unconditional mo-

ments. For example, the unconditional mean is E(Xt) =

+∞∫
−∞

xf(x)dx ≡ µt. By

SLLN for an iid sequence, plim 1
K

K∑
k=1

X
(k)
t = E(Xt). Similarly, one can define

unconditional variance.

• Given a particular realization {X(1)
t }Tt=1, we construct a vector Y

(1)
t which con-

tains the [j+ 1] most recent observations on X: Y (1)
t =

[
X

(1)
t · · · X

(1)
t−j

]′
. As

before, if we have K independent realizations, for each vector, we have K inde-

pendent realizations, Y (k)
t , k = 1, ..., K. This random vector has a joint density

(f(xt, ..., xt−j)). From the joint density, one can obtained autocovariance. For

example, jth autocovariance of Xt is

γjt =

+∞∫
−∞

· · ·
+∞∫
−∞

(xt−E(Xt))(xt−j −E(Xt−j))f(xt, ..., xt−j)dxt · · · dxt−j = E(Xt−

µt)(Xt−j − µt−j)

By SLLN, plim 1
K

K∑
k=1

(X
(k)
t − µt)(X

(k)
t−j − µt−j) = E(Xt − µt)(Xt−j − µt−j).
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• {Xt}Tt=1 is a covariance stationary process if

1. E(Xt) = µ <∞ ∀ t

2. V ar(Xt) = σ2 <∞ ∀ t

3. Cov(Xt, Xt−j) = γj ∀ t, ∀ j 6= 0.

• What happens when we only work with one realization? For example, what are

the properties of the time series average 1
T

T∑
t=1

X
(1)
t . Note that in general SLLN

for the iid sequence is not applicable any more since X(1)
t is not independent

over t. Whether 1
T

T∑
t=1

X
(1)
t converges to µ for a stationary process has to do with

ergodicity. A covariance stationary process is said to be ergodic for the mean

if plim 1
T

T∑
t=1

X
(1)
t = µ as T → ∞. It requires the autocovariance γj goes to zero

suffi ciently quickly as j becomes large (for example
∞∑
j=0

|γj| < ∞ for covariance

stationary processes). Similarly, a covariance stationary process is said to be

ergodic for second moments if plim 1
T−j

T∑
t=j+1

(X
(1)
t − µ)(X

(1)
t−j − µ) = γj.
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• Partial correlation coeffi cient

—Three variables: X1, X2, X3. Let ρ12 be the correlation coeffi cient between

X1 and X2. Similarly we define ρ13 and ρ23.

—Partial correlation coeffi cient between X1 and X3, with the influence of

variable X2 removed, is defined as
ρ13−ρ12ρ23√
1−ρ212
√

1−ρ223

— In fact it can be estimated by the OLS estimator of β2 in the following

regression model

Xt = β0 + β1Xt−1 + β2Xt−2 + et
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• ACF (autocorrelation function): a function of h.

— ρj = γj/γ0, where γ0 = V ar(Xt)

— ρ0 = 1

—The graphical representation is called “correlogram”.

—ACF at j can be estimated by the sample counterpart,
∑T
t=j+1(Xt−X)(Xt−j−X)∑T

t=1(Xt−X)2
.

This is a consistent estimator of ACF.

• PACF (partial ACF): a function of k.

—PACF at k is the correlation between Xt and Xt−k, with the influence of

variable Xt−1, ..., Xt−k+1 removed

—PACF at k can be estimated by running a regression and obtaining the

coeffi cient of Xt−k: X̂t = α0(k) + α1(k)Xt−1 + ... + αk(k)Xt−k. α̂k(k) is a

consistent estimator of PACF.

—The graphical representation is called “partial correlogram”.
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3 Autoregressive andMoving Average (ARMA)Model

• AR(1): Xt = φXt−1 + et et ∼ iidN(0, σ2
e)

—Xt = et + φet−1 + φ2et−2 + · · · if |φ| < 1 (*)

—E(Xt) = 0, V ar(Xt) = σ2e
1−φ2 if |φ| < 1

— ρj = φj,∀j. ACF geometrically decreases with the number of the lags

— Since
∞∑
j=0

|γj| <∞ when |φ| < 1, it is ergodic for the mean.

—α1(1) = φ, αk(k) = 0∀k > 1. PACF cuts off after the first lag
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• AR(1) with a drift: Xt = µ+ φXt−1 + et et ∼ iidN(0, σ2
e)

— (1− φL)Xt = µ+ et

—Xt = µ
1−φ + et + φet−1 + φ2et−2 + · · · if |φ| < 1

— covariance stationary if |φ| < 1

— not covariance stationary if |φ| ≥ 1

— a unit root process if φ = 1. A more general unit root process is Xt =

µ+Xt−1 + ut where ut is stationary.

— explosive if φ > 1.

—E(Xt) = µ
1−φ , V ar(Xt) = σ2e

1−φ2 if stationary

— ρj = φj, ∀j. ACF geometrically decreases with the number of the lags

— Since
∞∑
j=0

|γj| <∞ when |φ| < 1, it is ergodic for the mean.

—α1(1) = φ, αk(k) = 0∀k > 1. PACF cuts off after the first lag
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—Estimation of φ in Yt = φYt−1 + et et ∼ iidN(0, σ2
e)

1. OLS = conditional maximum likelihood (ML) under Gaussianity.

2. Conditional ML or exact ML if we know the distribution function of e.

Xt+1|Xt ∼ N(φXt−1, σ
2
e).

3. φ̂ols has no exact distribution function even under normality assumption

on et. Phillips (1977, Econometrica) found an edgeworth expansion to

approximate the finite sample distribution of φ̂ols. E(φ̂ols) does not

have a closed-form expression. White (1961, Biometrika) showed that

E(φ̂ols) ≈ φ− 2φ
T

4. φ̂ols is consistent. We have to use the asymptotic distribution to test a

hypothesis.
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AR(1) w ith phi=0.6
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—Estimation of φ in Xt = µ+ φXt−1 + et et ∼ iidN(0, σ2
e)

1. OLS = conditional maximum likelihood (ML) under Gaussianity.

2. Conditional ML or exact ML if we know the distribution function of e.

Xt+1|Xt ∼ N(µ+ φXt−1, σ
2
e)

3. φ̂ols has no exact distribution function even under normality assumption

on et. Tanaka (1983, Econometrica) found an edgeworth expansion to

approximate the finite sample distribution of φ̂ols. E(φ̂ols) does not

have a closed-form expression. Kendall (1954, Biometrika) showed that

E(φ̂ols) ≈ φ− 1+3φ
T

4. φ̂ols is consistent. φ̂ols = φ̂mle.
√
n
(
φ̂mle − φ

)
d→ N(0, 1 − φ2) which

can be used to test a hypothesis.
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—Deriving the finite sample bias of φ̂ols in the AR(1) model without intercept

1. From Equation (5.3.19) in Priestley (1981), we have

E(XtXt+rXsXs+r+v) = E(XtXt+r)E(XsXs+r+v) + E(XtXs)E(Xt+rXs+r+v)

+ E(XtXs+r+v)E(Xt+rXs).

2.
∑∑

φ|t−s| = T 1+φ
1−φ+2φT+1−2φ

(1−φ)2
,
∑∑

φ|t−s|+|t−s−1| = T 2φ
1−φ2+ (1+φ2)(φ2T+1−φ)

(1−φ2)2

3. Let φ̂ols =
1
T

∑
XtXt−1

1
T

∑
X2
t−1
≡ UT

VT
,with UT = 1

T

∑
XtXt−1 and VT = 1

T

∑
X2
t−1.

4. Defining V ar(Xt) by σ2
X , we have Cov(Xt, Xt+i) = φ|i|σ2

X , E(UT ) =

φσ2
X and E(VT ) = σ2

X .
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5. We also have

Cov(UT , VT ) =
1

T 2

∑∑
Cov(X2

t , XsXs+1)

= σ4
X

2

T 2

∑∑
φ|t−s|+|t−s−1|

=
2σ4

X

T 2

[
T

2φ

1− φ2
+

(1 + φ2)(φ2T+1 − φ)

(1− φ2)2

]
, (1)

V ar(VT ) =
1

T 2

∑∑
Cov(X2

t , X
2
s )

=
2σ4

X

T 2

∑∑
φ2|t−s|

=
2σ4

X

T 2

[
T

1 + φ2

1− φ2
+

2φ2T+2 − 2φ2

(1− φ2)2

]
, (2)

6. Taking the Taylor expansion to the first two terms, we have

E
(
φ̂ols

)
= E

(
UT
VT

)
=
E(UT )

E(VT )
− Cov(UT , VT )

E2(VT )
+
E(UT )V ar(VT )

E3(VT )
+ o(T−1)

(3)

= φ− 2φ

T
+ o(T−1)
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• AR(p): Xt = µ+
∑p

i=1 φiXt−i + et, et ∼ iidN(0, σ2
e)

— covariance stationary if the roots of 1−φ1z− · · · −φpzp = 0 lie outside the

unit circle (ie the absolute values of the roots are greater than unity).

—E(Xt) = µ
1−
∑p
i=1 φi

—αk(k) = 0∀k > p. PACF cuts off after the pth lag

—ACFs for the first p lags are more complicated than those in the AR(1)

process. After the first p lags, however, the ACF geometrically decreases as

the number of the lags increases

—
∑p

i=1 φi = 1 implies a unit root.
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AR(2) w ith phi=0.6 and 0.3
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—Estimation

1. OLS = conditional ML under Gaussianity.

2. Conditiona ML or exact ML if we know the distribution function of e.

3. φ̂’s are consistent. In AR(2),

√
n
(
φ̂ols − φ

)
d→ N

[(
0

0

)
,

(
1− φ2

2 −φ1 (1 + φ2)
−φ1 (1 + φ2) 1− φ2

2

)]
which can be used to test a hypothesis.

• MA(1): Xt = µ+ et − θet−1, et ∼ iid(0, σ2
e)

—Always covariance stationary∀θ

—E(Xt) = µ, V ar(Xt) = σ2
e(1 + θ2)

— ρ1 = −θ
1+θ2

, ρh = 0∀h > 1. ACF cuts off after the first lag.
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—ACF remains the same when θ becomes 1/θ.

—αk(k) = (−1)kθk(θ2−1)
1−θ2k+2 . PACF does not cut off.

— If |θ| < 1, MA(1) process is invertible. In this case PACF geometrically

decreases with the number of the lags

—Relationship between MA(1) (with |θ| < 1) and AR(∞)

—Estimation

1. ML if we know the distribution function of e. Xt|et−1 ∼ N(µ−θet−1, σ
2
e).
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MA(1) w ith theta=0.6
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• MA(q): Xt = µ+ et − θ1et−1 − · · · − θqet−q, et ∼ iidN(0, σ2
e)

— covariance stationary

—The PACFs for the first q lags are more complicated than those in the MA(1)

process. After the first q lags, however, the PACF geometrically decreases

to 0 as the number of the lags increases

— ρj = 0 ∀j > q. ACF will cut off after the qth lag

—Estimation

1. ML if we know the distribution function of e.

2. θ̂mle is consistent.
√
n
(
θ̂mle − θ

)
d→ N(0, 1− θ2) which can be used to

test a hypothesis.
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MA(1) w ith theta=­0.6
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• MA(∞): Xt = µ+ et − θ1et−1 − θ2et−2 − · · · , et ∼ iidN(0, σ2
e)

— covariance stationary if
∞∑
j=0

|θj| <∞

— ergodic for the mean if
∞∑
j=0

|θj| <∞

• Relationship between AR(1) and MA(∞)
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MA(2) w ith theta=0.6 and 0.3
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• ARMA(1,1): Xt = µ+ φXt−1 + et − θet−1 et ∼ iidN(0, σ2
e)

— ρ1 = (φ−θ)(1−φθ)
1−2φθ+θ2

, ρh = φρ(h− 1),∀h > 1

—The first ACF depends on the parameters of both the AR part and the MA

part. After the first period, the subsequent ACF geometrically decreases to

0 with the rate of decline given by the AR parameter as the lag increases.

This is similar to AR(1).

— In contrast to AR(1), however, the PACF does not cut off. This is similar

to MA(1).

—Estimation

1. ML if we know the distribution function of e.

• ARMA(0,0) —Gaussian white noise : Xt = µ+ et et ∼ iidN(0, σ2
e)
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ARMA(1,1) w ith phi=0.8,theta=­0.6
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• ARMA(p,q): Xt =
∑p

i=1 φiXt−i + et −
∑q

i=1 θiet−i et ∼ iidN(0, σ2
e)

⇐⇒ Φ(L)Xt = Θ(L)et

⇐⇒ Xt = Θ(L)
Φ(L)

et (MA representation) under some conditions

⇐⇒ et = Φ(L)
Θ(L)

Xt (AR representation) under some conditions

—ACF behaves similar to that in AR(p) process

—PACF behaves similar to that in MA(q) process

—Estimation

1. ML if we know the distribution function of e.

• Autocovariance generating function. When γj is absolutely summable, we de-

fine the autocovariance generating function as g(z) =
∑∞

j=−∞ γjz
j. The

population spectrum is defined as s($) = 1
2π
g(e−i$).
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• Wold Representation (Decomposition): For any zero mean covariance stationary

process, Xt, we can always find {et} and vt such that

Xt =
∑∞

j=0 cjet−j + v

where {cj} is a real sequence with
∑∞

i=0 c
2
j <∞ with c0 = 1, et v WN(0, σ2), vt

is purely deterministic, WN stands for “white noise”.
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4 Forecasting Based on ARMA Processes

• How to forecast a series with an ARMA(p,q) process with known coeffi cients?

• {X1, ..., XT}−historical observations

• XT+h−(unknown) value of X in future period T + h

• X̂T+h−forecast of XT+h based on {X1, ..., XT}(h-period-ahead forecast)

• êT+h = XT+h − X̂T+h−forecast error

• Mean squared error: E(XT+h − X̂T+h)
2
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• MinimumMSE forecast ofXT+h based on {X1, ..., XT}: X̂T+h = E(XT+h|X1, ..., XT ).

This is known as the optimal forecasts

Proof : Without loss of generality, assume h = 1. Let g(X1, ..., XT ) be the

forecast other than the conditional mean. The MSE is

E[XT+1−g(X1, ..., XT )]2 = E[XT+1−E(XT+1|X1, ..., XT )+E(XT+1|X1, ..., XT )−

g(X1, ..., XT )]2

= E[XT+1 − E(XT+1|X1, ..., XT )]2

+2E{[XT+1 − E(XT+1|X1, ..., XT )][E(XT+1|X1, ..., XT )− g(X1, ..., XT )]}

+E[E(XT+1|X1, ..., XT )− g(X1, ..., XT )]2

Define ηT+1 = [XT+1−E(XT+1|X1, ..., XT )][E(XT+1|X1, ..., XT )− g(X1, ..., XT )].

Conditional on X1, ..., XT , both E(XT+1|X1, ..., XT ) and g(X1, ..., XT ) are known

constants. Hence E(ηT+1|X1, ..., XT ) = 0.

Therefore, E(ηT+1) = E[E(ηT+1|X1, ..., XT )] = 0 and

E[XT+1 − g(X1, ..., XT )]2 = E[XT+1 − E(XT+1|X1, ..., XT )]2

+E[E(XT+1|X1, ..., XT )− g(X1, ..., XT )]2

The second term cannot be smaller than zero. So g(X1, ..., XT ) = E(XT+1|X1, ..., XT )

will make the MSE the smallest.

• 1-step-ahead forecast: h = 1

• multi-step-ahead forecast: h > 1
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4.0.1 Forecasting based on AR(1)

• Minimum Mean Square Error (MSE) forecast of XT+1 : E(XT+1|X1 , ..., XT ) =

µ+ φXT + E(eT+1|X1, ..., XT ) = µ+ φXT

• Forecast error variance: σ2
e

• Minimum MSE forecast of XT+2 :

E(XT+2|X1, ..., XT ) = µ+ φµ+ φ2XT

• Minimum MSE forecast of XT+h :

E(XT+h|X1, ..., XT ) = µ+ φµ+ ...+ φh−1µ+ φhXT

• Forecast error variance: σ2
e(1 + φ2 + φ4 + ...+ φ2(h−1))

• The minimum MSE is known as the optimal forecasts
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4.0.2 Forecasting based on MA(1)

• Minimum MSE (optimal) forecast of XT+1:

E(XT+1|X1, · · · , XT ) = µ+ E(eT+1|X1, · · · , XT )− θE(eT |X1, · · · , XT )

= µ− θE(eT |X1, · · · , XT ),

where εT can be derived from {X1, ..., XT} with some assumption about e0. For

example, we can assume e0 ≈ E(e0) = 0. Such an approximation will have

negligible effect on X̂T+h when the sample size is approaching infinite. However,

when the sample size is small, the effect could be large and this leads to a non-

optimal forecast in finite sample. The optimal forecast in finite sample can be

obtained by Kalman filter.

• Minimum MSE (optimal) forecast of XT+2:

E(XT+2|X1, · · · , XT ) = µ+ E(eT+2|X1, · · · , XT )− θE(eT+1|X1, · · · , XT ) = µ

• Minimum MSE (optimal) forecast of XT+h : E(XT+h|X1 , ..., XT ) = µ, h ≥ 2
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4.0.3 Forecasting based on ARMA(1,1)

• Minimum MSE (optimal) forecast of XT+1 : E(XT+1|X1 , ..., XT ) = µ + φXT +

E(eT+1|X1, ..., XT )− θE(eT |X1, ..., XT ) = µ+ φXT − θE(eT |X1, ..., XT )

• Minimum MSE (optimal) forecast of XT+h :

E(XT+h|X1, ..., XT ) = µ+ φµ+ ...+ φh−1µ+ φhXT , h ≥ 2
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5 Box-Jenkins Method

• This method applies to stationary ARMA time series.

• Procedures:

1. When the data becomes stationary, identify plausible values for (p, q), say

(p1, q1), (p2, q2), ..., (pk, qk), by examining the sample ACF and sample PACF.

2. Estimate these k ARMA processes

3. Choose one model using model selection criteria, such as AIC, or SC (BIC)

4. Validation: testing hypothesis, checking residuals

5. Forecast with the selected model
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