SINGAPORE MANAGEMENT UNIVERSITY

School of Economics

Econ623 Econometrics II Assignment 1

Due: Tuesday 31 January, 2017

- 1. If $X \sim N(\mu, \sigma^2)$, show that the moment generating function of X is $\exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right)$.
- 2. If $\begin{bmatrix} X \\ Y \end{bmatrix} \sim N \begin{bmatrix} \mu_X \\ \mu_Y \end{bmatrix}$, $\begin{bmatrix} \sigma_X^2 & \sigma_{XY} \\ \sigma_{XY} & \sigma_Y^2 \end{bmatrix}$, show that the two marginal distributions and the two conditional distributions are all normally distributed and derive the mean and variance for each distribution.
- 3. X and Y are two random variables. If $E(X \mid Y) = 0$, show that E(h(Y)X) = 0 for any h.
- 4. In this exercise you need to write MATLAB programs to examine the finite sample properties of the OLS estimates in the following models

Model 1:
$$Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t, \varepsilon_t \stackrel{iid}{\sim} N(0,1)$$

Model 2:
$$Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t, \varepsilon_t \stackrel{iid}{\sim} t_4$$

Obtain the histograms of $\hat{\beta}_0$ and $\hat{\beta}_1$ based on 10,000 replications of simulated data with the sample size being 25 and 100, respectively. In all cases, simulate X_i s from N(10,1) and fixed them in repeated samples. Examine how each histogram changes with the sample size and the error distribution. Testing for the normality of $\hat{\beta}_1$ in all four cases (namely Model 1 with n=25, 100 and Model 2 with n=25, 100). Write a short paragraph to summarize what you can observe from the experiment.

5. Let $Y = \{Y_1, Y_2, ..., Y_n\}$ be the *n* random variables that represent the durations of transaction *n* stocks. Suppose that these variables are iid with the following pdf:

$$f(y,\theta) = \begin{cases} \theta_2 \exp\{-\theta_2(y - \theta_1)\} & \text{if } y \ge \theta_1 \\ 0 & \text{if } y < \theta_1 \end{cases}$$

This is an Exponential distribution with the shift parameter θ_1 . The support of the duration is $[\theta_1, +\infty)$. Let $\{y_1, y_2, \ldots, y_n\}$ be a sample from the distribution of these random variables. Answer the following questions:

- (a) Obtain the analytical expression of the MLE of the parameters θ_1 and θ_2 .
- (b) Show that the MLE estimator of θ_1 (call it $\hat{\theta}_1$) is consistent (ie $\hat{\theta}_1 \xrightarrow{p} \theta_1$) but not asymptotically normal.
- (c) Show that $n(\hat{\theta}_1 \theta_1)$ is asymptotically distributed as an Exponential random variable with parameter θ_2 .