
Nonlife Actuarial Models

Chapter 9

Empirical Implementation of Credibility



Learning Objectives

1. Empirical Bayes method

2. Nonparametric estimation

3. Semiparametric estimation

4. Parametric estimation
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9.1 Empirical Bayes Method

• In the Bühlmann and Bühlmann-Straub framework, the key quanti-
ties of interest are the expected value of the process variance, μPV,

and the variance of the hypothetical means, σ2HM.

• These quantities can be derived from the Bayesian framework and

depend on both the prior distribution and the likelihood.

• In a strictly Bayesian approach, the prior distribution is given and
inference is drawn based on the given prior.

• For practical applications when researchers are not in a position to
state the prior, empirical methods may be applied to estimate the

hyperparameters.
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• This is called the empirical Bayes method. Depending on the as-
sumptions about the prior distribution and the likelihood, empirical

Bayes estimation may adopt one of the following approaches

1. Nonparametric approach: No assumptions are made about

the prior density fΘ(θ) and the conditional density fX |Θ(x | θ). The
method is very general and applies to a wide range of models.

2. Semiparametric approach: Parametric assumptions concerning

fX |Θ(x | θ) is made, while the prior distribution of the risk parame-
ters fΘ(θ) remains unspecified.

3. Parametric approach: When the researcher makes specific as-

sumptions about fX |Θ(x | θ) and fΘ(θ), the estimation of the para-
meters in the model may be carried out using the maximum likeli-

hood estimation (MLE) method.

4



9.2 Nonparametric Estimation

• No specific assumption is made about the likelihood of the loss ran-
dom variables and the prior distribution of the risk parameters.

• The key quantities required are the expected value of the process
variance, μPV, and the variance of the hypothetical means, σ

2
HM,

which together determine the Bühlmann credibility parameter k.

• We extend the Bühlmann-Straub set-up to consider multiple risk
groups, each with multiple samples of loss observations over possibly

different periods.

• We formally state the assumptions of the extended set-up as follows
1. Let Xij denote the loss per unit of exposure and mij denote the

amount of exposure. The index i denotes the ith risk group, for
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i = 1, · · · , r, with r > 1. Given i, the index j denotes the jth loss
observation in the ith group, for j = 1, · · · , ni, where ni > 1 for

i = 1, · · · , r.
2. Xij are assumed to be independently distributed. The risk para-

meter of the ith group is denoted by θi, which is a realization of

the random variable Θi. We assume Θi to be independently and

identically distributed as Θ.

3. The following assumptions are made for the hypothetical means and

the process variance

E(Xij |Θ = θi) = μX(θi), for i = 1, · · · , r; j = 1, · · · , ni, (9.2)
and

Var(Xij | θi) = σ2X(θi)

mij
, for i = 1, · · · , r; j = 1, · · · , ni. (9.3)
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• We define the overall mean of the loss variable as

μX = E[μX(Θi)] = E[μX(Θ)], (9.4)

the mean of the process variance as

μPV = E[σ
2
X(Θi)] = E[σ2X(Θ)], (9.5)

and the variance of the hypothetical means as

σ2HM = Var[μX(Θi)] = Var[μX(Θ)]. (9.6)

• For future reference, we also define the following quantities

mi =
niX
j=1

mij, for i = 1, · · · , r, (9.7)

which is the total exposure for the ith risk group; and
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m =
rX
i=1

mi, (9.8)

which is the total exposure over all risk groups.

• Also, we define

X̄i =
1

mi

niX
j=1

mijXij, for i = 1, · · · , r, (9.9)

as the exposure-weighted mean of the ith risk group; and

X̄ =
1

m

rX
i=1

miX̄i (9.10)

as the overall weighted mean.
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• The Bühlmann-Straub credibility predictor of the loss in the next
period or a random individual of the ith risk group is

ZiX̄i + (1− Zi)μX , (9.11)

where

Zi =
mi

mi + k
, (9.12)

with

k =
μPV
σ2HM

. (9.13)

• To implement the credibility prediction, we need to estimate μX ,

μPV and σ2HM.

• It is natural to estimate μX by X̄. It can be shown that E(X̄) = μX ,

so that X̄ is an unbiased estimator of μX .
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Theorem 9.1: The following quantity is an unbiased estimator of μPV

μ̂PV =

Pr
i=1

Pni
j=1mij(Xij − X̄i)2Pr
i=1(ni − 1)

. (9.16)

Proof: We re-arrange the inner summation term in the numerator of

equation (9.16) to obtain

niX
j=1

mij(Xij − X̄i)2 =
niX
j=1

mij

n
[Xij − μX(θi)]− [X̄i − μX(θi)]

o2
=

niX
j=1

mij[Xij − μX(θi)]
2 +

niX
j=1

mij[X̄i − μX(θi)]
2

−2
niX
j=1

mij[Xij − μX(θi)][X̄i − μX(θi)]. (9.17)

Simplifying the last two terms on the right-hand side of the above equation,
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we have
niX
j=1

mij[X̄i − μX(θi)]
2 − 2

niX
j=1

mij[Xij − μX(θi)][X̄i − μX(θi)]

= mi[X̄i − μX(θi)]
2 − 2[X̄i − μX(θi)]

niX
j=1

mij[Xij − μX(θi)]

= −mi[X̄i − μX(θi)]
2. (9.18)

Combining equations (9.17) and (9.18), we obtain

niX
j=1

mij(Xij − X̄i)2 =
⎡⎣ niX
j=1

mij[Xij − μX(θi)]
2

⎤⎦−mi[X̄i−μX(θi)]
2. (9.19)

We now take expectations of the two terms on the right-hand side of the

above. First, we have

E

⎡⎣ niX
j=1

mij[Xij − μX(Θi)]
2

⎤⎦ = E

⎡⎣E
⎛⎝ niX
j=1

mij[Xij − μX(Θi)]
2 |Θi

⎞⎠⎤⎦
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= E

⎡⎣ niX
j=1

mijVar(Xij |Θi)

⎤⎦
= E

⎡⎣ niX
j=1

mij

"
σ2X(Θi)

mij

#⎤⎦
=

niX
j=1

E[σ2X(Θi)]

= ni μPV, (9.20)

and, noting that E(X̄i |Θi) = μX(Θi), we have

E
n
mi[X̄i − μX(Θi)]

2
o
= mi E

h
E
n
[X̄i − μX(Θi)]

2 |Θi

oi
= mi E

h
Var(X̄i |Θi)

i
= mi E

⎡⎣Var
⎛⎝ 1

mi

niX
j=1

mijXij |Θi

⎞⎠⎤⎦
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= mi E

⎡⎣ 1
m2
i

niX
j=1

m2
ij Var(Xij |Θi)

⎤⎦
= mi E

⎡⎣ 1
m2
i

niX
j=1

m2
ij

Ã
σ2X(Θi)

mij

!⎤⎦
=

1

mi

niX
j=1

mij E[σ2X(Θi)]

= E
h
σ2X(Θi)

i
= μPV. (9.21)

Combining equations (9.19), (9.20) and (9.21), we conclude that

E

⎡⎣ niX
j=1

mij(Xij − X̄i)2
⎤⎦ = niμPV − μPV = (ni − 1)μPV. (9.22)
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Thus, taking expectation of equation (9.16), we have

E (μ̂PV) =

Pr
i=1 E

hPni
j=1mij(Xij − X̄i)2

i
Pr
i=1(ni − 1)

=

Pr
i=1(ni − 1)μPVPr
i=1(ni − 1)

= μPV, (9.23)

so that μ̂PV is an unbiased estimator of μPV. 2
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Theorem 9.2: The following quantity is an unbiased estimator of σ2HM

σ̂2HM =

hPr
i=1mi(X̄i − X̄)2

i
− (r − 1)μ̂PV

m− 1

m

Pr
i=1m

2
i

, (9.27)

where μ̂PV is defined in equation (9.16).

Proof: We begin our proof by expanding the term
Pr
i=1mi(X̄i − X̄)2 in

the numerator of equation (9.27) as follows

rX
i=1

mi(X̄i − X̄)2 =

rX
i=1

mi

£
(X̄i − μX)− (X̄ − μX)

¤2
=

rX
i=1

mi(X̄i − μX)
2 +

rX
i=1

mi(X̄ − μX)
2 − 2

rX
i=1

mi(X̄i − μX)(X̄ − μX)

=

"
rX
i=1

mi(X̄i − μX)
2

#
−m(X̄ − μX)

2. (9.28)
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We then take expectations on both sides of equation (9.28) to obtain

E

"
rX
i=1

mi(X̄i − X̄)2
#
=

"
rX
i=1

mi E
h
(X̄i − μX)

2
i#
−mE

h
(X̄ − μX)

2
i

=

"
rX
i=1

miVar(X̄i)

#
−mVar(X̄). (9.29)

As

Var(X̄i) = Var
h
E(X̄i |Θi)

i
+ E

h
Var(X̄i |Θi)

i
, (9.30)

with

Var(X̄i |Θi) =
σ2X(Θi)

mi
. (9.31)

and E(X̄i |Θi) = μX(Θi), equation (9.30) becomes

Var(X̄i) = Var [μX(Θi)] +
E [σ2X(Θi)]

mi
= σ2HM +

μPV
mi
. (9.32)
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For Var(X̄) in equation (9.29), we have

Var(X̄) = Var

Ã
1

m

rX
i=1

miX̄i

!

=
1

m2

rX
i=1

m2
iVar(X̄i)

=
1

m2

rX
i=1

m2
i

µ
σ2HM +

μPV
mi

¶

=

"
rX
i=1

m2
i

m2

#
σ2HM +

μPV
m
. (9.33)

Substituting equations (9.32) and (9.33) into (9.29), we obtain

E

"
rX
i=1

mi(X̄i − X̄)2
#
=

"
rX
i=1

mi

µ
σ2HM +

μPV
mi

¶#
−
"Ã

rX
i=1

m2
i

m

!
σ2HM + μPV

#

=

"
m− 1

m

rX
i=1

m2
i

#
σ2HM + (r − 1)μPV. (9.34)
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Thus, taking expectation of σ̂2HM, we can see that

E
³
σ̂2HM

´
=

E
hPr

i=1mi(X̄i − X̄)2
i
− (r − 1)E(μ̂PV)

m− 1

m

Pr
i=1m

2
i

= σ2HM. (9.35)

2

• With estimated values of the model parameters, the Bühlmann-
Straub credibility predictor of the ith risk group can be calculated

as

ẐiX̄i + (1− Ẑi)X̄, (9.40)

where

Ẑi =
mi

mi + k̂
, (9.41)
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with

k̂ =
μ̂PV
σ̂2HM

. (9.42)

• While μ̂PV and σ̂2HM are unbiased estimators of μPV and σ2HM, respec-
tively, k̂ is not unbiased for k, due to the fact that k is a nonlinear

function of μPV and σ2HM.

• Note that σ̂2HM and σ̃2HM may be negative in empirical applications.

In such circumstances, they may be set to zero, which implies that

k̂ and k̃ will be infinite, and that Ẑi and Z̃i will be zero for all risk

groups.

• The total loss experienced is mX̄ =
Pr
i=1miX̄i. Now if future losses

are predicted according to equation (9.40), the total loss predicted

will in general be different from the total loss experienced.
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• If it is desired to equate the total loss predicted to the total loss
experienced, some re-adjustment is needed. This may be done by

replacing X̄ with μ̂X given by

μ̂X =

Pr
i=1 ẐiX̄iPr
i=1 Ẑi

, (9.47)

and the loss predicted for the ith group is ẐiX̄i + (1− Ẑi)μ̂X .

Example 9.1: An analyst has data of the claim frequencies of workers

compensations of 3 insured companies. Table 9.1 gives the data of com-

pany A in the last 3 years and companies B and C in the last four years.

The numbers of workers (in hundreds) and the numbers of claims each

year per hundred workers are given.
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Table 9.1: Data for Example 9.1

Years
Company 1 2 3 4
A Claims per hundred workers — 1.2 0.9 1.8

Workers (in hundreds) — 10 11 12

B Claims per hundred workers 0.6 0.8 1.2 1.0
Workers (in hundreds) 5 5 6 6

C Claims per hundred workers 0.7 0.9 1.3 1.1
Workers (in hundreds) 8 8 9 10

Calculate the Bühlmann-Straub credibility predictions of the numbers of

claim per hundred workers for the three companies next year, without and

with corrections for balancing the total loss with the predicted loss.
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Solution: The total exposures of each company are

mA = 10 + 11 + 12 = 33,

mB = 5 + 5 + 6 + 6 = 22,

and

mC = 8 + 8 + 9 + 10 = 35,

which give the total exposures of all companies as m = 33+22+35 = 90.

The exposure-weighted means of the claim frequency of the companies are

X̄A =
(10)(1.2) + (11)(0.9) + (12)(1.8)

33
= 1.3182,

X̄B =
(5)(0.6) + (5)(0.8) + (6)(1.2) + (6)(1.0)

22
= 0.9182,

and

X̄C =
(8)(0.7) + (8)(0.9) + (9)(1.3) + (10)(1.1)

35
= 1.0143.
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The numerator of μ̂PV in equation (9.16) is

(10)(1.2− 1.3182)2 + (11)(0.9− 1.3182)2 + (12)(1.8− 1.3182)2
+(5)(0.6− 0.9182)2 + (5)(0.8− 0.9182)2 + (6)(1.2− 0.9182)2 + (6)(1.0− 0.9182)2
+(8)(0.7− 1.0143)2 + (8)(0.9− 1.0143)2 + (9)(1.3− 1.0143)2 + (10)(1.1− 1.0143)2
= 7.6448.

Hence, we have

μ̂PV =
7.6448

2 + 3 + 3
= 0.9556.

The overall mean is

X̄ =
(1.3182)(33) + (0.9182)(22) + (1.0143)(35)

90
= 1.1022.

The first term in the numerator of σ̂2HM in equation (9.27) is

(33)(1.3182−1.1022)2+(22)(0.9182−1.1022)2+(35)(1.0143−1.1022)2 = 2.5549,
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and the denominator is

90− 1

90
[(33)2 + (22)2 + (35)2] = 58.9111,

so that

σ̂2HM =
2.5549− (2)(0.9556)

58.9111
=
0.6437

58.9111
= 0.0109.

Thus, the Bühlmann-Straub credibility parameter estimate is

k̂ =
μ̂PV
σ̂2HM

=
0.9556

0.0109
= 87.6697,

and the Bühlmann-Straub credibility factor estimates of the companies

are

ẐA =
33

33 + 87.6697
= 0.2735,

ẐB =
22

22 + 87.6697
= 0.2006,
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and

ẐC =
35

35 + 87.6697
= 0.2853.

We then compute the Bühlmann-Straub credibility predictors of the claim

frequencies per hundred workers for company A as

(0.2735)(1.3182) + (1− 0.2735)(1.1022) = 1.1613,
for company B as

(0.2006)(0.9182) + (1− 0.2006)(1.1022) = 1.0653,
and for company C as

(0.2853)(1.0143) + (1− 0.2853)(1.1022) = 1.0771.
Note that the total claim frequency predicted based on the historical ex-

posure is

(33)(1.1613) + (22)(1.0653) + (35)(1.0771) = 99.4580,
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which is not equal to the total recorded claim frequency of (90)(1.1022) =

99.20. To balance the two figures, we use equation (9.47) to obtain

μ̂X =
(0.2735)(1.3182) + (0.2006)(0.9182) + (0.2853)(1.0143)

0.2735 + 0.2006 + 0.2853
= 1.0984.

Using this as the credibility complement, we obtain the updated predictors

as

A : (0.2735)(1.3182) + (1− 0.2735)(1.0984) = 1.1585,
B : (0.2006)(0.9182) + (1− 0.2006)(1.0984) = 1.0623,
C : (0.2853)(1.0143) + (1− 0.2853)(1.0984) = 1.0744.

It can be checked that the total claim frequency predicted based on the

historical exposure is

(33)(1.1585) + (22)(1.0623) + (35)(1.0744) = 99.20,

which balances with the total claim frequency recorded. 2
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9.3 Semiparametric Estimation

• In some applications, researchers may have information about the
possible conditional distribution fXij |Θi(x | θi) of the loss variables.
For example, claim frequency per exposure may be assumed to be

Poisson distributed.

• In contrast, the prior distribution of the risk parameters, which are
not observable, are usually best assumed to be unknown.

• Under such circumstances, estimates of the parameters of the Bühlmann-
Straub model can be estimated using the semiparametric method.

• SupposeXij are the claim frequencies per exposure andXij ∼ P(λi),
for i = 1, · · · , r and j = 1, · · · , ni. As σ2X(λi) = λi, we have

μPV = E[σ
2
X(Λi)] = E(Λi) = E[E(X |Λi)] = E(X). (9.48)
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Thus, μPV can be estimated using the overall sample mean of X, X̄.

• From (9.27) an alternative estimate of σ2HM can then be obtained by
substituting μ̂PV with X̄.
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9.4 Parametric Estimation

• If the prior distribution of Θ and the conditional distribution of Xij
given Θi, for i = 1, · · · , r and j = 1, · · · , ni are of known functional
forms, then the hyperparameter of Θ, γ, can be estimated using the

maximum likelihood estimation (MLE) method.

• The quantities μPV and σ2HM are functions of γ, and we denote them

by μPV = μPV(γ) and σ2HM = σ2HM(γ).

• As k is a function of μPV and σ2HM, the MLE of k can be obtained

by replacing γ in μPV = μPV(γ) and σ2HM = σ2HM(γ) by the MLE of

γ, γ̂.
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• Specifically, the MLE of k is

k̂ =
μPV(γ̂)

σ2HM(γ̂)
. (9.49)

• We now consider the estimation of γ. For simplicity, we assume

mij ≡ 1. The marginal pdf of Xij is given by
fXij(xij | γ) =

Z
θi ∈ΩΘ

fXij |Θi(xij | θi)fΘi(θi | γ) dθi. (9.50)

• Given the data Xij, for i = 1, · · · , r and j = 1, · · · , ni, the likelihood
function L(γ) is

L(γ) =
rY
i=1

niY
j=1

fXij(xij | γ), (9.51)

and the log-likelihood function is

log[L(γ)] =
rX
i=1

niX
j=1

log fXij(xij | γ). (9.52)
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• The MLE of γ, γ̂, is obtained by maximizing L(γ) in equation (9.51)
or log[L(γ)] in equation (9.52) with respect to γ.

Example 9.5: The claim frequencies Xij are assumed to be Poisson

distributed with parameter λi, i.e., Xij ∼ PN (λi). The prior distribu-
tion of Λi is gamma with hyperparameters α and β, where α is a known

constant. Derive the MLE of β and k.

Solution: As α is a known constant, the only hyperparameter of the

prior is β. The marginal pf of Xij is

fXij(xij |β) =
Z ∞
0

"
λ
xij
i exp(−λi)

xij!

#⎡⎣λα−1
i exp

³
−λi

β

´
Γ(α)βα

⎤⎦ dλi
=

1

Γ(α)βαxij!

Z ∞
0

λ
xij+α−1
i exp

"
−λi

Ã
1

β
+ 1

!#
dλi
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=
Γ(xij + α)

Γ(α)βαxij!

Ã
1

β
+ 1

!−(xij+α)

=
cijβ

xij

(1 + β)xij+α
,

where cij does not involve β. Thus, the likelihood function is

L(β) =
rY
i=1

niY
j=1

cijβ
xij

(1 + β)xij+α
,

and ignoring the term that does not involve β, the log-likelihood function

is

log[L(β)] = (log β)

⎛⎝ rX
i=1

niX
j=1

xij

⎞⎠− [log(1 + β)]

⎡⎣nα+ rX
i=1

niX
j=1

xij

⎤⎦ ,
where n =

Pr
i=1 ni. The derivative of log[L(β)] with respect to β is

nx̄

β
− n (α+ x̄)

1 + β
,
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where

x̄ =
1

n

⎛⎝ rX
i=1

niX
j=1

xij

⎞⎠ .
The MLE of β, β̂, is obtained by solving for β when the first derivative of

log[L(β)] is set to zero. Hence, we obtain

β̂ =
x̄

α
.

As Xij ∼ PN (λi) and Λi ∼ G(α,β), μPV = E[σ2X(Λi)] = E(Λi) = αβ.

Also, σ2HM = Var[μX(Λi)] = Var(Λi) = αβ2, so that

k =
αβ

αβ2
=
1

β
.

Thus, the MLE of k is

k̂ =
1

β̂
=

α

x̄
.

2

33


