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Chapter 8

Bayesian Approach



Learning Objectives

1. Bayesian inference and estimation

2. Prior and posterior pdf

3. Bayesian credibility

4. Conjugate prior distribution

5. Linear exponential distribution

6. Bühlmann credibility versus Bayesian credibility
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8.1 Bayesian Inference and Estimation

• We formulate credibility modeling as a statistical problem suitable

for the Bayesian approach of statistical inference and estimation.

The set-up is summarized as follows:

1. Let X denote the random loss variable (such as claim frequency,

claim severity and aggregate loss) of a risk group. The distribution

of X is dependent on a parameter θ, which varies with different risk

groups and is hence treated as the realization of a random variable

Θ.

2. Θ has a statistical distribution called the prior distribution. The
prior pdf of Θ is denoted by fΘ(θ | γ) (or simply fΘ(θ)), which
depends on the parameter γ, called the hyperparameter.
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3. The conditional pdf ofX given the parameter θ is denoted by fX |Θ(x | θ).
Suppose X = {X1, · · · , Xn} is a random sample of X, and x =

(x1, · · · , xn) is a realization of X. The conditional pdf of X is

fX |Θ(x | θ) =
nY
i=1

fX |Θ(xi | θ). (8.1)

We call fX |Θ(x | θ) the likelihood function.

4. Based on the sample data x, the distribution of Θ is updated. The

conditional pdf of Θ given x is called the posterior pdf, and is
denoted by fΘ |X (θ |x).

5. An estimate of the mean of the random loss, which is a function of

Θ, is computed using the posterior pdf of Θ. This estimate, called

the Bayesian estimate, is also the predictor of future losses.
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• Bayesian inference differs from classical statistical inference in its

treatment of the prior distribution of the parameter θ.

• Under classical statistical inference, θ is assumed to be fixed and
unknown, and the relevant entity for inference is the likelihood func-

tion. For Bayesian inference, the prior distribution has an important

role.

• The likelihood function and the prior pdf jointly determine the pos-
terior pdf, which is then used for statistical inference.

8.1.1 Posterior Distribution of Parameter

• Given the prior pdf of Θ and the likelihood function of X, the joint
pdf of Θ and X can be obtained as follows

fΘX (θ,x) = fX |Θ(x | θ)fΘ(θ). (8.2)
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• Integrating out θ from the joint pdf of Θ and X, we obtain the

marginal pdf of X as

fX (x) =

Z
θ∈ΩΘ

fX |Θ(x | θ)fΘ(θ) dθ, (8.3)

where ΩΘ is the support of Θ.

• Now we can turn the question around and consider the conditional
pdf of Θ given the data x, i.e., fΘ |X (θ |x). Combining equations
(8.2) and (8.3), we have

fΘ |X (θ |x) =
fΘX (θ,x)

fX (x)

=
fX |Θ(x | θ)fΘ(θ)R

θ∈ΩΘ
fX |Θ(x | θ)fΘ(θ) dθ . (8.4)

• The posterior pdf describes the distribution of Θ based on prior

information about Θ and the sample data x.
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• Bayesian inference about the population as described by the risk
parameter Θ is then based on the posterior pdf.

Example 8.2: Let X be a Bernoulli random variable taking value 1 with

probability of θ and 0 with probability 1 − θ. There is a random sample

of n observations of X denoted by X = {X1, · · · , Xn}. If Θ follows the

beta distribution with parameters α and β, i.e., Θ ∼ B(α,β), compute
the posterior pdf of Θ.

Solution: We first compute the likelihood of X as follows

fX |Θ(x | θ) =
nY
i=1

θxi(1− θ)1−xi

= θ
Pn
i=1 xi(1− θ)

Pn
i=1(1−xi),
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and the joint pf-pdf is

fΘX (θ,x) = fX |Θ(x | θ)fΘ(θ)

=
h
θ
Pn
i=1 xi(1− θ)

Pn
i=1(1−xi)

i ∙θα−1(1− θ)β−1

B(α, β)

¸
=

θ(α+nx̄)−1(1− θ)(β+n−nx̄)−1

B(α,β)
.

As

fX (x) =

Z 1

0

fΘX (θ,x) dθ

=

Z 1

0

θ(α+nx̄)−1(1− θ)(β+n−nx̄)−1

B(α,β)
dθ

=
B(α+ nx̄,β + n− nx̄)

B(α,β)
,
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we conclude that

fΘ |X (θ |x) =
fΘX (θ,x)

fX (x)

=
θ(α+nx̄)−1(1− θ)(β+n−nx̄)−1

B(α+ nx̄, β + n− nx̄) ,

and the posterior pdf of Θ follows a beta distribution with parameters

α+ nx̄ and β + n− nx̄.

• Note that the denominator in equation (8.4) is a function of x but
not θ.

• Denoting

K(x) =
1R

θ∈ΩΘ
fX |Θ(x | θ)fΘ(θ) dθ , (8.5)
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we can rewrite the posterior pdf of Θ as

fΘ |X (θ |x) = K(x)fX |Θ(x | θ)fΘ(θ)
∝ fX |Θ(x | θ)fΘ(θ). (8.6)

K(x) is free of θ and is a constant of proportionality. It scales
the posterior pdf so that it integrates to 1.

• The expression fX |Θ(x | θ)fΘ(θ) enables us to identify the functional
form of the posterior pdf in terms of θ without computing the mar-

ginal pdf of X.

Example 8.3: Let X ∼ BN (m, θ), andX = {X1, · · · , Xn} be a random
sample of X. If Θ ∼ B(α, β), what is the posterior distribution of Θ?
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Solution: From equation (8.6), we have

fΘ |X (θ |x) ∝ fX |Θ(x | θ)fΘ(θ)
∝

h
θnx̄(1− θ)

Pn
i=1(m−xi)

i £
θα−1(1− θ)β−1

¤
∝ θ(α+nx̄)−1(1− θ)(β+mn−nx̄)−1.

Comparing the above equation with equation (A.101), we conclude that

the posterior pdf belongs to the class of beta distributions. We can further

conclude that the hyperparameters of the beta posterior pdf are α + nx̄

and β+mn−nx̄. Note that this is done without computing the expression
for the constant of proportionality K(x) nor the marginal pdf of X. 2
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8.1.2 Loss Function and Bayesian Estimation

• We consider the problem of estimating μX(Θ) = E(X |Θ) given the
observed data x.

• The Bayesian approach of estimation views the estimator as a deci-
sion rule, which assigns a value to μX(Θ) based on the data.

• Letw(x) be an estimator of μX(Θ). A nonnegative function L[μX(Θ), w(x)],
called the loss function, is then defined to reflect the penalty in
making a wrong decision about μX(Θ).

• Typically, the larger the difference between μX(Θ) and w(x), the

larger the loss L[μX(Θ), w(x)].

• A commonly used loss function is the squared-error loss function
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(or quadratic loss function) defined by

L[μX(Θ), w(x)] = [μX(Θ)− w(x)]2. (8.7)

• Given the decision rule and the data, the expected loss in the esti-
mation of μX(Θ) is

E{L[μX(Θ), w(x)] |x} =
Z
θ∈ΩΘ

L[μX(Θ), w(x)]fΘ |X (θ |x) dθ.
(8.8)

• It is desirable to have a decision rule that gives as small an expected
loss as possible.

• Thus, for any given x, if the decision rule w(x) assigns a value
to μX(Θ) that minimizes the expected loss, then the decision rule

w(x) is called the Bayesian estimator of μX(Θ) with respect to
the chosen loss function.
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• The Bayesian estimator, denoted by w∗(x), satisfies

E{L[μX(Θ), w∗(x)] |x} = min
w(.)

E{L[μX(Θ), w(x)] |x}, (8.9)

for any given x.

• For the squared-error loss function, the decision rule (estimator) that
minimizes the expected loss E{[μX(Θ)− w(x)]2 |x} is

w∗(x) = E[μX(Θ) |x]. (8.10)

• For the squared-error loss function, the Bayesian estimator of μX(Θ)
is the posterior mean, denoted by μ̂X(x), so that

μ̂X(x) = E[μX(Θ) |x] =
Z
θ∈ΩΘ

μX(θ)fΘ |X (θ |x) dθ. (8.11)

14



• In the credibility literature (where X is a loss random variable),

μ̂X(x) is called the Bayesian premium.

• An alternative way to interpret the Bayesian premium is to consider
the prediction of the loss in the next period, namely, Xn+1, given

the data x.

• We first calculate the conditional pdf of Xn+1 given x, which is

fXn+1 |X (xn+1 |x) =
fXn+1X (xn+1,x)

fX (x)

=

R
θ∈ΩΘ

fXn+1X |Θ(xn+1,x | θ)fΘ(θ) dθ
fX (x)

=

R
θ∈ΩΘ

£Qn+1
i=1 fXi |Θ(xi | θ)

¤
fΘ(θ) dθ

fX (x)
. (8.12)
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• As the posterior pdf of Θ given X is

fΘ |X (θ |x) =fΘX (θ,x )
fX (x)

=

£Qn
i=1 fXi |Θ(xi | θ)

¤
fΘ(θ)

fX (x)
, (8.13)

we conclude"
nY
i=1

fXi |Θ(xi | θ)
#
fΘ(θ) = fΘ |X (θ |x)fX (x). (8.14)

• Substituting (8.14) into (8.12), we obtain

fXn+1 |X (xn+1 |x) =
Z
θ∈ΩΘ

fXn+1 |Θ(xn+1 | θ)fΘ |X (θ |x) dθ, (8.15)

which shows that the conditional pdf of Xn+1 givenX can be inter-

preted as a mixture of the conditional pdf of Xn+1.
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• We now consider the prediction ofXn+1 givenX.A natural predictor
is the conditional expected value of Xn+1 givenX, i.e., E(Xn+1 |x),
which is given by

E(Xn+1 |x) =
Z ∞

0

xn+1fXn+1 |X (xn+1 |x) dxn+1. (8.16)

• Using equation (8.15), we have

E(Xn+1 |x) =

Z ∞

0

xn+1

∙Z
θ∈ΩΘ

fXn+1 |Θ(xn+1 | θ)fΘ |X (θ |x) dθ
¸
dxn+1

=

Z
θ∈ΩΘ

∙Z ∞

0

xn+1fXn+1 |Θ(xn+1 | θ) dxn+1
¸
fΘ |X (θ |x) dθ

=

Z
θ∈ΩΘ

E(Xn+1 | θ) fΘ |X (θ |x) dθ

=

Z
θ∈ΩΘ

μX(θ) fΘ |X (θ |x) dθ
= E[μX(Θ) |x]. (8.18)
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• Thus, the Bayesian premium can also be interpreted as the condi-

tional expectation of Xn+1 given X.

• In summary, the Bayesian estimate of the mean of the random loss

X, called the Bayesian premium, is the posterior mean of X con-

ditional on the data x, as given in equation (8.11). It is also equal

to the conditional expectation of future loss given the data x, as

shown in equation (8.17).

• We shall use the terminologies Bayesian estimate of expected loss
and Bayesian predictor of future loss interchangeably.

Example 8.6: X is the claim-severity random variable that can take val-

ues 10, 20 or 30. The distribution of X depends on the risk group defined

by parameter Θ, which are labeled 1, 2 and 3. The relative frequencies of
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risk groups with Θ equal to 1, 2 and 3 are, respectively, 0.4, 0.4 and 0.2.

The conditional distribution of X given the risk parameter Θ is given in

Table 8.1.

Table 8.1: Data for Example 8.6

Pr(X = x | θ)
θ Pr(Θ = θ) x = 10 x = 20 x = 30
1 0.4 0.2 0.3 0.5
2 0.4 0.4 0.4 0.2
3 0.2 0.5 0.5 0.0

A sample of 3 claims with x = (20, 20, 30) is observed. Calculate the

posterior mean of X. Compute the conditional pf of X4 given x, and

calculate the expected value of X4 given x.

Solution: We first calculate the conditional probability of x given Θ as
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follows

fX |Θ(x | 1) = (0.3)(0.3)(0.5) = 0.045,

fX |Θ(x | 2) = (0.4)(0.4)(0.2) = 0.032,

and

fX |Θ(x | 3) = (0.5)(0.5)(0) = 0.

Thus, the joint pf of x and Θ is

fΘX (1,x) = fX |Θ(x | 1)fΘ(1) = (0.045)(0.4) = 0.018,

fΘX (2,x) = fX |Θ(x | 2)fΘ(2) = (0.032)(0.4) = 0.0128,
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and

fΘX (3,x) = fX |Θ(x | 3)fΘ(3) = 0(0.2) = 0.

Thus, we obtain

fX (x) = 0.018 + 0.0128 + 0 = 0.0308,

so that the posterior distribution of Θ is

fΘ |X (1 |x) = fΘX (1,x)

fX (x)
=
0.018

0.0308
= 0.5844,

fΘ |X (2 |x) = fΘX (2,x)

fX (x)
=
0.0128

0.0308
= 0.4156,

and fΘ |X (3 |x) = 0. The conditional means of X are

E(X |Θ = 1) = (10)(0.2) + (20)(0.3) + (30)(0.5) = 23,
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E(X |Θ = 2) = (10)(0.4) + (20)(0.4) + (30)(0.2) = 18,

and

E(X |Θ = 3) = (10)(0.5) + (20)(0.5) + (30)(0) = 15.

Thus, the posterior mean of X is

E [E(X |Θ) |x] =
3X

θ=1

[E(X | θ)] fΘ |X (θ |x)

= (23)(0.5844) + (18)(0.4156) + (15)(0) = 20.92.

Now we compute the conditional distribution of X4 given x. We note that

fX4 |X (x4 |x) =
3X

θ=1

fX4 |Θ(x4 | θ)fΘ |X (θ |x).
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As fΘ |X (3 |x) = 0, we have
fX4 |X (10 |x) = (0.2)(0.5844) + (0.4)(0.4156) = 0.2831,

fX4 |X (20 |x) = (0.3)(0.5844) + (0.4)(0.4156) = 0.3416,
and

fX4 |X (30 |x) = (0.5)(0.5844) + (0.2)(0.4156) = 0.3753.
Thus, the conditional mean of X4 given x is

E(X4 |x) = (10)(0.2831) + (20)(0.3416) + (30)(0.3753) = 20.92,
and the result

E [μX(Θ) |x] = E(X4 |x)
is verified. 2
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8.2 Conjugate Distributions

• A difficulty in applying the Bayes approach of statistical inference
is the computation of the posterior pdf, which requires the compu-

tation of the marginal pdf of the data.

• There are classes of prior pdfs, which, together with specific likeli-
hood functions, give rise to posterior pdfs that belong to the same

class as the prior pdf.

• Such prior pdf and likelihood are said to be a conjugate pair.

• A formal definition of conjugate prior distribution is as follows.
Let the prior pdf of Θ be fΘ(θ | γ) where γ is the hyperparame-

ter. The prior pdf fΘ(θ | γ) is conjugate to the likelihood function
fX |Θ(x | θ) if the posterior pdf is equal to fΘ(θ | γ∗), which has the
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same functional form as the prior pdf but, generally, a different hy-

perparameter γ∗.

• In other words, the prior and posterior belong to the same family of
distributions.

• We adopt the convention of “prior-likelihood” to describe the con-
jugate distribution.

8.2.1 The gamma-Poisson conjugate distribution

• Let {Xi} be iid Poisson random variables with parameter λ. The

random variable Λ of the parameter λ is assumed to follow a gamma

distribution with hyperparameters α and β, i.e., the prior pdf of Λ

is

fΛ(λ;α,β) =
λα−1e−

λ
β

Γ(α)βα ,
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and the likelihood of X = {X1, X2, · · · , Xn} is

fX |Λ(x |λ) =
nY
i=1

λxie−λ

xi!

=
λnx̄e−nλQn
i=1 xi!

.

• Thus, the posterior pdf of Λ satisfies

fΛ |X (λ |x) ∝ fX |Λ(x |λ)fΛ(λ;α,β)
∝ λα+nx̄−1e−λ(n+

1
β ).

• We conclude that the posterior pdf of Λ is fΛ(λ;α∗, β∗), where

α∗ = α+ nx̄ (8.19)
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and

β∗ =
∙
n+

1

β

¸−1
=

β

nβ + 1
. (8.20)

• Hence, the gamma prior pdf is conjugate to the Poisson likelihood.
8.2.2 The beta-geometric conjugate distribution

• Let {Xi} be iid geometric random variables with parameter θ so that
the likelihood of X is

fX |Θ(x | θ) =
nY
i=1

θ(1− θ)xi = θn(1− θ)nx̄.

If the prior distribution of Θ is beta with hyperparameters α and β,

then the posterior pdf of Θ satisfies

fΘ |X (θ |x) ∝ fX |Θ(x | θ)fΘ(θ;α,β)
∝ θα+n−1(1− θ)β+nx̄−1.
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• We conclude that the posterior distribution of Θ is beta with para-

meters

α∗ = α+ n (8.21)

and

β∗ = β + nx̄, (8.22)

so that the beta prior is conjugate to the geometric likelihood.

8.2.3 The gamma-exponential conjugate distribution

• Let {Xi} be iid exponential random variables with parameter λ so

that the likelihood of X is

fX |Λ(x |λ) =
nY
i=1

λe−λxi = λne−λnx̄.
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• If the prior distribution of Λ is gamma with hyperparameters α and
β, then the posterior pdf of Λ satisfies

fΛ |X (λ |x) ∝ fX |Λ(x |λ)fΛ(λ;α,β)
∝ λα+n−1e−λ(

1
β
+nx̄).

• We conclude that the posterior distribution of Λ is gamma with

parameters

α∗ = α+ n (8.23)

and

β∗ =
∙
1

β
+ nx̄

¸−1
=

β

1 + βnx̄
. (8.24)

Thus, the gamma prior is conjugate to the exponential likelihood.
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Table A.3: Some conjugate distributions

Prior pdf and
hyperparameters Likelihood of X Hyperparameters of posterior pdf

B(α,β) Bernoulli α+ nx̄, β + n− nx̄

B(α,β) BN (mi, θ) α+ nx̄, β +
Pn
i=1(mi − xi)

G(α,β) PN (λ) α+ nx̄,
β

nβ + 1

B(α,β) GM(θ) α+ n, β + nx̄

G(α,β) E(λ) α+ n,
β

1 + βnx̄
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8.3 Bayesian versus Bühlmann Credibility

• If the prior distribution is conjugate to the likelihood, the Bayesian
estimate is easy to obtain.

• For the conjugate distributions discussed, the Bühlmann credibility
estimate is equal to the Bayesian estimate.

• The examples below give the details of these results.

Example 8.7 (gamma-Poisson case): The claim-frequency random

variable X is assumed to be distributed as PN (λ), and the prior dis-
tribution of Λ is G(α,β). If a random sample of n observations of X =

{X1, X2, · · · , Xn} is available, derive the Bühlmann credibility estimate of
the future claim frequency, and show that this is the same as the Bayesian

estimate.
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Solution : As Xi ∼ iid PN (λ), we have

μPV = E[σ
2
X(Λ)] = E(Λ).

Since Λ ∼ G(α,β), we conclude that μPV = αβ. Also, μX(Λ) = E(X |Λ) =
Λ, so that

σ2HM = Var[μX(Λ)] = Var(Λ) = αβ2.

Thus,

k =
μPV
σ2HM

=
1

β
,

and the Bühlmann credibility factor is

Z =
n

n+ k
=

nβ

nβ + 1
.
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The prior mean of the claim frequency is

M = E[E(X |Λ)] = E(Λ) = αβ.

Hence, we obtain the Bühlmann credibility estimate of future claim fre-

quency as

U = ZX̄ + (1− Z)M
=

nβX̄

nβ + 1
+

αβ

nβ + 1

=
β(nX̄ + α)

nβ + 1
.

The Bayesian estimate of the expected claim frequency is the posterior

mean of Λ. From Section 8.2.1, the posterior distribution of Λ is G(α∗, β∗),
where α∗ and β∗ are given in equations (8.18) and (8.19), respectively.
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Thus, the Bayesian estimate of the expected claim frequency is

E(Xn+1 |x) = E[E(Xn+1 |Λ) |x]
= E(Λ |x)
= α∗β∗

= (α+ nX̄)

∙
β

nβ + 1

¸
= U,

which is the Bühlmann credibility estimate. 2

Example 8.8 (beta-geometric case): The claim-frequency random

variable X is assumed to be distributed as GM(θ), and the prior distrib-

ution of Θ is B(α,β), where α > 2. If a random sample of n observations

of X = {X1, X2, · · · , Xn} is available, derive the Bühlmann credibility
estimate of the future claim frequency, and show that this is the same as
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the Bayesian estimate.

Solution : As Xi ∼ iid GM(θ), we have

μX(Θ) = E(X |Θ) =
1−Θ

Θ
,

and

σ2X(Θ) = Var(X |Θ) =
1−Θ

Θ2
.

Assuming Θ ∼ B(α, β), we first compute the following moments

E
µ
1

Θ

¶
=

Z 1

0

1

θ

∙
θα−1(1− θ)β−1

B(α,β)

¸
dθ

=
B(α− 1,β)
B(α,β)

=
α+ β − 1
α− 1 ,
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and

E
µ
1

Θ2

¶
=

Z 1

0

1

θ2

∙
θα−1(1− θ)β−1

B(α,β)

¸
dθ

=
B(α− 2,β)
B(α,β)

=
(α+ β − 1)(α+ β − 2)

(α− 1)(α− 2) .

Hence, the expected value of the process variance is

μPV = E[σ2X(Θ)]

= E
µ
1−Θ

Θ2

¶
=

(α+ β − 1)β
(α− 1)(α− 2) ,
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and the variance of the hypothetical means is

σ2HM = Var[μX(Θ)]

= Var
µ
1−Θ

Θ

¶
= Var

µ
1

Θ

¶
=

(α+ β − 1)β
(α− 1)2(α− 2) .

Thus, the ratio of μPV to σ2HM is

k =
μPV
σ2HM

= α− 1,

and the Bühlmann credibility factor is

Z =
n

n+ k
=

n

n+ α− 1 .
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As the prior mean of X is

M = E(X) = E[E(X |Θ)] = E
µ
1−Θ

Θ

¶
=

α+ β − 1
α− 1 − 1 = β

α− 1 ,

the Bühlmann credibility prediction of future claim frequency is

U = ZX̄ + (1− Z)M
=

nX̄

n+ α− 1 +
α− 1

n+ α− 1
µ

β

α− 1
¶

=
nX̄ + β

n+ α− 1 .

To compute the Bayesian estimate of future claim frequency we note, from

Section 8.2.2, that the posterior distribution of Θ is B(α∗, β∗), where α∗
and β∗ are given in equations (8.20) and (8.21), respectively. Thus, we
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have

E(Xn+1 |x) = E[E(Xn+1 |Θ) |x]
= E

µ
1−Θ

Θ
|x
¶

=
α∗ + β∗ − 1

α∗ − 1 − 1

=
β∗

α∗ − 1
=

nX̄ + β

n+ α− 1 ,

which is the same as the Bühlmann credibility estimate. 2

Example 8.9 (gamma-exponential case): The claim-severity random
variable X is assumed to be distributed as E(λ), and the prior distribution
of Λ is G(α,β), where α > 2. If a random sample of n observations
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of X = {X1, X2, · · · , Xn} is available, derive the Bühlmann credibility
estimate of the future claim severity, and show that this is the same as

the Bayesian estimate.

Solution : As Xi ∼ iid E(λ), we have

μX(Λ) = E(X |Λ) =
1

Λ
,

and

σ2X(Λ) = Var(X |Λ) =
1

Λ2
.
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Since Λ ∼ G(α, β), the expected value of the process variance is

μPV = E[σ2X(Λ)]

= E
µ
1

Λ2

¶
=

Z ∞

0

1

λ2

"
λα−1e−

λ
β

Γ(α)βα

#
dλ

=
1

(α− 1)(α− 2)β2 .

The variance of the hypothetical means is

σ2HM = Var[μX(Λ)] = Var
µ
1

Λ

¶
= E

µ
1

Λ2

¶
−
∙
E
µ
1

Λ

¶¸2
.
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Now

E
µ
1

Λ

¶
=

Z ∞

0

1

λ

"
λα−1e−

λ
β

Γ(α)βα

#
dλ

=
1

(α− 1)β ,

so that

σ2HM =
1

(α− 1)(α− 2)β2 −
∙

1

(α− 1)β
¸2

=
1

(α− 1)2(α− 2)β2 .

Thus, we have

k =
μPV
σ2HM

= α− 1,
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and the Bühlmann credibility factor is

Z =
n

n+ k
=

n

n+ α− 1 .

The prior mean of X is

M = E [E(X |Λ)] = E
µ
1

Λ

¶
=

1

(α− 1)β .

Hence we obtain the Bühlmann credibility estimate as

U = ZX̄ + (1− Z)M
=

nX̄

n+ α− 1 +
α− 1

n+ α− 1
∙

1

(α− 1)β
¸

=
βnX̄ + 1

(n+ α− 1)β .

To calculate the Bayesian estimate, we note, from Section 8.2.3, that the

posterior pdf of Λ is G(α∗, β∗), where α∗ and β∗ are given in equations
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(8.22) and (8.23), respectively. Thus, the Bayesian estimate of the ex-

pected claim severity is

E(Xn+1 |x) = E
µ
1

Λ
|x
¶

=
1

(α∗ − 1)β∗

=
1 + βnX̄

(α+ n− 1)β
= U,

and the equality of the Bühlmann estimate and the Bayesian estimate is

proven. 2

• If the conjugate distributions discussed are used to model loss vari-
ables, where the distribution of the loss variable follows the likeli-

hood function and the distribution of the risk parameters follows
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the conjugate prior, then the Bühlmann credibility estimate of the

expected loss is equal to the Bayesian estimate.

• In such cases, the Bühlmann credibility estimate is said to have
exact credibility.

• There is general result for which the Bühlmann credibility estimate
is exact.
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8.4 Linear Exponential Family and Exact Credibility

• Consider a random variable X with pdf or pf fX |Θ(x | θ), where θ is
the parameter of the distribution.

• X is said to have a linear exponential distribution if fX |Θ(x | θ)
can be written as

fX |Θ(x | θ) = exp [A(θ)x+B(θ) + C(x)] , (8.24)

for some functions A(θ), B(θ) and C(x).

• The binomial, geometric, Poisson and exponential distributions all
belong to the linear exponential family.
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Table 8.2: Some linear exponential distributions

Distribution log fX |Θ(x | θ) A(θ) B(θ) C(x)

Binomial, BN (m, θ) log(Cmx ) + x log θ
+(m− x) log(1− θ)

log θ − log(1− θ) m log(1− θ) log(Cmx )

Geometric, GM(θ) log θ + x log(1− θ) log(1− θ) log θ 0

Poisson, PN (θ) x log θ − θ − log(x!) log θ −θ − log(x!)

Exponential, E(θ) −θx+ log θ −θ log θ 0
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Theorem 8.1: Let X be a random loss variable. If the likelihood of X

belongs to the linear exponential family with parameter θ, and the prior

distribution of Θ is the natural conjugate of the likelihood of X, then

the Bühlmann credibility estimate of the mean of X is the same as the

Bayesian estimate.

Proof: See Klugman et al. (2004), Section 16.4.6, or Jewell (1974), for

a proof of this theorem. 2

• When the conditions of Theorem 8.1 hold, the Bühlmann credibility
estimate is the same as the Bayesian estimate and is said to have

exact credibility.

• When the conditions of the theorem do not hold, the Bühlmann

credibility estimator generally has a larger mean squared error than

the Bayesian estimator.
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• The Bühlmann credibility estimator, however, still has the minimum
mean squared error in the class of linear estimators based on the

sample.

Example 8.10: Assume the claim frequency X over different periods

are iid as PN (λ), and the prior pf of Λ is

Λ =

⎧⎨⎩ 1, with probability 0.5,

2, with probability 0.5.

A random sample of n = 6 observations of X is available. Calculate the

Bühlmann credibility estimate and the Bayesian estimate of the expected

claim frequency. Compare the mean squared errors of these estimate as

well as that of the sample mean.

Solution: The expected claim frequency is E(X) = Λ. Thus, the mean
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squared error of the sample mean as an estimate of the expected claim

frequency is

E
£
(X̄ − Λ)2

¤
= E

©
E
£
(X̄ − Λ)2 |Λ¤ª

= E
©£
Var(X̄ |Λ)¤ª

= E
∙
Var(X |Λ)

n

¸
=

E(Λ)
n

=
1.5

6
= 0.25.

We now derive the Bühlmann credibility estimator. As μX(Λ) = E(X |Λ) =
Λ and σ2X(Λ) = Var(X |Λ) = Λ, we have

μPV = E[σ
2
X(Λ)] = E(Λ) = 1.5,
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and

σ2HM = Var[μX(Λ)] = Var(Λ) = (0.5)(1− 1.5)2 + (0.5)(2− 1.5)2 = 0.25.
Thus, we have

k =
μPV
σ2HM

=
1.5

0.25
= 6,

and the Bühlmann credibility factor is

Z =
n

n+ 6
=

6

6 + 6
= 0.5.

As the prior mean of X is

M = E[E(X |Λ)] = E(Λ) = 1.5,
the Bühlmann credibility estimator is

U = ZX̄ + (1− Z)M = 0.5X̄ + (0.5)(1.5) = 0.5X̄ + 0.75.
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Given Λ = λ, the expected values of the sample mean and the Bühlmann

credibility estimator are, respectively, λ and 0.5λ + 0.75. Thus, the sam-

ple mean is an unbiased estimator of λ, while the Bühlmann credibility

estimator is generally not. However, when λ varies as a random variable

the expected value of the Bühlmann credibility estimator is equal to 1.5,

which is the prior mean of X, and so is the expected value of the sample

mean.

The mean squared error of the Bühlmann credibility estimate of the ex-
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pected value of X is computed as follows

E
©
[U − E(X)]2ª = E

£
(0.5X̄ + 0.75− Λ)2

¤
= E

©
E
£
(0.5X̄ + 0.75− Λ)2 |Λ¤ª

= E
©
E
£
0.25X̄2 + (0.75)2 + Λ2 + 0.75X̄ − 1.5Λ− ΛX̄ |Λ¤ª

= E[0.25(Var(X̄ |Λ) + £E(X̄ |Λ)¤2)
+E

©
(0.75)2 + Λ2 + 0.75X̄ − 1.5Λ− ΛX̄ |Λª]

= E
∙
0.25

µ
Λ

6
+ Λ2

¶
+ (0.75)2 + Λ2 + 0.75Λ− 1.5Λ− Λ2

¸
= E

∙
0.25

µ
Λ

6
+ Λ2

¶
+ (0.75)2 − 0.75Λ

¸
= E

¡
0.25Λ2 − 0.7083Λ+ 0.5625¢

= 0.25
£
(1)(0.5) + (2)2(0.5)

¤− (0.7083)(1.5) + 0.5625
= 0.1251.
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Hence, the mean squared error of the Bühlmann credibility estimator is

about half of that of the sample mean.

As the Bayesian estimate is the posterior mean, we first derive the poste-

rior pf of Λ. The marginal pf of X is

fX (x) =
X

λ∈ {1, 2}
fX |Λ (x |λ) Pr(Λ = λ)

= 0.5

⎡⎣ X
λ∈ {1, 2}

Ã
6Y
i=1

λxie−λ

xi!

!⎤⎦
= 0.5

"Ã
1

e6

6Y
i=1

1

xi!

!
+

Ã
1

e12

6Y
i=1

2xi

xi!

!#
= K, say.
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Thus, the posterior pdf of Λ is

fΛ |X (λ |x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0.5

e6K

Ã
6Y
i=1

1

xi!

!
, for λ = 1,

0.5

e12K

Ã
6Y
i=1

2xi

xi!

!
, for λ = 2.

The posterior mean of Λ is

E(Λ |x) = 0.5
e6K

Ã
6Y
i=1

1

xi!

!
+

Ã
1

e12K

6Y
i=1

2xi

xi!

!
.

Thus, the Bayesian estimate is a highly nonlinear function of the data, and

the computation of its mean squared error is intractable. We estimate the

mean squared error using simulation as follows

1. Generate λ with value of 1 or 2 with probability of 0.5 each.
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2. Using the value of λ generated in Step 1, generate 6 observations of

X, x1, · · · , x6, from the distribution PN (λ).

3. Compute the posterior mean of Λ of this sample using the expression

0.5

e6K

Ã
6Y
i=1

1

xi!

!
+

Ã
1

e12K

6Y
i=1

2xi

xi!

!
.

4. Repeat Steps 1 through 3m times. Denote the values of λ generated

in Step 1 by λ1, · · · ,λm, and the corresponding Bayesian estimates
computed in Step 3 by λ̂1, · · · , λ̂m. The estimated mean squared
error of the Bayesian estimate is

1

m

mX
i=1

(λ̂i − λi)
2.

56



We perform a simulation with m = 100,000 runs. The estimated mean

squared error is 0.1103. Thus, the mean squared error of the Bayesian

estimate is lower than that of the Bühlmann credibility estimate (0.1251),

which is in turn lower than that of the sample mean (0.25).
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