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Chapter 7

Bühlmann Credibility



Learning Objectives

1. Basic framework of Bühlmann credibility

2. Variance decomposition

3. Expected value of the process variance

4. Variance of the hypothetical mean

5. Bühlmann credibility

6. Bühlmann-Straub credibility
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7.1 Framework and Notations

• Consider a risk group or block of insurance policies with loss mea-
sure denoted by X, which may be claim frequency, claim severity,

aggregate loss or pure premium.

• Assume that the risk profiles of the group are characterized by a
parameter θ, which determines the distribution of the loss measure

X.

• Denote the conditional mean and variance of X given θ by

E(X | θ) = μX(θ), (7.1)

and

Var(X | θ) = σ2X(θ). (7.2)
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• Assume that the insurance company has similar blocks of policies
with different risk profiles.

• Thus, the parameter θ varies with different risk groups.

• We treat θ as the realization of a random variable Θ, the distribution
of which is called the prior distribution.

• When θ varies over the support of Θ, the conditional mean and

variance of X become random variables in Θ, and are denoted by

μX(Θ) = E(X |Θ) and σ2X(Θ) = Var(X |Θ), respectively.

Example 7.1: An insurance company has blocks of workers compensa-

tion policies. The claim frequency is known to be Poisson with parameter

λ, where λ is 20 for low-risk group and 50 for high-risk group. Suppose
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30% of the risk groups are low risk and 70% are high risk. What are the

conditional mean and variance of the claim frequency?

Solution: The parameter determining the claim frequencyX is λ, which

we assume is a realization of the random variable Λ. As X is Poisson, the

conditional mean and conditional variance of X are equal to λ. Thus, we

have the following results

λ Pr(Λ = λ) E(X |λ) Var(X |λ)
20 0.3 20 20
50 0.7 50 50

so that

μX(Λ) = E(X |Λ) =
⎧⎪⎨⎪⎩
20, with probability 0.30,

50, with probability 0.70.
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Likewise, we have

σ2X(Λ) = Var(X |Λ) =
⎧⎪⎨⎪⎩
20, with probability 0.30,

50, with probability 0.70.

Example 7.2: The claim severity X of a block of health insurance

policies is normally distributed with mean θ and variance 10. If θ takes

values within the interval [100, 200] and follows a uniform distribution,

what are the conditional mean and conditional variance of X?

Solution: The conditional variance of X is 10, irrespective of θ. Hence,

we have σ2X(Θ) = Var(X |Θ) = 10 with probability 1. The conditional

mean of X is Θ, i.e., μX(Θ) = E(X |Θ) = Θ, which is uniformly distrib-
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uted in [100, 200] with pdf

fΘ(θ) =

⎧⎪⎨⎪⎩
0.01, for θ ∈ [100, 200],

0, otherwise.

• The Bühlmann model assumes that there are n observations of losses,
denoted by {X1, · · · , Xn}.

• The observations may be losses recorded in n periods and they are
assumed to be iid as X, which depends on the parameter θ.

• The task is to update the prediction of X for the next period, i.e.,

Xn+1, based on {X1, · · · , Xn}.

• In the Bühlmann approach the solution depends on the variation be-
tween the conditional means as well as the average of the conditional

variances of the risk groups.
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7.2 Variance Components

• The variation of the loss measure X consists of two components: the

variation between risk groups and the variation within risk

groups.

• The first component, variation between risk groups, is due to the
randomness of the risk profiles of each group and is captured by the

parameter Θ.

• The second component, variation within risk group, is measured by
the conditional variance of the risk group.

• We first consider the calculation of the overall mean of the loss mea-
sure X. The unconditional mean (or overall mean) of X is

E(X) = E[E(X |Θ)] = E[μX(Θ)]. (7.3)
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• For the unconditional variance (or total variance), we have

Var(X) = E[Var(X |Θ)] + Var[E(X |Θ)]. (7.4)

• Var(X |Θ) measures the variance of a given risk group. It is a func-
tion of the random variableΘ and we call this the process variance.

• Thus, E[Var(X |Θ)] is the expected value of the process vari-
ance (EPV).

• On the other hand, E(X |Θ) is the mean of a given risk group. We
call this conditional mean the hypothetical mean.

• Thus, Var[E(X |Θ)] is the variance of the hypothetical means
(VHM), as it measures the variations in the means of the risk

groups.
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• Verbally, equation (7.4) can be written as

Total variance = Expected value of process variance

+ Variance of hypothetical means,(7.5)

or

Total variance = EPV+VHM. (7.6)

• It can also be stated alternatively as

Total variance = Mean of conditional variance

+Variance of conditional mean. (7.7)

• Symbolically, we use the following notations

E[Var(X |Θ)] = E[σ2X(Θ)] = μPV, (7.8)
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and

Var[E(X |Θ)] = Var[μX(Θ)] = σ2HM, (7.9)

so that equation (7.4) can be written as

Var(X) = μPV + σ2HM. (7.10)

Example 7.3: For Examples 7.1 and 7.2, calculate the unconditional

mean, the expected value of the process variance, the variance of the

hypothetical means and the total variance.

Solution: For Example 7.1, the unconditional mean is

E(X) = Pr(Λ = 20)E(X |Λ = 20) + Pr(Λ = 50)E(X |Λ = 50)
= (0.3)(20) + (0.7)(50)

= 41.
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The expected value of the process variance, EPV, is

E[Var(X |Λ)] = Pr(Λ = 20)Var(X |Λ = 20) + Pr(Λ = 50)Var(X |Λ = 50)
= (0.3)(20) + (0.7)(50)

= 41.

As the mean of the hypothetical means (i.e., the unconditional mean) is

41, the variance of the hypothetical means, VHM, is

Var[E(X |Λ)] = (0.3)(20− 41)2 + (0.7)(50− 41)2 = 189.
Thus, the total variance of X is

Var(X) = E[Var(X |Λ)] + Var[E(X |Λ)] = 41 + 189 = 230.
For Example 7.2, as Θ is uniformly distributed in [100, 200], the uncondi-

tional mean of X is

E(X) = E[E(X |Θ)] = E(Θ) = 150.
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As X has a constant variance of 10, the expected value of the process

variance is

E[Var(X |Θ)] = E(10) = 10.
The variance of the hypothetical means is

Var[E(X |Θ)] = Var(Θ) = (200− 100)2
12

= 833.33,

and the total variance of X is

Var(X) = 10 + 833.33 = 843.33.
2

Example 7.5: An insurance company sells workers compensation poli-

cies, each of which belongs to one of three possible risk groups. The risk

groups have claim frequencies N that are Poisson distributed with para-

meter λ and claim severity X that are gamma distributed with parameters
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α and β. Claim frequency and claim severity are independently distrib-

uted given a risk group, and the aggregate loss is S. The data of the risk

groups are given in Table 7.2.

Table 7.2: Data for Example 7.5

Relative Distribution of N : Distribution of X:
Risk group frequency PN (λ) G(α,β)

1 0.2 λ = 20 α = 5, β = 2
2 0.4 λ = 30 α = 4, β = 3
3 0.4 λ = 40 α = 3, β = 2

For each of the following loss measures: (a) claim frequency N , (b) claim

severity X, and (c) aggregate loss S, calculate EPV, VHM and the total

variance.

Solution: (a) Claim frequency We first calculate the conditional

mean and conditional variance of N given the risk group, which is charac-
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terized by the parameter Λ. As N is Poisson, the mean and variance are

equal to Λ, so that we have the results in Table 7.3.

Table 7.3: Results for Example 7.5 (a)

Risk group Probability E(N |Λ) = μN(Λ) Var(N |Λ) = σ2N(Λ)
1 0.2 20 20
2 0.4 30 30
3 0.4 40 40

Thus, the EPV is

μPV = E[Var(N |Λ)] = (0.2)(20) + (0.4)(30) + (0.4)(40) = 32,

which is also equal to the unconditional mean E[μN(Λ)]. For VHM, we

first calculate

E{[μN(Λ)]2} = (0.2)(20)2 + (0.4)(30)2 + (0.4)(40)2 = 1,080,
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so that

σ2HM = Var[μN(Λ)] = E{[μN(Λ)]2}− {E[μN(Λ)]}2 = 1,080− (32)2 = 56.

Therefore, the total variance of N is

Var(N) = μPV + σ2HM = 32 + 56 = 88.

(b) Claim severity There are three claim-severity distributions, which

are specific to each risk group. Note that the relative frequencies of the

risk groups as well as the claim frequencies in the risk groups jointly

determine the relative occurrence of each claim-severity distribution. The

probabilities of occurrence of the severity distributions, as well as their

conditional means and variances are given in Table 7.4, in which Γ denotes

the vector random variable representing α and β.
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Table 7.4: Results for Example 7.5 (b)

Group Col 2 Probability of E(X |Γ) Var(X |Γ)
Group probability λ × Col 3 severity X = μX(Γ) = σ2X(Γ)
1 0.2 20 4 0.125 10 20
2 0.4 30 12 0.375 12 36
3 0.4 40 16 0.500 6 12

Column 4 gives the expected number of claims in each group weighted

by the group probability. Column 5 gives the probability of occurrence of

each type of claim-severity distribution, which is obtained by dividing the

corresponding figure in Column 4 by the sum of Column 4 (e.g., 0.125 =

4/(4 + 12 + 16)). The last two columns give the conditional mean αβ and

conditional variance αβ2 corresponding to the three different distributions

of claim severity. Similar to the calculation in (a), we have
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E(X) = E[E(X |Γ)] = (0.125)(10) + (0.375)(12) + (0.5)(6) = 8.75,

and

μPV = (0.125)(20) + (0.375)(36) + (0.5)(12) = 22.

To calculate VHM, we first compute the raw second moment of the con-

ditional mean of X, which is

E{[μX(Γ)]2} = (0.125)(10)2 + (0.375)(12)2 + (0.5)(6)2 = 84.50.

Hence,

σ2HM = Var[μX(Γ)] = E{[μX(Γ)]2}−{E[μX(Γ)]}2 = 84.50−(8.75)2 = 7.9375.

Therefore, the total variance of X is

Var(X) = μPV + σ2HM = 22 + 7.9375 = 29.9375.
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(c) Aggregate loss The distribution of the aggregate loss S is deter-

mined jointly by Λ and Γ, which we shall denote as Θ. For the conditional

mean of S, we have

E(S |Θ) = E(N |Θ)E(X |Θ) = λαβ.

For the conditional variance of S, we use the result on compound distrib-

ution with Poisson claim frequency stated in equation (A.123), and make

use of the assumption of gamma severity to obtain

Var(S |Θ) = λ[σ2X(Γ) + μ2X(Γ)] = λ(αβ2 + α2β2).

The conditional means and conditional variances of S are summarized in

Table 7.5.
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Table 7.5: Results for Example 7.5 (c)

Group Parameters E(S |Θ) Var(S |Θ)
Group probability λ, α, β = μS(Θ) = σ2S(Θ)
1 0.2 20, 5, 2 200 2,400
2 0.4 30, 4, 3 360 5,400
3 0.4 40, 3, 2 240 1,920

The unconditional mean of S is

E(S) = E[E(S |Θ)] = (0.2)(200) + (0.4)(360) + (0.4)(240) = 280,

and the EPV is

μPV = (0.2)(2,400) + (0.4)(5,400) + (0.4)(1,920) = 3,408.

Also, the VHM is given by

σ2HM = Var[μS(Θ)]
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= E{[μS(Θ)]2}− {E[μS(Θ)]}2

=
h
(0.2)(200)2 + (0.4)(360)2 + (0.4)(240)2

i
− (280)2

= 4,480.

Therefore, the total variance of S is

Var(S) = 3,408 + 4,480 = 7,888.

2

• EPV and VHM measure two different aspects of the total variance.

• When a risk group is homogeneous so that the loss claims are similar
within the group, the conditional variance is small. If all risk groups

have similar loss claims within the group, the expected value of the

process variance is small.
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• On the other hand, if the risk groups have very different risk profiles
across groups, their hypothetical means will differ more and thus the

variance of the hypothetical means will be large.

• Thus, it will be easier to distinguish between risk groups if the hy-
pothetical means differ more and the average of the process variance

is small.

• We define k as the ratio of EPV to VHM, i.e.,

k =
μPV
σ2HM

=
EPV

VHM
. (7.11)

• A small EPV or large VHM will gives rise to a small k. The risk

groups will be more distinguishable in the mean when k is smaller,

in which case we may put more weight on the data in updating our

revised prediction for future losses.
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Example 7.6: Frequency of claim per year, N , is distributed as a Bi-

nomial random variable BN (10, θ), and claim severity, X, is distributed

as an exponential random variable with mean cθ, where c is a known

constant. Given θ, claim frequency and claim severity are independently

distributed. Derive an expression of k for the aggregate loss per year, S,

in terms of c and the moments of Θ, and show that it does not depend on

c. If Θ is 0.3 or 0.7 with equal probabilities, calculate k.

Solution: We first calculate the conditional mean of S as a function of θ.

Due to the independence assumption of N and X, the hypothetical mean

of S is

E(S |Θ) = E(N |Θ)E(X |Θ) = (10Θ)(cΘ) = 10cΘ2.

The process variance is

Var(S |Θ) = μN(Θ)σ
2
X(Θ) + σ2N(Θ)μ

2
X(Θ)
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= (10Θ)(cΘ)2 + [10Θ(1−Θ)](cΘ)2

= 10c2Θ3 + 10c2Θ3(1−Θ)

= 10c2Θ3(2−Θ).

Hence, the unconditional mean of S is

E(S) = E[E(S |Θ)] = E(10cΘ2) = 10cE(Θ2)

and the variance of the hypothetical means is

σ2HM = Var[E(S |Θ)]
= Var(10cΘ2)

= 100c2Var(Θ2)

= 100c2{E(Θ4)− [E(Θ2)]2}.
The expected value of the process variance is

μPV = E[Var(S |Θ)]
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= E[10c2Θ3(2−Θ)]

= 10c2[2E(Θ3)− E(Θ4)].

Combining the above results we conclude that

k =
μPV
σ2HM

=
10c2[2E(Θ3)− E(Θ4)]

100c2{E(Θ4)− [E(Θ2)]2} =
2E(Θ3)− E(Θ4)

10{E(Θ4)− [E(Θ2)]2} .

Thus, k does not depend on c. To compute its value for the given distri-

bution of Θ, we present the calculations as follows:

θ Pr(Θ = θ) θ2 θ3 θ4

0.3 0.5 0.09 0.027 0.0081
0.7 0.5 0.49 0.343 0.2401

Thus, the required moments of Θ are

E(Θ) = (0.5)(0.3) + (0.5)(0.7) = 0.5,
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E(Θ2) = (0.5)(0.09) + (0.5)(0.49) = 0.29,

E(Θ3) = (0.5)(0.027) + (0.5)(0.343) = 0.185

and

E(Θ4) = (0.5)(0.0081) + (0.5)(0.2401) = 0.1241,

so that

k =
2(0.185)− 0.1241
10 [0.1241− (0.29)2] = 0.6148.

2

In this example, note that both EPV and VHM depend on c. However,

as the effects of c on these components are the same, the ratio of EPV to
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VHM is invariant to c. Also, though X and N are independent given θ,

they are correlated unconditionally due to their common dependence on

Θ.
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7.3 Bühlmann Credibility

• Bühlmann’s approach of updating the predicted loss measure is
based on a linear predictor using past observations.

• It is also called the greatest accuracy approach or the least

squares approach.

• For the classical credibility approach, the updated prediction U is

given by (see equation (6.1))

U = ZD + (1− Z)M. (7.12)

• The Bühlmann credibility method has a similar basic equation, in
which D is the sample mean of the data and M is the overall prior

mean E(X).
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• The Bühlmann credibility factor Z depends on the sample size n

and the EPV to VHM ratio k. In particular, Z varies with n and k

as follows:

1. Z increases with the sample size n of the data.

2. Z increases with the distinctiveness of the risk groups. As argued

above, the risk groups are more distinguishable when k is small.

Thus, Z increases as k decreases.

• We now state formally the assumptions of the Bühlmann model

and derive the updating formula as the least mean-squared-error

(MSE) linear predictor.

1. {X1, · · · , Xn} are loss measures that are independently and identi-
cally distributed as the random variable X. The distribution of X

depends on the parameter θ.
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2. The parameter θ is a realization of a random variable Θ. Given θ,

the conditional mean and variance of X are

E(X | θ) = μX(θ), (7.13)

and

Var(X | θ) = σ2X(θ). (7.14)

3. The unconditional mean of X is E(X) = E[E(X |Θ)] = μX . The

mean of the conditional variance of X is

E[Var(X |Θ)] = E[σ2X(Θ)]

= μPV

= Expected value of process variance

= EPV, (7.15)
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and the variance of the conditional mean is

Var[E(X |Θ)] = Var[μX(Θ)]

= σ2HM

= Variance of hypothetical means

= VHM. (7.16)

The unconditional variance (or total variance) of X is

Var(X) = E[Var(X |Θ)] + Var[E(X |Θ)]
= μPV + σ2HM

= EPV + VHM. (7.17)

4. The Bühlmann approach formulates a predictor of Xn+1 based on a

linear function of {X1, · · · , Xn}, where Xn+1 is assumed to have the
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same distribution as X. The predictor minimizes the mean squared

error in predicting Xn+1 over the joint distribution of Θ, Xn+1 and

{X1, · · · , Xn}. Specifically, the predictor is given by
X̂n+1 = β0 + β1X1 + · · ·+ βnXn, (7.18)

where β0,β1, · · · ,βn are chosen to minimize the mean squared error,
MSE, defined as

MSE = E
∙³
Xn+1 − X̂n+1

´2¸
. (7.19)

• We skip the proof and state the result here that
X̂n+1 = ZX̄ + (1− Z)μX , (7.34)

where

Z =
n

n+ k
. (7.35)
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• Z defined in equation (7.35) is called the Bühlmann credibility
factor or simply the Bühlmann credibility. It depends on the

EPV to VHM ratio k, which is called the Bühlmann credibility

parameter.

• The optimal linear forecast X̂n+1 given in equation (7.34) is also
called the Bühlmann premium.

• Note that k depends only on the parameters of the model, while Z
is a function of k and the size n of the data.

• For predicting claim frequency N , the sample size n is the number

of periods over which the number of claims is aggregated. For pre-

dicting claim severity X, the sample size n is the number of claims.

As aggregate loss S refers to the total loss payout per period, the

sample size is the number of periods of claim experience.
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Example 7.7: Refer to Example 7.5. Suppose the claim experience last

year was 26 claims with an average claim size of 12. Calculate the updated

prediction of (a) the claim frequency, (b) the average claim size, and (c)

the aggregate loss, for next year.

Solution: (a) Claim frequency From Example 7.5, we have k =

0.5714 and M = E(N) = 32. Now we are given n = 1 and D = 26.

Hence,

Z =
1

1 + 0.5714
= 0.6364,

so that the updated prediction of the claim frequency of this group is

U = (0.6364)(26) + (1− 0.6364)(32) = 28.1816.

(b) Claim severity We have k = 2.7717 and M = E(X) = 8.75, with
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n = 26 and D = 12. Thus,

Z =
26

26 + 2.7717
= 0.9037,

so that the updated prediction of the claim severity of this group is

U = (0.9037)(12) + (1− 0.9037)(8.75) = 11.6870.

(c) Aggregate loss With k = 0.7607, M = E(S) = 280, n = 1 and

D = (26)(12) = 312, we have

Z =
1

1 + 0.7607
= 0.5680,

so that the updated prediction of the aggregate loss of this group is

U = (0.5680)(312) + (1− 0.5680)(280) = 298.1760.
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7.4 Bühlmann-Straub Credibility

• An important limitation of the Bühlmann credibility theory is that
the loss observations Xi are assumed to be identically distributed.

This assumption is violated if the data are over different periods

with different exposures (the definition of exposure will be explained

below).

• TheBühlmann-Straub credibility model extends theBühlmann
theory to cases where the loss data Xi are not identically distrib-

uted. In particular, the process variance of the loss measure is as-

sumed to depend on the exposure.

• We denote the exposure by mi, and the loss per unit of exposure by

Xi. Note that the exposure needs not be the number of insureds,
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although it may often be the case. We then assume the following for

the conditional variance of Xi

Var(Xi |Θ) = σ2X(Θ)

mi
, (7.36)

for a suitably defined σ2X(Θ).

• The following are some examples.

1. Xi is the average number of claims per insured in year i, σ
2
X(Θ) is

the variance of the claim frequency of an insured, and the exposure

mi is the number of insureds covered in year i.

2. Xi is the average aggregate loss per month of the ith block of policies,

σ2X(Θ) is the variance of the aggregate loss of the block in a month,

and the exposure mi is the number of months of insurance claims

for the ith block of policies.
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3. Xi is the average loss per unit premium in year i, σ2X(Θ) is the

variance of the claim amount of an insured per year divided by the

premium per insured, and the exposure mi is the amount of premi-

ums received in year i.

• The parameter θ is a realization of a random variable Θ. Given θ,

the conditional mean and variance of Xi are

E(Xi | θ) = μX(θ), (7.38)

and

Var(Xi | θ) = σ2X(θ)

mi
, (7.39)

for i ∈ {1, · · · , n}, where σ2X(θ) is suitably defined as in the examples
above.
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• The unconditional mean ofXi is E(Xi) = E[E(Xi |Θ)] = E[μX(Θ)] =
μX . The mean of the conditional variance of Xi is

E[Var(Xi |Θ)] = E

"
σ2X(Θ)

mi

#
=

μPV
mi
, (7.40)

for i ∈ {1, · · · , n}, where μPV = E[σ2X(Θ)], and the variance of its

conditional mean is

Var[E(Xi |Θ)] = Var[μX(Θ)]

= σ2HM. (7.41)

• Now we define
m =

nX
i=1

mi, (7.48)
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X̄ =
1

m

nX
i=1

miXi (7.51)

and

k =
μPV
σ2HM

. (7.52)

• Denoting
Z =

m

m+ k
. (7.54)

we have

X̂n+1 = ZX̄ + (1− Z)μX . (7.57)

Example 7.9: The number of accident claims incurred per year for each

insured is distributed as a binomial random variable BN (2, θ), and the
claim incidences are independent across insureds. The probability θ of the

binomial has a beta distribution with parameters α = 1 and β = 10. The

data in Table 7.7 are given for a block of policies.
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Table 7.7: Data for Example 7.9

Year Number of insureds Number of claims
1 100 7
2 200 13
3 250 18
4 280 —

Calculate the Bühlmann-Straub credibility prediction of the number of

claims in the fourth year.

Solution: Let mi be the number of insureds in Year i, and Xi be the

number of claims per insured in Year i. Define Xij as the number of claims

for the jth insured in Year i, which is distributed as BN (2, θ). Thus, we
have

E(Xi |Θ) = 1

mi

miX
j=1

E(Xij |Θ) = 2Θ,
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and

σ2HM = Var[E(Xi |Θ)] = Var(2Θ) = 4Var(Θ).
As Θ has a beta distribution with parameters α = 1 and β = 10, we have

Var(Θ) =
αβ

(α+ β)2(α+ β + 1)
=

10

(11)2(12)
= 0.006887.

For the conditional variance of Xi, we have

Var(Xi |Θ) = 2Θ(1−Θ)

mi
.

Thus,

μPV = 2E[Θ(1−Θ)].

As

E(Θ) =
α

α+ β
= 0.0909,
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we have

μPV = 2[E(Θ)− E(Θ2)]

= 2
n
E(Θ)−

³
Var(Θ) + [E(Θ)]2

´o
= 2{0.0909− [0.006887 + (0.0909)2]} = 0.1515.

Thus,

k =
μPV
σ2HM

=
0.1515

(4)(0.006887)
= 5.5.

As m = 100 + 200 + 250 = 550, we have

Z =
550

550 + 5.5
= 0.9901.

Now

μX = E[E(Xi |Θ)] = (2)(0.0909) = 0.1818
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and

X̄ =
7 + 13 + 18

550
= 0.0691.

Thus, the predicted number of claims per insured is

(0.9901)(0.0691) + (1− 0.9901)(0.1818) = 0.0702,

and the predicted number of claims in Year 4 is

(280)(0.0702) = 19.66.

2
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