Nonlife Actuarial Models

Chapter 5

Ruin Theory



Learning Objectives

. Surplus function, premium rate and loss process

. Probability of ultimate ruin

. Probability of ruin before a finite time

. Adjustment coefficient and Lundberg’s inequality

. Poisson process and continuous-time ruin theory



5.1 Discrete-Time Surplus and Ruin

An insurance company establishes its business with a start-up capital

of u at time 0, called the initial surplus.

It receives premiums of one unit per period at the end of each period.
Loss claim of amount X; is paid out at the end of period ¢ for ¢ =
1,2,

X, are independently and identically distributed as the loss random
variable X.

The surplus at time n with initial capital u, denoted by U(n;u), is

given by



Un;u)=u+n—->» X;, forn=12---. (5.1)

i=1
The numeraire of the above equation is the amount of premium
per period, or the premium rate.All other variables are measured as

multiples of the premium rate.

Thus, the initial surplus v may take values of 0,1,---, times the

premium rate. Likewise, X; may take values of § times the premium
rate with pf fx(j) for j =0,1,---.

We denote the mean of X by ux and its variance by o%.

We assume X is of finite support, although in notation we allow j

to run to infinity:.



e If we denote the premium loading by 6, then we have

1=(140)ux, (5.2)
which implies
- (5.3)
PX =110 '

We shall assume positive loading so that puyx < 1.

e The business is said to be in ruin if the surplus function U(n;u)
tfalls to or below zero sometime after the business started, i.e., at a

point n > 1.

Definition 5.1:  Ruin occurs at time n if U(n;u) < 0 for the first time

at n, for n > 1.



Definition 5.2: The time-of-ruin random variable T'(u) is defined as

T(u) =min{n >1:U(n;u) < 0}. (5.4)

Definition 5.3: Given an initial surplus u, the probability of ultimate

ruin, denoted by ¥ (u), is

Y(u) = Pr(T(u) < 00). (5.5)

Definition 5.4: Given an initial surplus u, the probability of ruin by
time ¢, denoted by 1 (¢; u), is

Y(t;u) = Pr(T(u) < t), fort=1,2,---. (5.6)



5.2 Discrete-Time Ruin Theory

5.2.1 Ultimate Ruin in Discrete Time

e We now derive recursive formulas for 1 (u).

e First, for u = 0, we have
(0) = fx(0)¥(1) + Sx(0). (5.7)
e Similarly, for u = 1, we have

P(1) = fx(0)¥(2) + fx(1)(1) + Sx(1). (5.8)

e The above equations can be generalized to larger values of u as



follows
V) = FrOu+ D+ fr()lu+1-)+Sx(w),  foru>1
(5.9)

e Re-arranging equation (5.9), we obtain the following recursive for-
mula for the probability of ultimate ruin

Y(u+l) = le( 0) i Y(u+1—7)—Sx(u)|, for u > 1.

e To apply the above equation we need the starting value ¥ (0), which

is given by the following theorem.

Theorem 5.1:  For the discrete-time surplus model, (0) = ux.
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Proof: See NAM.

Example 5.1: The claim variable X has the following distribution:
fx(0) =0.5, fx(1) = fx(2) = 0.2 and fx(3) = 0.1. Calculate the proba-
bility of ultimate ruin (u) for u > 0.

Solution: The survival function of X is Sx(0) = 0.2+ 0.2+ 0.1 = 0.5,
Sx(1)=0.2+0.1=0.3,5x(2) = 0.1 and Sx(u) = 0 for u > 3. The mean
of X is

ux = (0)(0.5) + (1)(0.2) + (2)(0.2) + (3)(0.1) = 0.9,
which can also be calculated as

px =Y Sx(u)=0.5+0.3+0.1=0.9.

u=0

Thus, from Theorem 5.1 ¢/(0) = 0.9, and from equation (5.7), 1(1) is given
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by

From equation (5.8), we have

v(1) = Fx(DY(1) = Sx(1) _ 08— (02)(08) ~ 03

¥(2) = (0] o = (.68,
and applying equation (5.10) for u = 3, we have
o3 = VD = UR) = A@u() = 5x@) _ o

fx(0)

As Sx(u) = 0 for u > 3, using equation (5.10) we have, for u > 4,

w(u) _ ¢<U) — fX(l)?vb(U) - fX(2>?7D(’LL — 1) — fX(S)w(U _ 2).
fx(0)
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5.2.2 Finite-Time Ruin in Discrete Time

e We now consider the probability of ruin at or before a finite time

point ¢ given an initial surplus wu.

e First we consider ¢ = 1 given initial surplus wu.

e As defined in equation (5.6), ¥ (t;u) = Pr(T(u) < t). If u = 0, the

ruin event occurs at time ¢ = 1 when X; > 1. Thus,
P(1;0) =1 — fx(0) = Sx(0). (5.20)
e Likewise, for u > 0, we have
Y(1;u) = Pr(X; > u) = Sx(u). (5.21)
e We now consider ¥ (t;u) for t > 2 and u > 0.
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The event of ruin occurring at or before time ¢ > 2 may be due to (a)
ruin at time 1, or (b) loss of j at time 1 for 5 = 0,1, -, u, followed

by ruin occurring within the next ¢ — 1 periods.

When there is a loss of j§ at time 1, the surplus becomes u + 1 — 3,

so that the probability of ruin within the next ¢ — 1 periods is (¢t —

Lu+1—7).

Thus, we conclude that
(tu) = (Lu) + > fx ()t — Lu+1-7). (5.22)
§=0

Hence, 1 (t;u) can be computed as follows.

. Construct a table with time ¢ running down the rows fort =1,2, - - -,

and v running across the columns for u =0,1,- - -.
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2. Initialize the first row of the table for t = 1 with ¥(1;u) = Sx(u).
Note that if M is the maximum loss in each period, then ¢ (1;u) = 0
for u > M.

3. Increase the value of ¢ by 1 and calculate ¥ (¢;u) for v = 0,1,- -,
using equation (5.22). Note that the computation requires the cor-
responding entry in the first row of the table, i.e., ¥(1;u), as well
as some entries in the (¢ — 1)th row. In particular, the v 4+ 1 entries
Yt —1;1),---,9(t —1;u+ 1) in the (¢t — 1)th row are required.

4. Re-do Step 3 until the desired time point.

Example 5.3: As in Example 5.1, the claim variable X has the fol-
lowing distribution: fx(0) = 0.5, fx(1) = fx(2) = 0.2 and fx(3) = 0.1.
Calculate the probability of ruin at or before a finite time ¢ given initial

surplus u, 1 (t;u), for u > 0.
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Solution: The results are summarized in Table 5.1 for ¢t = 1,2 and 3,
and u=0,1,---,6.
Table 5.1: Results of Example 5.3

Initial surplus u

Time ¢ 0 1 2 3 4 5 6

1 0.500 0.300 0.100 0.000 0.000 0.000 0.000
2 0.650 0.410 0.180 0.050 0.010 0.000 0.000
3 0.7065 0.472 0.243 0.092 0.030 0.007 0.001

The first row of the table is Sx(u). Note that (1;u) = 0 for u > 3, as
the maximum loss in each period is 3. For the second row, the details of

the computation is as follows. First, 1(2;0) is computed as
¥(2;0) = 1(1;0) + fx(0)(1;1) = 0.5+ (0.5)(0.3) = 0.65.
Similarly,
B(2: 1) = (15 D)+ (0015 2)+fx (1)eb(13 1) = 0.34+(0.5)(0.1)4(0.2)(0.3) = 0.41,
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and

¥(2;2) = ¥(1;2) + fx(0)1(1;3) + fx(1)¥(1;2) + fx(2)1(1;1) = 0.18.

We use 9(3;3) to illustrate the computation of the third row as follows

Y(3;3)

Y(1;3) + fx(0)9(2;4) + fx(1)9(2;3) + fx(2)(2;2) + fx(3)1(2;1)
— 0+ (0.5)(0.01) + (0.2)(0.05) + (0.2)(0.18) + (0.1)(0.41)
— 0.092.
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5.2.3 Lundberg’s inequality in Discrete Time

Definition 5.5: Suppose X is the loss random variable. The adjustment
coefficient, denoted by r*, is the value of r that satisfies the following

equation
Elexp{r(X —1)}] =1. (5.23)

Example 5.4: Assume the loss random variable X follows the distribu-

tion given in Examples 5.1 and 5.3. Calculate the adjustment coefficient

*

.

Solution: Equation (5.23) is set up as follows

0.5e " +0.2 4+ 0.2¢" + 0.1e*" =1,
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which is equivalent to
0.1w® + 0.2w?* — 0.8w + 0.5 = 0,

for w = e". We solve the above equation numerically to obtain w = 1.1901,
so that r* = log(1.1901) = 0.1740.

Theorem 5.2 (Lundberg’s Theorem): For the discrete-time surplus

function, the probability of ultimate ruin satisfies the following inequality

Y(u) < exp(—r*u), (5.28)

where r* is the adjustment coefficient.
Proof: By induction, see NAM.

Example 5.5: Assume the loss random variable X follows the distribu-
tion given in Examples 5.1 and 5.4. Calculate the Lundberg upper bound
for the probability of ultimate ruin for v = 0, 1,2 and 3.
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Solution: From Example 5.4, the adjustment coefficient is r* = 0.1740.

The Lundberg upper bound for v = 0 is 1, and for v = 1,2 and 3,
we have e 017 = 0.8403, e~ @017 — (7061 and e~ 317 = (.5933,

respectively. These figures may be compared against the exact values

computed in Example 5.1, namely, 0.8, 0.68 and 0.568, respectively.
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5.3 Continuous-Time Surplus Function

In a continuous-time model the insurance company receives premi-

ums continuously, while claim losses may occur at any time.

We assume that the initial surplus of the insurance company is u

and the amount of premium received per unit time is c.

We denote the number of claims (described as the number of occur-
rences of events) in the interval (0,¢] by N(t), with claim amounts
X1, -, Xn@), which are assumed to be independently and identi-
cally distributed as X.

We denote the aggregate losses up to (and including) time ¢ by S(%),
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which is given by

Sit) =) X, (5.39)
with the convention that if N(¢) =0, S(¢) = 0.
Thus, the surplus at time ¢, denoted by U (t;u), is defined as

U(t;u) =u—+ct — S(1). (5.40)

Figure 5.4 illustrates an example of a realization of the surplus func-
tion U(t;u).

To analyze the behavior of U(¢; u) we make some assumptions about

the claim process S(t).

In particular, we assume that the number of occurrences of (claim)

events up to (and including) time ¢, N(t), follows a Poisson process.
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Definition 5.6: N(t) is a Poisson process with parameter A, which is
the rate of occurrences of events per unit time, if (a) in any interval (¢1, ts],
the number of occurrences of events, i.e., N(t3) — N(¢1), has a Poisson dis-
tribution with mean \(t; —t1), and (b) over any non-overlapping intervals,

the numbers of occurrences of events are independently distributed.

e For a fized t, N(t) is distributed as a Poisson variable with parame-
ter At, i.e., N(t) ~ PN (At), and S(t) follows a compound Poisson

distribution.

e As a function of time ¢, S(¢) is a compound Poisson process and
the corresponding surplus process U(t;u) is a compound Poisson
surplus process. We assume that the claim random variable X
has a mgf Mx(r) for r € [0,7).
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5.4 Continuous-Time Ruin Theory

5.4.1 Lundberg’s Inequality in Continuous Time

e We first define the adjustment coefficient in continuous time. Anal-

ogous to the discrete-time case, in which the adjustment coefficient

is the solution of

1+ (1+0)rux = Mx(r). (5.47)

Theorem 5.3: If the surplus function follows a compound Poisson
process defined in equation (5.40), the probability of ultimate ruin given

initial surplus u, 1 (u), satisfies the inequality
P() < exp(—r*u), (5.48)
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where r* is the adjustment coefficient satisfying equation (5.47).

Example 5.6: Let U(t; u) be a compound Poisson surplus function with
X ~ G(3,0.5). Compute the adjustment coefficient and its approximate
value using equation (5.52), for # = 0.1 and 0.2. Calculate the upper

bounds for the probability of ultimate ruin for v = 5 and u = 10.

Solution: The mgf of X is, from equation (2.32),

1 1
Mx() = =59 = T=osp

and its mean and variance are, respectively, ux = a8 = 1.5 and 0% =
af? = 0.75. From equation (5.47), the adjustment coefficient is the solu-

tion of r in the equation

= 3.574)3 14+ (14 60)(15)r,
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from which we solve numerically to obtain r* = 0.0924 when 6 = 0.1. The

upper bounds for the probability of ultimate ruin are

exp(—r*u) = 0.6300, for u = 5,
*D — 9 0.3969, for u = 10.

When the loading is increased to 0.2, r* = 0.1718, so that the upper

bounds for the probability of ruin are

exp(—r*u) = 0.4236, for u = 5,
P —) 0.1794,  for u = 10.

To compute the approximate values of 7*, we use equation (5.52) to obtain,
for 6 = 0.1,

) (2)(0.1)(1.5)
~ — 0.0864
" T 075 + (L1)2(15)2 ’
and, for 8 = 0.2,

Y

. (0205
DT 075+ (1.2)2(15)2 104
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Based on these approximate values, the upper bounds for the probability

of ultimate ruin are, for 6 = 0.1,

exp(—r*1) = 0.6492,  for u = 5,
P — 1 0.4215, for u = 10.

and, for 8 = 0.2,

exp(—r*u) = 0.4714, for u = 5,
p — 1 02222, for u = 10.

Thus, we can see that the adjustment coefficient increases with the pre-
mium loading 6. Also, the upper bound for the probability of ultimate
ruin decreases with 6 and u. We also observe that the approximation of

r* works reasonably well.
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