
Nonlife Actuarial Models

Chapter 5

Ruin Theory



Learning Objectives

1. Surplus function, premium rate and loss process

2. Probability of ultimate ruin

3. Probability of ruin before a finite time

4. Adjustment coefficient and Lundberg’s inequality

5. Poisson process and continuous-time ruin theory
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5.1 Discrete-Time Surplus and Ruin

• An insurance company establishes its business with a start-up capital
of u at time 0, called the initial surplus.

• It receives premiums of one unit per period at the end of each period.
Loss claim of amount Xi is paid out at the end of period i for i =

1, 2, · · ·.

• Xi are independently and identically distributed as the loss random
variable X.

• The surplus at time n with initial capital u, denoted by U(n;u), is
given by
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U(n;u) = u+ n−
nX
i=1

Xi, for n = 1, 2, · · · . (5.1)

• The numeraire of the above equation is the amount of premium
per period, or the premium rate.All other variables are measured as

multiples of the premium rate.

• Thus, the initial surplus u may take values of 0, 1, · · · , times the
premium rate. Likewise, Xi may take values of j times the premium

rate with pf fX(j) for j = 0, 1, · · · .

• We denote the mean of X by μX and its variance by σ2X .

• We assume X is of finite support, although in notation we allow j

to run to infinity.
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• If we denote the premium loading by θ, then we have

1 = (1 + θ)μX , (5.2)

which implies

μX =
1

1 + θ
. (5.3)

We shall assume positive loading so that μX < 1.

• The business is said to be in ruin if the surplus function U(n;u)
falls to or below zero sometime after the business started, i.e., at a

point n ≥ 1.

Definition 5.1: Ruin occurs at time n if U(n;u) ≤ 0 for the first time
at n, for n ≥ 1.
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Definition 5.2: The time-of-ruin random variable T (u) is defined as

T (u) = min {n ≥ 1 : U(n;u) ≤ 0}. (5.4)

Definition 5.3: Given an initial surplus u, the probability of ultimate

ruin, denoted by ψ(u), is

ψ(u) = Pr(T (u) <∞). (5.5)

Definition 5.4: Given an initial surplus u, the probability of ruin by

time t, denoted by ψ(t;u), is

ψ(t;u) = Pr(T (u) ≤ t), for t = 1, 2, · · · . (5.6)
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5.2 Discrete-Time Ruin Theory

5.2.1 Ultimate Ruin in Discrete Time

• We now derive recursive formulas for ψ(u).

• First, for u = 0, we have

ψ(0) = fX(0)ψ(1) + SX(0). (5.7)

• Similarly, for u = 1, we have

ψ(1) = fX(0)ψ(2) + fX(1)ψ(1) + SX(1). (5.8)

• The above equations can be generalized to larger values of u as
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follows

ψ(u) = fX(0)ψ(u+1)+
uX
j=1

fX(j)ψ(u+1−j)+SX(u), for u ≥ 1.
(5.9)

• Re-arranging equation (5.9), we obtain the following recursive for-
mula for the probability of ultimate ruin

ψ(u+1) =
1

fX(0)

⎡⎣ψ(u)− uX
j=1

fX(j)ψ(u+ 1− j)− SX(u)
⎤⎦ , for u ≥ 1.

(5.10)

• To apply the above equation we need the starting value ψ(0), which
is given by the following theorem.

Theorem 5.1: For the discrete-time surplus model, ψ(0) = μX .
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Proof: See NAM.

Example 5.1: The claim variable X has the following distribution:

fX(0) = 0.5, fX(1) = fX(2) = 0.2 and fX(3) = 0.1. Calculate the proba-

bility of ultimate ruin ψ(u) for u ≥ 0.
Solution: The survival function of X is SX(0) = 0.2 + 0.2 + 0.1 = 0.5,

SX(1) = 0.2+ 0.1 = 0.3, SX(2) = 0.1 and SX(u) = 0 for u ≥ 3. The mean
of X is

μX = (0)(0.5) + (1)(0.2) + (2)(0.2) + (3)(0.1) = 0.9,

which can also be calculated as

μX =
∞X
u=0

SX(u) = 0.5 + 0.3 + 0.1 = 0.9.

Thus, from Theorem 5.1 ψ(0) = 0.9, and from equation (5.7), ψ(1) is given
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by

ψ(1) =
ψ(0)− SX(0)

fX(0)
=
0.9− 0.5
0.5

= 0.8.

From equation (5.8), we have

ψ(2) =
ψ(1)− fX(1)ψ(1)− SX(1)

fX(0)
=
0.8− (0.2)(0.8)− 0.3

0.5
= 0.68,

and applying equation (5.10) for u = 3, we have

ψ(3) =
ψ(2)− fX(1)ψ(2)− fX(2)ψ(1)− SX(2)

fX(0)
= 0.568.

As SX(u) = 0 for u ≥ 3, using equation (5.10) we have, for u ≥ 4,

ψ(u) =
ψ(u)− fX(1)ψ(u)− fX(2)ψ(u− 1)− fX(3)ψ(u− 2)

fX(0)
.
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5.2.2 Finite-Time Ruin in Discrete Time

• We now consider the probability of ruin at or before a finite time
point t given an initial surplus u.

• First we consider t = 1 given initial surplus u.

• As defined in equation (5.6), ψ(t;u) = Pr(T (u) ≤ t). If u = 0, the
ruin event occurs at time t = 1 when X1 ≥ 1. Thus,

ψ(1; 0) = 1− fX(0) = SX(0). (5.20)

• Likewise, for u > 0, we have

ψ(1;u) = Pr(X1 > u) = SX(u). (5.21)

• We now consider ψ(t;u) for t ≥ 2 and u ≥ 0.
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• The event of ruin occurring at or before time t ≥ 2 may be due to (a)
ruin at time 1, or (b) loss of j at time 1 for j = 0, 1, · · · , u, followed
by ruin occurring within the next t− 1 periods.

• When there is a loss of j at time 1, the surplus becomes u+ 1− j,
so that the probability of ruin within the next t− 1 periods is ψ(t−
1;u+ 1− j)̇.

• Thus, we conclude that

ψ(t;u) = ψ(1;u) +
uX
j=0

fX(j)ψ(t− 1;u+ 1− j). (5.22)

Hence, ψ(t;u) can be computed as follows.

1. Construct a table with time t running down the rows for t = 1, 2, · · · ,
and u running across the columns for u = 0, 1, · · ·.
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2. Initialize the first row of the table for t = 1 with ψ(1;u) = SX(u).

Note that ifM is the maximum loss in each period, then ψ(1;u) = 0

for u ≥M .
3. Increase the value of t by 1 and calculate ψ(t;u) for u = 0, 1, · · ·,
using equation (5.22). Note that the computation requires the cor-

responding entry in the first row of the table, i.e., ψ(1;u), as well

as some entries in the (t− 1)th row. In particular, the u+ 1 entries
ψ(t− 1; 1), · · · ,ψ(t− 1;u+ 1) in the (t− 1)th row are required.

4. Re-do Step 3 until the desired time point.

Example 5.3: As in Example 5.1, the claim variable X has the fol-

lowing distribution: fX(0) = 0.5, fX(1) = fX(2) = 0.2 and fX(3) = 0.1.

Calculate the probability of ruin at or before a finite time t given initial

surplus u, ψ(t;u), for u ≥ 0.
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Solution: The results are summarized in Table 5.1 for t = 1, 2 and 3,

and u = 0, 1, · · · , 6.
Table 5.1: Results of Example 5.3

Initial surplus u
Time t 0 1 2 3 4 5 6
1 0.500 0.300 0.100 0.000 0.000 0.000 0.000
2 0.650 0.410 0.180 0.050 0.010 0.000 0.000
3 0.705 0.472 0.243 0.092 0.030 0.007 0.001

The first row of the table is SX(u). Note that ψ(1;u) = 0 for u ≥ 3, as
the maximum loss in each period is 3. For the second row, the details of

the computation is as follows. First, ψ(2; 0) is computed as

ψ(2; 0) = ψ(1; 0) + fX(0)ψ(1; 1) = 0.5 + (0.5)(0.3) = 0.65.

Similarly,

ψ(2; 1) = ψ(1; 1)+fX(0)ψ(1; 2)+fX(1)ψ(1; 1) = 0.3+(0.5)(0.1)+(0.2)(0.3) = 0.41,
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and

ψ(2; 2) = ψ(1; 2) + fX(0)ψ(1; 3) + fX(1)ψ(1; 2) + fX(2)ψ(1; 1) = 0.18.

We use ψ(3; 3) to illustrate the computation of the third row as follows

ψ(3; 3) = ψ(1; 3) + fX(0)ψ(2; 4) + fX(1)ψ(2; 3) + fX(2)ψ(2; 2) + fX(3)ψ(2; 1)

= 0 + (0.5)(0.01) + (0.2)(0.05) + (0.2)(0.18) + (0.1)(0.41)

= 0.092.
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5.2.3 Lundberg’s inequality in Discrete Time

Definition 5.5: SupposeX is the loss random variable. The adjustment

coefficient, denoted by r∗, is the value of r that satisfies the following
equation

E [exp {r(X − 1)}] = 1. (5.23)

Example 5.4: Assume the loss random variable X follows the distribu-

tion given in Examples 5.1 and 5.3. Calculate the adjustment coefficient

r∗.

Solution: Equation (5.23) is set up as follows

0.5e−r + 0.2 + 0.2er + 0.1e2r = 1,
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which is equivalent to

0.1w3 + 0.2w2 − 0.8w + 0.5 = 0,
for w = er. We solve the above equation numerically to obtain w = 1.1901,

so that r∗ = log(1.1901) = 0.1740.

Theorem 5.2 (Lundberg’s Theorem): For the discrete-time surplus

function, the probability of ultimate ruin satisfies the following inequality

ψ(u) ≤ exp(−r∗u), (5.28)

where r∗ is the adjustment coefficient.
Proof: By induction, see NAM.

Example 5.5: Assume the loss random variable X follows the distribu-

tion given in Examples 5.1 and 5.4. Calculate the Lundberg upper bound

for the probability of ultimate ruin for u = 0, 1, 2 and 3.
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Solution: From Example 5.4, the adjustment coefficient is r∗ = 0.1740.
The Lundberg upper bound for u = 0 is 1, and for u = 1, 2 and 3,

we have e−0.174 = 0.8403, e−(2)(0.174) = 0.7061 and e−(3)(0.174) = 0.5933,

respectively. These figures may be compared against the exact values

computed in Example 5.1, namely, 0.8, 0.68 and 0.568, respectively.
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5.3 Continuous-Time Surplus Function

• In a continuous-time model the insurance company receives premi-
ums continuously, while claim losses may occur at any time.

• We assume that the initial surplus of the insurance company is u
and the amount of premium received per unit time is c.

• We denote the number of claims (described as the number of occur-
rences of events) in the interval (0, t] by N(t), with claim amounts

X1, · · · , XN(t), which are assumed to be independently and identi-
cally distributed as X.

• We denote the aggregate losses up to (and including) time t by S(t),
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which is given by

S(t) =
N(t)X
i=1

Xi, (5.39)

with the convention that if N(t) = 0, S(t) = 0.

• Thus, the surplus at time t, denoted by U(t;u), is defined as
U(t;u) = u+ ct− S(t). (5.40)

• Figure 5.4 illustrates an example of a realization of the surplus func-
tion U(t;u).

• To analyze the behavior of U(t;u) we make some assumptions about
the claim process S(t).

• In particular, we assume that the number of occurrences of (claim)
events up to (and including) time t,N(t), follows aPoisson process.
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Definition 5.6: N(t) is a Poisson process with parameter λ, which is

the rate of occurrences of events per unit time, if (a) in any interval (t1, t2],

the number of occurrences of events, i.e., N(t2)−N(t1), has a Poisson dis-
tribution with mean λ(t2−t1), and (b) over any non-overlapping intervals,
the numbers of occurrences of events are independently distributed.

• For a fixed t, N(t) is distributed as a Poisson variable with parame-
ter λt, i.e., N(t) ∼ PN (λt), and S(t) follows a compound Poisson
distribution.

• As a function of time t, S(t) is a compound Poisson process and
the corresponding surplus process U(t;u) is a compound Poisson

surplus process. We assume that the claim random variable X

has a mgf MX(r) for r ∈ [0, γ).
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5.4 Continuous-Time Ruin Theory

5.4.1 Lundberg’s Inequality in Continuous Time

• We first define the adjustment coefficient in continuous time. Anal-
ogous to the discrete-time case, in which the adjustment coefficient

is the solution of

1 + (1 + θ) rμX =MX(r). (5.47)

Theorem 5.3: If the surplus function follows a compound Poisson

process defined in equation (5.40), the probability of ultimate ruin given

initial surplus u, ψ(u), satisfies the inequality

ψ(u) ≤ exp(−r∗u), (5.48)
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where r∗ is the adjustment coefficient satisfying equation (5.47).

Example 5.6: Let U(t;u) be a compound Poisson surplus function with

X ∼ G(3, 0.5). Compute the adjustment coefficient and its approximate
value using equation (5.52), for θ = 0.1 and 0.2. Calculate the upper

bounds for the probability of ultimate ruin for u = 5 and u = 10.

Solution: The mgf of X is, from equation (2.32),

MX(r) =
1

(1− βr)α
=

1

(1− 0.5r)3 ,

and its mean and variance are, respectively, μX = αβ = 1.5 and σ2X =

αβ2 = 0.75. From equation (5.47), the adjustment coefficient is the solu-

tion of r in the equation

1

(1− 0.5r)3 = 1 + (1 + θ)(1.5)r,
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from which we solve numerically to obtain r∗ = 0.0924 when θ = 0.1. The

upper bounds for the probability of ultimate ruin are

exp(−r∗u) =
(
0.6300, for u = 5,
0.3969, for u = 10.

When the loading is increased to 0.2, r∗ = 0.1718, so that the upper

bounds for the probability of ruin are

exp(−r∗u) =
(
0.4236, for u = 5,
0.1794, for u = 10.

To compute the approximate values of r∗, we use equation (5.52) to obtain,
for θ = 0.1,

r∗ ' (2)(0.1)(1.5)

0.75 + (1.1)2(1.5)2
= 0.0864,

and, for θ = 0.2,

r∗ ' (2)(0.2)(1.5)

0.75 + (1.2)2(1.5)2
= 0.1504.
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Based on these approximate values, the upper bounds for the probability

of ultimate ruin are, for θ = 0.1,

exp(−r∗u) =
(
0.6492, for u = 5,
0.4215, for u = 10.

and, for θ = 0.2,

exp(−r∗u) =
(
0.4714, for u = 5,
0.2222, for u = 10.

Thus, we can see that the adjustment coefficient increases with the pre-

mium loading θ. Also, the upper bound for the probability of ultimate

ruin decreases with θ and u. We also observe that the approximation of

r∗ works reasonably well.
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