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Chapter 4

Risk Measures



Learning Objectives

1. Risk measures based on premium principles

2. Risk measures based on capital requirements

3. Value-at-Risk and conditional tail expectation

4. Distortion functions

5. Proportional hazard transform
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4.1 Uses of Risk Measures

Types of risks

1. Market risk

2. Credit risk

3. Operational risk

Uses of risk measures

1. Determination of economic capital

2. Determination of insurance premium

3. Internal risk management

4. External regulatory reporting
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• Definition 4.1: A risk measure of the random loss X, denoted

by (X), is a real-valued function : X → R, where R is the set of

real numbers.

• As a loss random variable, X is nonnegative. Thus, the risk mea-

sure (X) may be imposed to be nonnegative for the purpose of

measuring insurance risks.

• However, if the purpose is to measure the risks of a portfolio of
assets, X may stand for the change in portfolio value, which may be

positive or negative. In such cases, the risk measure (X) may be

positive or negative.
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4.2 Some Premium-Based Risk Measures

• LetX be a random loss. Denote E(X) = μX and Var(X) = σ2X . Denote

(X) as a risk measure of the loss X.

• Expected-value principle premium risk measure: premium with a loading
on the expected loss, i.e., (X) = (1+θ)μX , where θ ≥ 0 is the premium
loading factor.

• Pure premium risk measure: no loading, i.e., θ = 0, so that (X) = μX .

• Variance premium risk measure: loading on variance, i.e., (X) = μX +

ασ2X ,α ≥ 0.
• Standard-deviation risk measure: loading on standard deviation, i.e.,
(X) = μX + ασX ,α ≥ 0.
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4.3 Coherent Risk Measures

Four axioms for coherent risk measures

Axiom 4.1 Translational invariance (T): For any loss variable X

and any nonnegative constant a ≥ 0, (X + a) = (X) + a.

Axiom 4.2 Subadditivity (S): For any loss variables X and Y , (X+

Y ) ≤ (X) + (Y ).

Axiom 4.3 Positive homogeneity (PH): For any loss variable X and

any nonnegative constant a, (aX) = a (X).

Axiom 4.4 Monotonicity (M): For any loss variables X and Y such

that X ≤ Y under all states of nature, (X) ≤ (Y ).
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Example 4.2: Show that the expected-value premium risk measure

satisfies Axioms S, PH and M, but not T.

Solution: For any risks X and Y , we have

(X + Y ) = (1 + θ)E(X + Y )

= (1 + θ)E(X) + (1 + θ)E(Y )

= (X) + (Y ).

Thus, Axiom S holds. Now for Y = aX with a ≥ 0, we have

(Y ) = (1 + θ)E(Y ) = (1 + θ)E(aX) = a(1 + θ)E(X) = a (X),

which proves Axiom PH. For two risks X and Y , X ≥ Y implies μX ≥ μY .

Thus,

(X) = (1 + θ)μX ≥ (1 + θ)μY = (Y ),
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and Axiom M holds. To examine Axiom T, we consider an arbitrary

constant a > 0. Note that, if θ > 0,

(X + a) = (1 + θ)E(X + a) > (1 + θ)E(X) + a = (X) + a.

Thus, Axiom T is not satisfied if θ > 0, which implies the expected-value

premium is in general not a coherent risk measure. However, when θ = 0,

Axiom T holds. Thus, the pure premium risk measure is coherent. 2

• It can be shown that the variance premium risk measure satisfies

Axiom T, but not Axioms S, M and PH.

• On the other hand, the standard-deviation premium risk measure

satisfies Axioms S, T and PH, but not Axiom M. Readers are invited

to prove these results (see Exercises 4.2 and 4.3).
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• The axioms of coherent risk narrow down the set of risk measures
to be considered for management and regulation. However, they do

not specify a unique risk measure to be used in practice.

• Some risk measures (such as the pure premium risk measure) that

are coherent may not be a suitable risk measure for some reasons.

Thus, the choice of which measure to use depends on additional

considerations.
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4.4 Some Capital-Based Risk Measures

4.4.1 Value-at-Risk

• One of the most widely used measures of risk

• VaRδ(X) is the δ-quantile of X, i.e.,

VaRδ(X) = F−1X (δ)

= inf {x ∈ [0,∞) : FX(x) ≥ δ}. (4.5)

• Example 4.3: Find VaRδ of the following loss distributions X:

(a) E(λ), (b) L(μ,σ2), and (c) P(α, γ).
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• Solution: For (a), from Example 2.8, we have

VaRδ = − log(1− δ)

λ
.

For (b), from Example 2.8, the VaR is

VaRδ = exp
h
μ+ σΦ−1(δ)

i
.

For (c), from equation (2.38), the df of P(α, γ) is

FX(x) = 1−
Ã

γ

x+ γ

!α

,

so that its quantile function is

F−1X (δ) = γ(1− δ)−
1
α − γ,

and

VaRδ = F
−1
X (δ) = γ

h
(1− δ)−

1
α − 1

i
.
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• Example 4.4: Find VaRδ, for δ = 0.95, 0.96, 0.98 and 0.99, of

the following discrete loss distribution

X =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

100, with prob 0.02,
90, with prob 0.02,
80, with prob 0.04,
50, with prob 0.12,
0, with prob 0.80.

• Solution: As X is discrete, we use the definition of VaR in

equation (4.5). The df of X is plotted in Figure 4.1. The dotted

horizontal lines correspond to the probability levels 0.95, 0.96, 0.98

and 0.99. Note that the df of X is a step function. For VaRδ we

require the value of X corresponding to the probability level equal

to or next-step higher than δ. Thus, VaRδ for δ = 0.95, 0.96, 0.98

and 0.99, are, respectively, 80, 80, 90 and 100.

12



0 20 40 60 80 100
0.75

0.8

0.85

0.9

0.95

1

1.05

Loss variable  X

D
is

tr
ib

ut
io

n 
fu

nc
tio

n



4.4.2 Conditional Tail Expectation

• VaR does not use any information about the loss distribution beyond
the cut-off point.

• Conditional tail expectation, denoted by CTEδ(X), rectifies this.

• Defintion:
CTEδ(X) = E [X |X > VaRδ(X)] (4.10)

• When X is continuous, we have

CTEδ = E(X |X > VaRδ) =
1

1− δ

Z ∞
VaRδ

xfX(x) dx. (4.17)

• Using change of variable ξ = FX(x), the integral above can be writ-
ten as Z ∞

VaRδ
xfX(x) dx =

Z ∞
VaRδ

x dFX(x)
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=
Z 1

δ
VaRξ dξ, (4.18)

which implies

CTEδ =
1

1− δ

Z 1

δ
VaRξ dξ. (4.19)

• Thus, CTEδ can be interpreted as the average of the VaRs exceeding

VaRδ. We call the expression on the RHS of (4.19) the Tail VaR,

denoted as TVaRδ.

• When X is not continuous, we use the following formula

CTEδ =
(δ̄ − δ)VaRδ + (1− δ̄)E(X |X > VaRδ)

1− δ
, (4.22)

where

δ̄ = Pr(X ≤ VaRδ). (4.21)
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Remarks

• VaR is not a coherent risk measure. It violates the subadditivity

axiom.

• CTE is a coherent risk measure.

Example 4.6: Calculate CTEδ for the loss distribution given in Ex-

ample 4.4, for δ = 0.95, 0.96, 0.98 and 0.99. Also, calculate TVaR corre-

sponding to these values of δ.

Solution: As X is not continuous we use equation (4.22) to calculate

CTEδ. Note that VaR0.95 = VaR0.96 = 80. For δ = 0.95, we have δ̄ = 0.96.

Thus,

E(X |X > VaR0.95 = 80) =
90(0.02) + 100(0.02)

1− 0.96 = 95,
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so that from equation (4.22) we obtain

CTE0.95 =
(0.96− 0.95)80 + (1− 0.96)95

1− 0.95 = 92.

For δ = 0.96, we have δ̄ = 0.96, so that

CTE0.96 = E(X |X > VaR0.96 = 80) = 95.

For TVaRδ, we use equation (4.23) to obtain

TVaR0.95 =
1

1− 0.95
Z 1

0.95
VaRξ dξ

=
1

0.05
[(80)(0.01) + (90)(0.02) + (100)(0.02)]

= 92,

and

TVaR0.96 =
1

1− 0.96
Z 1

0.96
VaRξ dξ =

1

0.04
[(90)(0.02) + (100)(0.02)] = 95.
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For δ = 0.98, we have δ̄ = 0.98, so that

CTE0.98 = E(X |X > VaR0.98 = 90) =
(100)(0.02)

1− 0.98 = 100,

which is also the value of TVaR0.98. Finally, for δ = 0.99, we have δ̄ = 1

and VaR0.99 = 100, so that CTE0.99 = VaR0.99 = 100. On the other hand,

we have

TVaR0.99 =
1

1− 0.99
Z 1

0.99
VaRξ dξ =

(100)(0.01)

0.01
= 100.
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4.5 More Premium-Based Risk Measure

4.5.1 Proportional hazard transform and risk-adjusted premium

• The premium-based risk measures define risk based on a loading of
the expected loss. The expected loss μX of a continuous random loss

X can be written as

μX =
Z ∞
0
SX(x) dx. (4.27)

• Thus, instead of adding a loading to μX to obtain a premium we

may re-define the distribution of the loss.

• Suppose X̃ is distributed with sf SX̃(x) = [SX(x)]
1
ρ , where ρ ≥ 1,

then the mean of X̃ is

E(X̃) = μX̃ =
Z ∞
0
SX̃(x) dx =

Z ∞
0
[SX(x)]

1
ρ dx. (4.28)
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• The parameter ρ is called the risk-aversion index.

• The distribution of X̃ is called the proportional hazard (PH)

transform of the distribution of X with parameter ρ.

• If we denote hX(x) and hX̃(x) as the hf of X and X̃, respectively,

then from equations (2.2) and (2.3), we have

hX̃(x) = − 1

SX̃(x)

Ã
dSX̃(x)

dx

!

= −1
ρ

⎛⎝ [SX(x)] 1ρ−1 S0X(x)
[SX(x)]

1
ρ

⎞⎠
= −1

ρ

Ã
S0X(x)
SX(x)

!

=
1

ρ
hX(x), (4.30)
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so that the hf of X̃ is proportional to the hf of X.

• As ρ ≥ 1, the hf of X̃ is less than that of X, implying that X̃ has a

thicker tail than that of X. Also, SX̃(x) = [SX(x)]
1
ρ declines slower

than SX(x) so that μX̃ > μX , the difference of which represents the

loading.

Example 4.7: If X ∼ E(λ), find the PH transform of X with parameter

ρ and the risk-adjusted premium.

Solution: The sf of X is SX(x) = e
−λx. Thus, the sf of the PH transform

is SX̃(x) =
³
e−λx

´ 1
ρ = e−

λ
ρ
x, which implies X̃ ∼ E(λ/ρ). Hence, the risk-

adjusted premium is E(X̃) = ρ/λ ≥ 1/λ = E(X).

Example 4.8: If X ∼ P(α, γ) with α > 1, find the PH transform of X

with parameter ρ ∈ [1, α) and the risk-adjusted premium.
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Solution: The sf of X is

SX(x) =

Ã
γ

γ + x

!α

,

with mean

μX =
γ

α− 1 .

The sf of X̃ is

SX̃(x) = [SX(x)]
1
ρ =

Ã
γ

γ + x

!α
ρ

,

so that X̃ ∼ P(α/ρ, γ). Hence, the mean of X̃ (the risk-adjusted pre-

mium) is

μX̃ =
γ

α

ρ
− 1

=
ργ

α− ρ
>

γ

α− 1 = μX .
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4.6 The Distortion-Function Approach

The distortion function is a mathematical device to construct risk mea-

sures.

Definition 4.2: A distortion function is a nondecreasing function g(·)
satisfying g(1) = 1 and g(0) = 0.

• SupposeX is a loss random variable with sf SX(x). As the distortion

function g(·) is nondecreasing and SX(x) is a nonincreasing function
of x, g(SX(x)) is a nonincreasing function of x.

• Together with the property that g(SX(0)) = g(1) = 1 and g(SX(∞)) =
g(0) = 0, g(SX(x)) is a well defined sf over the support [0,∞).
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• We denote the random variable with this sf as X̃, which may be

interpreted as a risk-adjusted loss random variable, and g(SX(x)) is

the risk adjusted sf.

• We further assume that g(·) is concave down (i.e., g00(x) ≤ 0 if the
derivative exists).

Definition 4.3: Let X be a nonnegative loss random variable. The

distortion risk measure based on the distortion function g(·), denoted by
(X), is defined as

(X) =
Z ∞
0
g(SX(x)) dx. (4.42)

Thus, the distortion risk measure (X) is the mean of the risk-adjusted loss

X̃ . The class of distortion risk measures include the following measures

we have discussed.
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Pure premium risk measure

It can be seen easily by defining

g(u) = u, (4.43)

which satisfies the conditions g(0) = 0 and g(1) = 1, and g(·) is nonde-
creasing. Now

(X) =
Z ∞
0
g(SX(x)) dx =

Z ∞
0
SX(x) dx = μX , (4.44)

which is the pure premium risk measure.

Proportional hazard risk-adjusted premium risk measure

This can be seen by defining

g(u) = u
1
ρ , ρ ≥ 1. (4.45)
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VaR risk measure

For VaRδ we define the distortion function as

g(SX(x)) =

(
0, if 0 ≤ SX(x) < 1− δ,
1, if 1− δ ≤ SX(x) ≤ 1, (4.46)

which is equivalent to

g(SX(x)) =

(
0, if x > VaRδ,
1, if 0 ≤ x ≤ VaRδ.

(4.47)

Hence,

(X) =
Z ∞
0
g(SX(x)) dx =

Z VaRδ

0
dx = VaRδ. (4.48)

CTE risk measure

For CTEδ we define the distortion function as (subject to the condition
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X is continuous)

g(SX(x)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
SX(x)

1− δ
, if 0 ≤ SX(x) < 1− δ,

1, if 1− δ ≤ SX(x) ≤ 1,
(4.49)

which is equivalent to

g(SX(x)) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
SX(x)

1− δ
, if x > xδ,

1, if 0 ≤ x ≤ xδ.
(4.50)

Theorem 4.1: Let g(·) be a concave-down distortion function. The risk
measure of the loss X defined in equation (4.42) is translational invariant,

monotonic, positively homogeneous and subadditive, and is thus coherent.

26




