
Nonlife Actuarial Models

Chapter 3

Aggregate-Loss Models



Learning Objectives

• Individual risk model

• Collective risk model

• De Pril recursion

• Compound process for collective risk

• Approximation methods

• Stop-loss reinsurance
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3.1 Individual Risk and Collective Risk Models

(1) Individual risk model:

• The number of policies in the block is n. We assume the loss of
each policy, denoted by Xi, for i = 1, · · · , n, to be independently
and identically distributed as X. The aggregate loss of the block of

policies, denoted by S, is then given by

S = X1 + · · ·+Xn. (3.1)

• X follows a mixed distribution with a probability mass at point zero.
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(2) Collective risk model:

• Let N be the number of losses in the block of policies, and Xi be

the amount of the ith loss, for i = 1, · · · , N.

• The aggregate loss S is given by

S = X1 + · · ·+XN . (3.2)

• N is a random variable, and N and X are assumed to be indepen-

dent.

• S has a compound distribution.
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Remarks:

• There are advantages in modeling the claim frequency and claim

severity separately, and then combine them to obtain the aggregate-

loss distribution.

• For example, expansion of insurance business may have impacts on
the claim frequency but not the claim severity.

• Cost control (or general cost increase) and innovation in technology
may affect the claim severity with no effects on the claim frequency.
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3.2 Individual Risk Model

• The basic equation of the individual risk model is

S = X1 + · · ·+Xn. (3.1)

• As n is fixed, the mean and variance of S are given by

E(S) = nE(X) and Var(S) = nVar(X). (3.3)

• X is a mixed-type distribution with prob mass at point 0.

• Let the probability of a loss be θ and the probability of no loss be
1− θ.

• When there is a loss, the loss amount is Y , which is a positive
continuous random variable with mean μY and variance σ

2
Y .
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• Thus, X = Y with probability θ, and X = 0 with probability 1− θ.

We can write X as

X = IY, (3.4)

where I is a Bernoulli random variable distributed independently of

Y , so that

I =

(
0, with probability 1− θ,
1, with probability θ.

(3.5)

• Thus, the mean of X is

E(X) = E(I)E(Y ) = θμY , (3.6)

• Using equation (A.118) in Appendix A.11, we have
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Var(X) = Var(IY )

= [E(Y )]2Var(I) + E(I2)Var(Y )

= μ2Y θ(1− θ) + θ σ2Y . (3.7)

• Equations (3.6) and (3.7) can be plugged into equation (3.3) to ob-
tain the mean and variance of S.

• Example 3.1: Assume there is a chance of 0.2 that there is a

claim. When a claim occurs the loss is exponentially distributed

with parameter λ = 0.5. Find the mean and variance of the claim

distribution. Suppose there are 500 independent policies with this

loss distribution, compute the mean and variance of their aggregate

loss.
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• Solution: The mean and variance of the loss in a loss event is

μY =
1

λ
=

1

0.5
= 2,

and

σ2Y =
1

λ2
=

1

0.52
= 4.

Thus, the mean and variance of the loss incurred by a random policy

are

E(X) = (0.2)(2) = 0.4,

and

Var(X) = (2)2(0.2)(1− 0.2) + (0.2)(4) = 1.44.
The mean and variance of the aggregate loss are

E(S) = (500)(0.4) = 200,
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and

Var(S) = (500)(1.44) = 720.

3.2.1 Exact distribution of S using convolution:

• We first consider the distribution of X1 +X2, where X1 and X2 are
both continuous.

• The pdf of X1 +X2 is given by the 2-fold convolution

f∗2(x) = fX1+X2(x) =
Z x

0
f1(x− y)f2(y) dy =

Z x

0
f2(x− y)f1(y) dy.

(3.8)

• The pdf of X1 + · · · + Xn can be calculated recursively. Suppose
the pdf of X1 + · · · +Xn−1 is given by the (n− 1)-fold convolution
f∗(n−1)(x), then the pdf of X1 + · · · + Xn is the n-fold convolution
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given by

f∗n(x) = fX1+ ···+Xn(x) =
Z x

0
f∗(n−1)(x− y)fn(y) dy

=
Z x

0
fn(x− y)f∗(n−1)(y) dy. (3.9)

• Now we consider the case whereXi are mixed-type random variables.

• We assume that the pf-pdf of Xi is given by

fXi(x) =

(
1− θi, for x = 0,
θi fYi(x), for x > 0,

(3.10)

in which fYi(·) are well defined pdf of positive continuous random
variables.

• The df of X1+X2 is given by the 2-fold convolution in the Stieltjes-
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integral form, i.e.,

F ∗2(x) = FX1+X2(x) =
Z x

0
FX1(x− y) dFX2(y)

=
Z x

0
FX2(x− y) dFX1(y). (3.11)

• The df of X1 + · · ·+Xn can be calculated recursively.

• Example 3.2: For the block of insurance policies defined in Ex-
ample 3.1, approximate the loss distribution by a suitable discrete

distribution. Compute the df FS(s) of the aggregate loss of the

portfolio for s from 110 through 300 in steps of 10, based on the

discretized distribution.
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• Solution: We approximate the exponential loss distribution by a
discrete distribution taking values 0, 1, · · · , 10. As the df of E(λ) is
FX(x) = 1− exp(−λx), we approximate the pf by

fX(x) = (0.2) {exp [−λ(x− 0.5)]− exp [−λ(x+ 0.5)]} , for x = 1, · · · , 9,

with

fX(0) = 0.8 + (0.2) {1− exp [−0.5λ]} ,
and

fX(10) = (0.2) exp [−9.5λ] .
The discretized approximate pf of the loss is
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Table 3.1: Discretized probabilities

x fX(x) x fX(x)
0 0.8442 6 0.0050
1 0.0613 7 0.0031
2 0.0372 8 0.0019
3 0.0225 9 0.0011
4 0.0137 10 0.0017
5 0.0083

• Using the convolution method, the df of the aggregate loss S for
selected values of s is given in Table 3.2.
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Table 3.2: The df of S by convolution

s FS(s) s FS(s)
110 0.0001 210 0.7074
120 0.0008 220 0.8181
130 0.0035 230 0.8968
140 0.0121 240 0.9465
150 0.0345 250 0.9746
160 0.0810 260 0.9890
170 0.1613 270 0.9956
180 0.2772 280 0.9984
190 0.4194 290 0.9994
200 0.5697 300 0.9998
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3.2.3 Approximation of the Individual Risk Model:

• When n is large, by virtue of the Central Limit Theorem, S is ap-
proximately normal.

• The (exact) mean and variance of S are given in equations (3.3),
(3.6) and (3.7), which can be used to compute the approximate

distribution of S.

• Thus,

Pr(S ≤ s) = Pr

Ã
S − E(S)p
Var(S)

≤ s− E(S)p
Var(S)

!

' Pr

Ã
Z ≤ s− E(S)p

Var(S)

!

= Φ

Ã
s− E(S)p
Var(S)

!
. (3.21)
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3.3 Collective Risk Model

• The aggregate loss S is given by

S = X1 + · · ·+XN . (3.2)

• N is the primary distribution, and X is the secondary distribution.

• S satisfies properties for compound distributions.

• The mgf MS(t) of the aggregate loss S is given by

MS(t) =MN [logMX(t)] . (3.24)
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• If the claim-severity takes nonnegative discrete values, S is also non-
negative and discrete, and its pgf is

PS(t) = PN [PX(t)] . (3.25)

• The mean and variance of S are

E(S) = E(N)E(X), (3.26)

and

Var(S) = E(N)Var(X) + Var(N) [E(X)]2 . (3.27)

These results hold whether X is continuous or discrete.

• If Si has a compound Poisson distribution with claim-severity dis-
tribution Xi, which may be continuous or discrete, for i = 1, · · · , n,
then S = S1 + · · ·+ Sn has also a compound Poisson distribution.
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• When X is continuous, the pdf of S is

fS(s) =
∞X
n=1

fX1+···+Xn |n(s) fN(n)

=
∞X
n=1

f∗n(s) fN(n), (3.28)

where f∗n(·) is the n-fold convolution. Thus, the exact pdf of S
is a weighted sum of convolutions, and the computation is highly

complex.

• There are some special cases for which the compound distribution
can be analytically derived, such as
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• Theorem 3.2: For the compound distribution specified in equation

(3.2), assume X1 , · · · , XN are iid E(λ), and N ∼ GM(θ). Then the

compound distribution S is a mixed distribution with a probability

mass of θ at 0 and a continuous component of E(λθ) weighted by
1− θ.

• Proof: The mgf of X ∼ E(λ) is

MX(t) =
λ

λ− t ,

and the mgf of N ∼ GM(θ) is

MN(t) =
θ

1− (1− θ)et
.

Thus, we conclude that the mgf of S is
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MS(t) = MN [logMX(t)]

=
θ

1− (1− θ)

Ã
λ

λ− t
!

=
θ(λ− t)
λθ − t

=
θ(λθ − t) + (1− θ)λθ

λθ − t
= θ + (1− θ)

Ã
λθ

λθ − t
!
.
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3.3.2 Panjer recursion

• Theorem 1.5 provides the efficient Panjer recursion method to com-
pute the exact distribution of a compound process which satisfies the

conditions that (a) the primary distribution belongs to the (a, b, 0)

class, and (b) the secondary distribution is discrete and nonnegative.

• Thus, if a continuous claim-severity distribution can be suitably dis-
cretized, and the primary distribution belongs to the (a, b, 0) class,

we can use the Panjer approximation to compute the distribution of

the aggregate loss.
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3.3.3 Approximations of the Collective Risk Model

• If the mean number of claims is large, we may expect the normal
approximation to work.

• Thus, using the mean and variance formulas of S in equations (3.26)
and (3.27), we may approximate the df of S by

Pr(S ≤ s) = Pr
⎛⎝S − E(S)q

Var(S)
≤ s− E(S)q

Var(S)

⎞⎠ ' Φ

⎛⎝s− E(S)q
Var(S)

⎞⎠ .
(3.29)

• Example 3.6: Assume the aggregate loss S in a collective risk

model has a primary distribution of PN (100) and a secondary dis-
tribution of E(0.5). Approximate the distribution of S using the nor-
mal distribution. Compute the df of the aggregate loss for s = 180

and 230.
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• Solution: From equation (3.26) we have

E(S) = E(N)E(X) = (100)
µ
1

0.5

¶
= 200,

and

Var(S) = E(N)Var(X) + Var(N) [E(X)]2

= (100)
µ
1

0.52

¶
+ (100)

µ
1

0.5

¶2
= 800.

Thus, we approximate the distribution of S by N (200, 800). Using
the normal approximation the required probabilities are

Pr(S ≤ 180) ' Pr
Ã
Z ≤ 180.5− 200√

800

!
= Φ(−0.6894) = 0.2453,

and

Pr(S ≤ 230) ' Pr
Ã
Z ≤ 230.5− 200√

800

!
= Φ(1.0783) = 0.8596.
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3.4 Coverage Modifications and Stop-Loss Reinsurance

• We study the effects of coverage modifications on aggregate loss
through their effects on the claim frequency and severity.

• We first consider the effects of a deductible of amount d. For the
individual risk model, the number of policies n remains unchanged,

while the policy loss Xi becomes the loss amount of the claim after

the deductible, which we shall denote by X̃i. Thus, the pf-pdf of X̃i

is

fX̃i(x) =

(
1− θi + θiFYi(d), for x = 0,
θifYi(x+ d), for x > 0.

(3.36)

• For the collective risk model the primary distribution of the com-
pound distribution is now modified. Also, the secondary distribution

is that of the claim after the deductible, i.e., X̃ with pdf given by
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fX̃(x) =
fX(x+ d)

1− FX(d) , for x > 0. (3.37)

• Second, we consider the effects of a policy limit u. For the individual
risk model, the number of policies again remains unchanged, while

the claim-severity distribution is now capped at u. If we denote the

modified claim-severity distribution by X̃i, then the pf-pdf of X̃i is

given by

fX̃i(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1− θi, for x = 0,
θifYi(x), for 0 < x < u,
θi [1− FYi(u)] , for x = u,
0, otherwise.

(3.38)

• For the collective risk model, the primary distribution is not affected,
while the secondary distribution X̃ has a pf-pdf given by
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fX̃(x) =

⎧⎪⎨⎪⎩
fX(x), for 0 < x < u,
1− FX(u), for x = u,
0, otherwise.

(3.39)

• Insurance companies may purchase reinsurance coverage for a port-
folio of policies they own. The coverage may protect the insurer from

aggregate loss S exceeding an amount d, called stop-loss reinsur-

ance. From the reinsurer’s point of view this is a policy with a

deductible of amount d. Thus, the loss to the reinsurer is (S − d)+.

•
E [(S − d)+] =

Z ∞
d
[1− FS(s)] ds. (3.40)

This can be computed as

E [(S − d)+] =
Z ∞
d
(s− d)fS(s) ds (3.41)
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when S is continuous, or

E [(S − d)+] =
X
s>d

(s− d)fS(s) (3.42)

when S is discrete.
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Table 3.7: Methods for computing the aggregate-loss distribution

Model Exact methods Approximate methods

Individual risk 1) Convolution: with discretized 1) Normal approximation
claim-severity distribution 2) Compound Poisson

2) De Pril recursion: with specific distribution and
set-up of policy stratification Panjer recursion

Collective risk 1) Convolution: with discretized 1) Normal approximation
claim-severity distribution
and assumed primary distribution

2) Panjer recursion: Primary
distribution follows (a, b, 0) class,
secondary distribution discretized

3) Some limited analytic results
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