
Nonlife Actuarial Models

Chapter 15

Applications of Monte Carlo Methods



Learning Objectives

1. Monte Carlo estimation of critical values and p-values

2. Bootstrap estimation of p-values

3. Bootstrap estimation of bias and mean squared error.

4. Simulation of lognormally distributed asset prices

5. Simulation of asset prices with discrete jumps
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15.1 Monte Carlo Simulation for Hypotheses Test

15.1.1 Kolmogorov-Smirnov Test

• For the Kolmogorov-Smirnov D statistic, David and Johnson (1948)
show that if the parameters estimated for the null distribution are

parameters of scale or location, and the estimators satisfy certain

general conditions, then the joint distribution of the probability-

integral transformed observations of the sample will not depend on

the true parameter values.

• The Kolmogorov-Smirnov test is based on the distribution function
under the null, which is the probability integral transform of the

sample observations.
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• Many commonly used distributions involve parameters of scale and
location. For example, for theN (μ,σ2) distribution, μ is the location
parameter and σ is the scale parameter. The parameter λ in the E(λ)
distribution is a location-and-scale parameter.

• In these cases the exact distributions of the D statistics under the

null do not depend on the true parameter values, as long as the null

distribution functions are computed using the MLE.

• As the null distribution of the D statistic for the normal distribu-

tion does not depend on the true parameter values, we may assume

any convenient values of the parameters without affecting the null

distribution.

• This gives rise to the following Monte Carlo procedure to estimate
the critical value of D for a given sample size n
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1. Generate a random sample of n (call this the estimation sam-
ple size) standard normal variates x1, · · · , xn. Calculate the sample
mean x̄ and sample variance s2, and use these values to compute

the estimated distribution function F ∗(xi), where F ∗(·) is the df of
N (x̄, s2). Then use equation (13.4) to compute D.

2. Repeat Step 1 m times (call this the Monte Carlo sample size)
to obtain m values of Dj, for j = 1, · · · ,m.

3. At the level of significance α, the critical value of the Kolmogorov-

SmirnovD statistic is computed as the (1−α)-quantile of the sample
of m values of D, estimated using the method in equations (11.9)

and (11.10).

• The following critical values are proposed by Lilliefors (1967) for
testing normal distributions with unknown mean and variance
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Level of significance α 0.10 0.05 0.01

Critical value
0.805√
n

0.886√
n

1.031√
n
.

• If the null hypothesis is that the sample observations are distributed
as E(λ), where λ is not specified, to estimate the critical values of

the Kolmogorov-Smirnov statistic, the following procedure can be

used

1. Generate a random sample of n variates x1, · · · , xn distributed as
E(1). Calculate the sample mean x̄ and compute the estimated

distribution function F ∗(xi), where F ∗(·) is the df of E(1/x̄). Then
use equation (13.4) to compute D.

2. Repeat Step 1 m times to obtain m values of Dj, for j = 1, · · · ,m.
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3. At the level of significance α, the critical value of the Kolmogorov-

SmirnovD statistic is computed as the (1−α)-quantile of the sample
of m values of D, estimated using the method in equations (11.9)

and (11.10).

• The following critical values are proposed by Lilliefors (1969) for
testing exponential distributions with unknown mean

Level of significance α 0.10 0.05 0.01

Critical value
0.96√
n

1.06√
n

1.25√
n
.

15.1.2 Chi-square Goodness-of-Fit Test

• The asymptotic distribution of the X2 statistic for the goodness-

of-fit test is χ2k−r−1, where k is the number of groups and r is the
number of parameters estimated using the MMLE method.
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• This result holds asymptotically for any null distribution. Yet Monte
Carlo simulation can be used to investigate the performance of the

test and improve the estimates of the critical values in small samples

if required.

Example 15.3: Estimate the critical values of the chi-square goodness-

of-fit statistic X2 using Monte Carlo simulation when the null hypothesis

is that the observations are distributed as E(λ), where λ is unknown.

Compute theX2 statistics based on the MLE using individual observations

as well as the MMLE using grouped data.

Solution: We group the data into intervals (ci−1, ci], and use the fol-
lowing 4 intervals: (0, 0.4], (0.4, 1], (1, 1.5] and (1.5,∞). The MLE of λ
using the complete individual data is 1/x̄. Let n = {n1, · · · , n4}, where
ni is the number of observations in the ith interval. Using grouped data,
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the MMLE is solved by maximizing the log-likelihood function

logL(λ;n) =
4X
i=1

ni log [exp(−λci−1)− exp(−λci)]

with respect to λ. The X2 statistic is then computed using equation

(13.8). Using a Monte Carlo simulation with 10,000 samples, we obtain

the estimated critical values of the X2 statistic summarized in Table 15.3.

Table 15.3: Results of Example 15.3

n = 50 n = 100 n = 200 n = 300
α MLE MMLE MLE MMLE MLE MMLE MLE MMLE χ22,1−α
0.10 4.95 4.70 4.93 4.70 4.91 4.61 4.91 4.66 4.61
0.05 6.31 6.07 6.30 6.07 6.38 6.05 6.30 6.04 5.99
0.01 9.45 9.25 9.48 9.39 9.60 9.37 9.41 9.14 9.21

The asymptotic critical values χ22,1−α are shown in the last column. Two
points can be observed from theMonte Carlo results. First, the asymptotic
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results are very reliable even for samples of size 50, if the correct MMLE

is used to compute X2. Second, if MLE is used to compute X2, the use

of χ22,1−α as the critical value will over-reject the null hypothesis. 2
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15.2 Bootstrap Estimation of p-Value

• There are situations for which the distribution of the test statistic
under the null hypothesis depends on some nuisance parameters not

specified under the null. For such problems, tabulation of the critical

values is not viable.

• As an alternative, we may use bootstrap method to estimate the
p-value of the test statistic.

• Consider a sample of n observations x = (x1, · · · , xn) and a test
statistic T (x) for testing a null hypothesis H0.

• Let the computed value of the test statistic for the sample x be t.
Suppose the decision rule of the test is to reject H0 when t is too

large (i.e., on the right-hand extreme tail).
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• Assume H0 contains a nuisance parameter θ, which is not specified.
We now consider the estimation the p-value of the test statistic,

which is the probability that T (x) is larger than t if the null hy-

pothesis is true, i.e.,

p = Pr(T (x) > t |H0). (15.1)

• AsH0 contains the nuisance parameter θ, we replace the above prob-
lem by

p = Pr(T (x) > t |H0(θ̂)), (15.2)

where θ̂ is an estimator of θ. The bootstrap estimate of p can be

computed as follows

1. Let the computed value of T (x) based on the sample x be t, and

let the estimated value of θ be θ̂, which may be any appropriate

estimator, such as the MLE.
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2. Generate a sample of observations from the distributional assump-

tion of H0(θ̂), call this x∗. Compute the test statistic using data x∗

and call this t∗.

3. Repeat Step 2m times, which is the bootstrap sample size, to obtain

m values of the test statistic t∗j , for j = 1, · · · ,m.

4. The estimated p-value of t is computed as

1 + number of {t∗j ≥ t}
m+ 1

. (15.3)

• The above is a parametric bootstrap procedure, in which the
samples x∗ are generated from a parametric distribution.

• At level of significance α, the null hypothesis is rejected if the esti-
mated p-value is less than α.
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Example 15.4: You are given the following 20 observations of losses

0.114, 0.147, 0.203, 0.378, 0.410, 0.488, 0.576, 0.868, 0.901, 0.983,

1.049, 1.555, 2.060, 2.274, 4.235, 5.400, 5.513, 5.817, 8.901, 12.699.

(a) Compute the Kolmogorov-Smirnov D statistic, assuming the data

are distributed as P(α, 5). Estimate the p-value of the test statistic
using bootstrap.

(b) Repeat (a), assuming the null distribution is P(α, 40).

(c) Repeat (a), assuming the null distribution is E(λ).

Solution: For (a), we estimate α using MLE, which, from Example

12.9, is given by

α̂ =
20P20

i=1 log(xi + 5)− 20 log(5)
,
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and we obtain α̂ = 2.7447. The computed D statistic is 0.1424.

To estimate the p-value, we generate 10,000 bootstrap samples of size 20

each from P(2.7447, 5), estimate α and compute the D statistic for each

sample. The proportion of the D values larger than 0.1424 calculated

using equation (15.3) is 0.5775, which is the estimated p-value. Thus,

the P(α, 5) assumption cannot be rejected at any conventional level of
significance.

For (b), the MLE of α is

α̂ =
20P20

i=1 log(xi + 40)− 20 log(40)
= 15.8233.

The computed D statistic is 0.2138. We generate 10,000 samples of size

20 each from the P(15.8233, 40) distribution and compute the D statistic

of each sample. The estimated p-value is 0.0996. Thus, at the level of
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significance of 10%, the null hypothesis P(α, 40) is rejected, but not at
the level of significance of 5%.

For (c), the MLE of λ is

λ̂ =
1

x̄
= 0.3665,

and the computed D value is 0.2307. We generate 10,000 samples of size

20 each from the E(0.3665) distribution using the inversion method. The
estimated p-value of the D statistic is 0.0603. Thus, the assumption of

E(λ) is rejected at the 10% level, but not at the 5% level.

To conclude, the Kolmogorov-Smirnov test supports the P(α, 5) distribu-
tion assumption for the loss data, but not the P(α, 40) and E(λ) distrib-
utions. 2
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15.3 Bootstrap Estimation of Bias and
Mean Squared Error

• Bootstrap method can also be used to estimate the bias and mean
squared error of the parameter estimates of a distribution.

• Consider the estimation of the parameter θ (or a function of the

parameter g(θ)) of a distribution using an estimator θ̂ (or g(θ̂)),

given a random sample of n observations x = (x1, · · · , xn) of X.

• In situations where theoretical results about the bias and mean
squared error of θ̂ (or g(θ̂)) are intractable, we may use bootstrap

method to estimate these quantities.

• When no additional assumption about the distribution ofX is made,

17



we may use the empirical distribution define by x as the assumed dis-

tribution. We generate a sample of n observations x∗ = (x∗1, · · · , x∗n)
by re-sampling from x with replacement, and compute the estimate

θ̂
∗
(or g(θ̂

∗
)) based on x∗.

• We do this m times to obtain m estimates θ̂
∗
j (or g(θ̂

∗
j)), for j =

1, · · · ,m.

• Based on these bootstrap estimates we can compute the bias and
the mean squared error of the estimator θ̂ (or g(θ̂)). As x∗ are
generated from the empirical distribution defined by x, we call this

method nonparametric bootstrap.

• To illustrate the idea, we consider the use of the sample mean and
the sample variance as estimates of the population mean μ and pop-

ulation variance σ2 of X, respectively.
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• Let μE and σ2E be the mean and the variance, respectively, of the

empirical distribution defined by x.

• We note that μE = x̄ and σ2E = (n− 1)s2/n, where x̄ and s2 are the
sample mean and the sample variance of x, respectively

• . To use the bootstrap method to estimate the bias and the mean
squared error of x̄ and s2, we adopt the following procedure

1. Generate a random sample of n observations by re-sampling with

replacement from x, call this x∗ = (x∗1, · · · , x∗n). Compute the mean
x̄∗ and variance s∗2 of x∗.

2. Repeat Step 1 m times to obtain values x̄∗j and s
∗2
j , for j = 1, · · · ,m.

3. The bias and the mean squared error of x̄ are estimated, respectively,
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by
1

m

mX
j=1

(x̄∗j − μE) and
1

m

mX
j=1

(x̄∗j − μE)
2. (15.4)

4. The bias and the mean squared error of s2 are estimated, respec-

tively, by

1

m

mX
j=1

(s∗2j − σ2E) and
1

m

mX
j=1

(s∗2j − σ2E)
2. (15.5)

• It is theoretically known that x̄ and s2 are unbiased for μ and σ2,

respectively.

• Furthermore, the expected value of x̄∗j is μE and the expected value
of s∗2j is σ2E, so that the bootstrap estimate of the biases should

converge to zero when m is large.
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• The mean squared error of x̄ is

MSE(x̄) = Var(x̄) =
σ2

n
, (15.6)

which is unknown (as σ2 is unknown).

• On the other hand, the bootstrap estimate of the MSE of x̄ in equa-
tion (15.4) converges in probability to σ2E/n, which is known given

x. However, when x varies E(σ2E/n) = (n− 1)σ2/n2 6=MSE(x̄).
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15.4 A General Framework of Bootstrap

• We now provide a framework of the theoretical underpinning of the
bootstrap method.

• LetX = {X1, · · · , Xn} be independently and identically distributed
as X with df F (·), which may depend on a parameter θ.

• Suppose ξ = ξ(F ) is a quantity of the distribution (e.g., mean,

median, a quantile or a population proportion) and ξ̂ = ξ̂(X) is an

estimate of ξ based on X.

• We define
η(X;F ) = ξ̂(X)− ξ(F ), (15.8)

which is the error in estimating ξ using ξ̂. Denoting EF as the
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expectation taken using the df F , the bias of ξ̂ is

EF [η(X;F )] = EF [ξ̂(X)− ξ(F )] (15.9)

and the mean squared error of ξ̂ is

EF [η(X;F )2] = EF [(ξ̂(X)− ξ(F ))2]. (15.10)

• For another application, let T (X) be a test statistic for a hypoth-
esis H0 and its value computed based on a specific sample x =

(x1, · · · , xn) be t = T (x). We now define

η(X;F ) = T (X)− t. (15.11)

• If H0 is rejected when t is too large, the p-value of the test is

Pr(T (X)− t > 0 |F ) = Pr(η(X;F ) > 0 |F ). (15.12)
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• In the above cases, we are interested in the expectation or the popu-
lation proportion of a suitably defined function η(X;F ). This set-up

includes the evaluation of bias and mean squared error of an estima-

tor and the p-value of a test, as well as many other applications.

• As F is unknown in practice, the quantities in equations (15.9),

(15.10) and (15.12) cannot be evaluated.

• However, we may replace F by a known df F ∗ and consider instead
the quantities

EF∗ [η(X;F ∗)] = EF∗[ξ̂(X)− ξ(F ∗)], (15.13)

EF∗ [η(X;F ∗)2] = EF∗[(ξ̂(X)− ξ(F ∗))2], (15.14)

and

Pr(T (X)− t > 0 |F ∗) = Pr(η(X;F ∗) > 0 |F ∗). (15.15)
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• The above quantities are called the bootstrap approximations.

• The reliability of these approximations depend on how good F ∗ is
as an approximation to F .

• If F ∗ is taken as the empirical distribution defined by x, we have a
nonparametric bootstrap.

• If F ∗ is taken as F (θ̂) for a suitable estimator θ̂ computed from the
sample x, then we have a parametric bootstrap.

• As ξ̂(X) and T (X) may be rather complex functions ofX, the eval-
uation of equations (15.13), (15.14) and (15.15) may remain elusive

even with known or given F ∗.

• In the case where the sample size n is small and the empirical distrib-
ution is used for F ∗, we may evaluate these quantities by exhausting
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all possible samples of X.

• This approach, however, will not be feasible when n is large or when
a parametric df F (θ̂) is used. In such situations the quantities may

be estimated using Monte Carlo methods, and we call the solution

the Monte Carlo estimate of the bootstrap approximate, or simply

the bootstrap estimate.
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15.5 Monte Carlo Simulation of Asset Prices

15.5.1 Wiener Process and Generalized Wiener Process

• Let Wt be a stochastic process over time t with the following prop-

erties

1. Over a small time interval ∆t, the change inWt, denoted by ∆Wt =

Wt+∆t −Wt, satisfies the property

∆Wt =
√
∆t, (15.16)

where ∼ N (0, 1).

2. If ∆Wt1 and ∆Wt2 are changes in the process Wt over two nonover-

lapping intervals, then ∆Wt1 and ∆Wt2 are independent.
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• A continuous-time stochastic process satisfying the above two prop-
erties is called aWiener process or standard Brownian motion.
From the first of these two properties, we can conclude that

E(∆Wt) = 0, (15.17)

and

Var(∆Wt) = ∆t. (15.18)

• For the change over a finite interval [0, T ], we can partition the
interval into N nonoverlapping small segments of length ∆t each,

such that

T = N(∆t) (15.19)

and

WT −W0 =
N−1X
i=0

∆Wi(∆t) =
NX
i=1

i

√
∆t, (15.20)
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where i, for i = 1, · · · , n, are iid N (0, 1).

• Thus, given the information at time 0 we have

E(WT ) =W0 +
NX
i=1

E( i)
√
∆t =W0, (15.21)

and

Var(WT ) =
NX
i=1

Var( i)∆t =
NX
i=1

∆t = T. (15.22)

• Hence, WT is the sum of W0 and N iid normal variates, which im-

plies, given W0,

WT ∼ N (W0, T ). (15.23)

• The Wiener process can be extended to allow for a drift in the

process and a constant volatility parameter.
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• A generalized Wiener process or Brownian motion Xt has the
following change over a small time interval ∆t

∆Xt = a∆t+ b∆Wt, (15.24)

where a is the drift rate and b is the volatility rate (a and b are

constants), and Wt is a Wiener process.

• It can be verified that, given X0, we have

XT ∼ N (X0 + aT, b2T ), (15.25)

for any finite T .
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• The Wiener and generalized Wiener processes are continuous-time
processes when ∆t → 0 in equations (15.16) and (15.24), respec-

tively. Thus, we shall write the differentials of these processes as

dWt and

dXt = a dt+ b dWt, (15.26)

respectively.

15.5.2 Diffusion Process and Lognormal Distribution

• A further extension of equation (15.26) is to allow the drift and

volatility rates to depend on time t and the process value Xt. Thus,

we consider the process

dXt = a(Xt, t) dt+ b(Xt, t) dWt, (15.27)

which is called an Ito process or diffusion process.
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• The terms a(Xt, t) and b(Xt, t) are called the drift rate and the
diffusion coefficient, respectively.

• Xt is in general no longer normally distributed.

• We consider a specific member of diffusion processes, called the geo-
metric Brownian motion.

• Let St be the price of an asset at time t. St is said to follow a

geometric Brownian motion if

dSt = μSt dt+ σSt dWt, (15.28)

where μ, called the instantaneous rate of return, and σ, called

the volatility rate, are constants.
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• The above equation can also be written as
1

St
dSt = μ dt+ σ dWt. (15.29)

• Further analysis (using Ito’s lemma) shows that

d logSt =

Ã
μ− σ2

2

!
dt+ σ dWt, (15.30)

so that logSt follows a generalized Wiener process and hence is nor-

mally distributed. Thus, following equation (15.25), we conclude

logSt ∼ N
Ã
logS0 +

Ã
μ− σ2

2

!
t, σ2t

!
, (15.31)

so that St is lognormally distributed with mean

E(St) = exp

"
logS0 +

Ã
μ− σ2

2

!
t+

σ2t

2

#
= S0 exp(μt). (15.32)
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Equation (15.31) can also be written as

logSt − logS0 = log
µ
St
S0

¶
∼ N

ÃÃ
μ− σ2

2

!
t, σ2t

!
, (15.33)

so that

log
µ
St
S0

¶
=

Ã
μ− σ2

2

!
t+ σ

√
tZ, (15.34)

where Z is standard normal.

• Note that
R ≡ 1

t
log

µ
St
S0

¶
(15.36)

is the continuously compounded rate of return over the interval
[0, t].

• Thus, from equation (15.34), the expected continuously compounded
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rate of return over the finite interval [0, t] is

E
∙
1

t
log

µ
St
S0

¶¸
= μ− σ2

2
, (15.37)

which is less than the instantaneous rate of return μ.

• The total return of an asset consists of two components: capital gain
and dividend yield. As St is the price of the asset, μ as defined in

equation (15.28) captures the instantaneous capital gain only.

• If the dividend yield is assumed to be continuous at the rate δ, then
the total instantaneous return, denoted by μ∗, is given by

μ∗ = μ+ δ. (15.38)

• Hence, expressed in terms of the total return and the dividend yield,
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the expected continuously compounded rate of capital gain (asset-

price appreciation) is

E
∙
1

t
log

µ
St
S0

¶¸
= μ− σ2

2
= μ∗ − δ − σ2

2
. (15.39)

• We now consider the simulation of asset prices that follow the geo-
metric Brownian motion given in equation (15.28), in which the

parameter μ captures the return due to asset-price appreciation.

• From equation (15.34), we obtain

St = S0 exp

"Ã
μ− σ2

2

!
t+ σ

√
tZ

#
, (15.40)

which can be used to simulate price paths of the asset. In practical

applications, we need the values of the parameters σ and

μR = μ− σ2

2
. (15.41)
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• Suppose we sample return data of the asset over intervals of length
h. Let there be n return observations (computed as differences of

logarithmic asset prices) with mean x̄R and sample variance s2R.

• The required parameter estimates are then given by

μ̂R =
x̄R
h

and σ̂ =
sR√
h
. (15.42)

• The asset prices at intervals of h can be simulated recursively using
the equation

St+(i+1)h = St+ih exp [x̄R + sRZi] , for i = 0, 1, 2, · · · , (15.43)

where Zi are iid N (0, 1).

• We use end-of-day S&P500 index values in the period January 3,
2007, through December 28, 2007.
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• There are in total 250 index values and we compute 249 daily returns,
which are the logarithmic price differences.

• The price index graph and the return graph are plotted in Figure
15.1.

• We estimate the parameters of the price process and obtain x̄R =
0.0068% and sR = 1.0476%.

• These values are in percent per day. If we take h = 1/250, the

annualized estimate of σ is 1.0476
√
250% = 16.5640% per annum.

The estimate of μ is

μ̂ = μ̂R +
σ̂2

2
=
x̄R
h
+
s2R
2h
= 3.0718% per annum. (15.44)

• We use these values to simulate the price paths, an example of which
is presented in Figure 15.2.

38



1 51 101 151 201
1350

1400

1450

1500

1550

1600

2007/01/04 − 2007/12/28

In
de

x 
va

lu
e

S&P500 index

1 51 101 151 201
−4

−2

0

2

4

2007/01/04 − 2007/12/28

R
et

ur
n 

in
 %

S&P500 return

0

20

40

60

80

100

S&P500 return

F
re

qu
en

cy

Histogram of S&P500 return

Data

P
ro

ba
bi

lit
y

Normal probability plot



1 51 101 151 201

1400

1500

1600

1700

1800

2007/01/04 − 2007/12/28

S
im

ul
at

ed
 v

al
ue

Simulated price series

1 51 101 151 201
−4

−2

0

2

4

2007/01/04 − 2007/12/28

R
et

ur
n 

in
 %

Return of simulated series

0

10

20

30

40

50

60

Return of simulated series

F
re

qu
en

cy

Histogram of simulated return

Data

P
ro

ba
bi

lit
y

Normal probability plot



15.5.3 Jump-Diffusion Process

• Asset prices following a diffusion process are characterized by paths
that are continuous in time.

• Anecdotal evidence, however, often suggests that stock prices are
more jumpy than what would be expected of a diffusion process.

• To allow for discrete jumps in asset prices, we introduce a jump com-
ponent into the diffusion process and consider asset prices following

a jump-diffusion process.

• We consider augmenting the geometric Brownian motion with a
jump component. We assume the occurrence of a jump in an in-

terval has a Poisson distribution, and when a jump occurs, the jump

size is distributed normally.
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• We define Nt as a Poisson process with intensity (mean per unit
time) λ.

• ∆Nt is the number of jump events occurring in the interval (t, t+∆t].

We use the notation dNt when ∆t→ 0.

• We now augment the geometric Brownian motion in equation (15.30)
with a jump component as follows

d logSt =

Ã
μ− σ2

2

!
dt+ σ dWt + Jt dNt − λμJ dt, (15.45)

where Jt ∼ N (μJ ,σ2J) and is distributed independently of Nt.
• Note that the mean of Jt dNt is λμJ dt, so that the mean of the

augmented component Jt dNt−λμJ dt is zero. Thus, the addition of

the term −λμJ dt is to center the jump component so that its mean
is equal to zero.
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• This property is of important significance because jumps are often
assumed to be idiosyncratic and does not affect the expected return

of the stock.

• We re-write equation (15.45) as

d logSt =

Ã
μ− λμJ −

σ2

2

!
dt+ σ dWt + Jt dNt. (15.46)

• If μJ > 0, the jump component induces price appreciation on aver-
age, and the diffusion part of the price will have a drift term adjusted

downwards. On the other hand, if μJ < 0, investors will be compen-

sated by a higher drift rate to produce the same expected return.

• To simulate the jump-diffusion process defined in equation (15.46)
we first consider the jump component.
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• Suppose the time interval of the prices simulated is h, to simulate the
jump component Jt dNt we generate a number m from the PN (λh)
distribution, and then simulate m independent variates Zi from the

N (0, 1) distribution. The jump component is then given by

mμJ + σJ
mX
i=1

Zi. (15.47)

• The diffusion component is computed asÃ
μ− λμJ −

σ2

2

!
h+ σ

√
hZ, (15.48)

where Z is a standard normal variate independent of Zi.

• To generate the value of St+(i+1)h given St+ih we use the equation

St+(i+1)h = St+ih exp

"Ã
μ− λμJ −

σ2

2

!
h+ σ

√
hZ

#
exp

"
mμJ + σJ

mX
i=1

Zi

#
.

(15.49)
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• For illustration we simulate a jump-diffusion process using the fol-
lowing parameters: μ = 3.0718%, σ = 16.5640%, λ = 3, μJ = −2%
and σJ = 3% (the first 3 quantities are per annum).

• Thus, the jumps occur on average 3 times per year, and each jump is
normally distributed with mean jump size of 2% down and standard

deviation of 3%. To observe more jumps in the simulated process,

we simulate 500 daily observations (about 2 years) and an example

is presented in Figure 15.3.
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