
Nonlife Actuarial Models

Chapter 14

Basic Monte Carlo Methods



Learning Objectives

1. Generation of uniform random numbers, mixed congruential method

2. Low discrepancy sequence

3. Inversion transformation and acceptance-rejection methods

4. Generation of specific discrete and continuous random variates

5. Generation of correlated normal random variables

6. Variance reduction techniques

7. Antithetic variable, control variable and importance sampling
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14.1 Monte Carlo Simulation

• Suppose h(·) is a smooth integrable function over the interval [0, 1],
and it is desired to compute the integralZ 1

0
h(x) dx. (14.1)

• Let U ∼ U(0, 1). The integral in (14.1) is equal to E[h(U)].
• If the solution of (14.1) is difficult to obtain analytically, we may
consider the stochastic solution of it as the mean of h(U).

• The stochastic solution can be estimated by drawing a random sam-
ple of n observations u1, · · · , un from U , and the computed estimate
is given by

Ê [h(U)] =
1

n

nX
i=1

h(ui). (14.2)
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• Ê[h(U)] converges to E[h(U)] when n tends to ∞.

• Von Neumann and Ulam coined the use of the termMonte Carlo
method to describe this technique.

• This technique can also be extended to study the solution of any
simulated stochastic process (not necessarily with a deterministic

counterpart), called statistical simulation.
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14.2 Uniform Random Number Generators

• Independent random variates from the U(0, 1) distribution can be
generated in the computer by dividing random integers in the inter-

val [0,m) by m, where m is a large number.

• An important method for generating sequences of random integers

is the use of the congruential algorithm.

• We first define the expression

y ≡ z (mod m), (14.3)

where m is an integer, and y and z are integer-valued expressions,

to mean that there exists an integer k, such that

z = mk + y. (14.4)
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• This also means that y is the remainder when z is divided by m.
• Themixed-congruential method of generating a sequence of ran-
dom integers xi is defined by the equation

xi+1 ≡ (axi + c) (mod m), for i = 0, 1, 2, · · · , (14.5)

where a is themultiplier, c is the increment and m is themodu-
lus. The mixed-congruential method requires the restrictions: m >

0, 0 < a < m and 0 ≤ c < m.
• When c = 0, the method is said to bemultiplicative-congruential.
• To start the sequence of xi, we need a seed x0. Given the seed x0,
the sequence of numbers xi are completely determined.

• Random numbers generated by computer algorithms usually follow

deterministic sequences, and are called pseudo-random numbers.
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• Given a seed x0, when the algorithm produces a value xk = xh for

certain integers h and k, such that k > h ≥ 0, the sequence will

start to repeat itself.

• We define the period of the seed as the shortest subsequence of
numbers, which, by repeating itself, forms the complete sequence

generated.

• The period of the generator is the largest period among all seeds.

Example 14.1: Consider the following mixed-congruential generator

xi+1 ≡ (3xi + 1) (mod 8).

What is the period of (a) x0 = 2, and (b) x0 = 4? What is the period of

the generator?
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Solution: For (a) it is easy to show that the sequence of numbers gen-

erated are

2, 7, 6, 3, 2, · · ·

and this sequence repeats itself. Thus, the period of x0 = 2 is 4. For (b),

we have the sequence

4, 5, 0, 1, 4, · · ·

Hence, the period of x0 = 4 is again 4. To summarize, for given seed

values x0, the values of x1 are given as follows

x0 0 1 2 3 4 5 6 7
x1 1 4 7 2 5 0 3 6

All seeds have period 4, and the generated sequences belong to one of the

two sequences above. Thus, the period of the generator is 4. 2
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14.3 General Random Number Generators

• In many practical applications we may be required to generate ran-
dom numbers from distributions other than U(0, 1).

• It turns out that the generation of random numbers following an

arbitrary distribution can be done using uniform random numbers

via the inversion transformation.

• We first define the important probability integral transform,
which is basically the transformation of a random variable using its

distribution function.

Definition 14.1: Let X be a random variable with df F (·). The
probability integral transform Y of X is a random variable defined by

Y = F (X).
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• Thus, the probability integral transform is just a df, where the ar-

gument is a random variable rather than a fixed number.

• It turns out that through the probability integral transform we can

obtain a random variable that is distributed as U(0, 1).

Theorem 14.1 (a) Probability integral transform theorem: If

X is a random variable with continuous df F (·), then the random variable
Y = F (X) is distributed as U(0, 1). (b) Quantile function theorem:
Let F (·) be a df, and define F−1(·) as F−1(y) = inf {x : F (x) ≥ y}, for
0 < y < 1. If U ∼ U(0, 1), then the df of X = F−1(U) is F (·).
Proof: For Part (a), if F (·) is strictly increasing, the proof is quite
straightforward. In this case, for 0 < y < 1, there exists a unique x such

that F (x) = y. Furthermore, Y ≤ y if and only if X ≤ x. Thus, if G(·) is
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the df of Y , then

G(y) = Pr(Y ≤ y) = Pr(X ≤ x) = F (x) = y.

Hence, G(y) = y, which implies Y ∼ U(0, 1). For a general proof requiring
F (·) to be continuous only, see Angus (1994).
For Part (b), we note that X ≤ x if and only if U ≤ F (x). Thus, we

conclude

Pr(X ≤ x) = Pr(U ≤ F (x)) = F (x).
The last equality above is due to the fact that U ∼ U(0, 1). Hence, the df
of X is F (·), as required by the theorem. 2
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14.3.1 Inversion Method

• Provided we can invert the function F (·) to obtain F−1(·), F−1(U)
will be a random variable with df F (·).

• This is called the inversion method for generating a random num-
ber for an arbitrary distribution.

Example 14.3: Derive algorithms to generate random numbers from

the following distributions: (a) W(α,λ), and (b) P(α, γ).
Solution: For (a), from equation (2.36), the df of W(α,λ) is

F (x) = 1− exp
∙
−
µ
x

λ

¶α¸
.

Inverting the df, we generate X using the formula

X = λ [− log (1− U)] 1α .
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As 1− U is also distributed as U(0, 1), we can use the simplified formula

X = λ [− logU ] 1α

to generate W(α,λ).
For (b), from equation (2.38), the df of P(α, γ) is

F (x) = 1−
Ã

γ

x+ γ

!α

.

Thus, random numbers from P(α, γ) may be generated using the equation

X = γ(U−
1
α − 1).

2

• The above examples illustrate the use of the inverse transform of the
df to generate continuous random numbers.
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• The inversion method can also be used to generate discrete or mixed-
type variables.

Example 14.4: The ground-up loss X of an insurance policy is distrib-

uted as W(0.5, 5). There is a deductible of d = 1 and maximum covered

loss of u = 8. Derive an algorithm to generate the loss in a loss event vari-

able XL using a U(0, 1) variate U . What are the values of XL generated
when U = 0.8, 0.25 and 0.5?

Solution: XL = 0 when X ≤ 1. Thus,

FXL(0) = Pr(X ≤ 1) = Pr(W(0.5, 5) ≤ 1) = 1−exp
"
−
µ
1

5

¶0.5#
= 0.3606.

XL is also right censored at point 7, with

Pr(XL = 7) = Pr(X ≥ 8) = exp
"
−
µ
8

5

¶0.5#
= 0.2823.
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Hence, Pr(XL < 7) = 1− 0.2823 = 0.7177, and the df of XL is

FXL(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.3606, for x = 0,

1− exp
"
−
µ
x+ 1

5

¶0.5#
, for 0 < x < 7,

1, for x ≥ 7.
(14.9)

Thus, XL is a mixed-type random variable, and its df is plotted in Figure

14.1.

We may invert FXL(x) as follows to generate a random variate of XL given

a U(0, 1) variate U

XL =

⎧⎪⎨⎪⎩
0, for 0 ≤ U < 0.3606,
5 [− log (1− U)]2 − 1, for 0.3606 ≤ U < 0.7177,
7, for 0.7177 ≤ U < 1.

(14.10)

When U = 0.8, XL = 7. When U = 0.25, XL = 0. Finally, when U = 0.5,
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XL is computed as

XL = 5 [− log(1− 0.5)]2 − 1 = 1.4023.

Note that XL can also be generated by left-truncating and right-censoring

a Weibull variate computed using the inversion method. 2

14.3.2 Acceptance-Rejection Method

• Let f(·) be the pdf of a random variable X, the df of which cannot

be easily inverted, and let Y be another random variable with pdf

q(·), for which an easy and efficient generator is available.

• Assume X and Y have the same support [a, b], and there exists a

constant c such that M(x) ≡ cq(x) ≥ f(x) for x ∈ [a, b].

• The steps of the acceptance-rejection procedure are as follows
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1. Generate a number x from the distribution with pdf q(·).

2. Generate a number u independently from the U(0, 1) distribution.

3. If u ≤ f(x)/M(x), assign z = x, otherwise return to Step 1.

• It turns out that the sequence of numbers z obtained from the above
procedure have pdf f(·). To prove this statement we consider the df
of the random variable Z generated, which is given by

Pr(Z ≤ z) = Pr

Ã
Y ≤ z |U ≤ f(Y )

M(Y )

!

=

R z
a

R f(x)
M(x)

0 q(x) du dxR b
a

R f(x)
M(x)

0 q(x) du dx
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=

R z
a q(x)

ÃR f(x)
M(x)

0 du

!
dx

R b
a q(x)

ÃR f(x)
M(x)

0 du

!
dx

=

R z
a q(x)

f(x)

M(x)
dx

R b
a q(x)

f(x)

M(x)
dx

=

R z
a f(x) dxR b
a f(x) dx

=
Z z

a
f(x) dx. (14.11)

• The pdf q(·) is called the majorizing density, and the function
M(x) = cq(x) is called the majorizing function.

• The principle is to find a majorizing function that envelopes the pdf
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f(·) as closely as possible.

• For a given majorizing density q(·), c should be chosen to tighten
the enveloping of M(x) over f(x), i.e, the optimum c should be

c = inf {r : rq(x) ≥ f(x) for x ∈ [a, b]} . (14.12)

• However, even if the optimum c is not used the acceptance-rejection
procedure stated above remains valid, albeit there is loss in efficiency.

Example 14.5: Let the pdf of X be

f(x) =
2√
2π
exp

Ã
−x

2

2

!
, for x ≥ 0.

Suppose the majorizing density is selected to be

q(x) = e−x, for x ≥ 0.
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Discuss the use of the acceptance-rejection procedure for the generation

of random numbers of X.

Solution: X is obtained as the absolute value of the standard normal

random variable. Inverse transformation method is intractable for this

distribution. Figure 14.2 plots the pdf f(·) and q(·). The two functions
cross each other. To create the optimum cq(·) the value of c is

q
2e/π =

1.3155. However, any value of c ≥ 1.3155 may be used to compute the

majorizing function and appropriate random numbers will be produced.

Figure 14.2 also shows the majorizing function with c = 1.5, which is not

optimum.

The acceptance-rejection procedure for generating X is summarized as

follows

1. Generate a number x with pdf e−x. This can be done by computing
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x = − log v, where v is a random number from U(0, 1).

2. Generate a number u independently from U(0, 1).

3. For a selected value of c ≥ 1.3155, if

u ≤
2√
2π
exp

Ã
−x

2

2

!
c exp(−x) =

1

c

s
2

π
exp

Ã
−x

2

2
+ x

!
≡ R(x),

assign Z = x. Otherwise, return to Step 1.

Table 14.1 shows a sample of values of random numbers generated using

c = 1.5. The last row of values Z are the random numbers having pdf

f(·).
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Table 14.1: Illustrative results for Example 14.5

i 1 2 3 4
u 0.3489 0.9236 0.5619 0.4581
v 0.4891 0.0910 0.5047 0.9057
x 0.7152 2.3969 0.6838 0.0990
R(x) 0.8421 0.3306 0.8342 0.5844
Z 0.7152 reject 0.6838 0.0990

2

• The probability of acceptance in Step 3 of the acceptance-rejection
procedure is given by

Pr

Ã
U ≤ f(X)

M(X)

!
=

Z b

a

Z f(x)
M(x)

0
q(x) du dx

=
Z b

a
q(x)

f(x)

M(x)
dx
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=
1

c
. (14.13)

• Thus, we may use 1/c as a measure of the efficiency of the procedure.

14.3.3 Generation of Correlated Random Variables

• We consider the problem of generating samples of normal random

variables that are correlated.

• We first discuss the main properties of a multivariate normal dis-
tribution, followed by methods of generating correlated multivariate

normal variates.

• Let X = (X1, · · · , Xk)0 be a k-element random variable. If X has

a multivariate normal distribution, its joint df is completely deter-
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mined by its mean vector μ = (μ1, · · · ,μk)0 and its variance matrix

Ω =

⎡⎢⎢⎢⎢⎢⎣
σ21 σ12 · · σ1k
σ12 σ22 · · σ2k
· · · · ·
· · · · ·

σ1k · · · σ2k

⎤⎥⎥⎥⎥⎥⎦ , (14.14)

where

μi = E(Xi) and σ2i = Var(Xi), for i = 1, · · · , k, (14.15)

and

σij = Cov(Xi, Xj), for i, j = 1, · · · , k. (14.16)

• We will then write
X ∼ N (μ,Ω). (14.17)
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• IfX has a nondegenerate distribution, there exists a lower triangular

k×k matrix C (i.e., the elements in the upper triangle of the matrix
are all zero), denoted by

C =

⎡⎢⎢⎢⎢⎢⎣
c11 0 0 · 0
c21 c22 0 · 0
· · · · ·
· · · · ·
ck1 · · · ckk

⎤⎥⎥⎥⎥⎥⎦ , (14.18)

such that

Ω = CC 0. (14.19)

• The equation above is called the Choleski decomposition of Ω.
The lower triangular matrix C is obtainable in many statistical pack-

ages.
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• The multivariate normal distribution has some very convenient prop-
erties. Let A be a m× k (m ≤ k) constant matrix and b be a m× 1
constant vector. Then

AX + b ∼ N (Aμ+ b, AΩA0). (14.20)

• If Y = (Y1, · · · , Yk)0 has a multivariate normal distribution with
mean vector μ = (0, · · · , 0)0 = 0 and variance matrix Ω = I (i.e., the
k × k identity matrix), we write

Y ∼ N (0, I). (14.21)

• Y1, · · · , Yk are iid standard normal variates. Furthermore, if we define
X = CY + μ, (14.22)

then from equation (14.20) we conclude

X ∼ N (C0+ μ, CIC 0) ≡ N (μ,Ω). (14.23)
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• To generate random numbers of the multivariate normal distribution
X ∼ N (μ,Ω), we first generate k iid standard normal variates Y =

(Y1, · · · , Yk)0. Then using equation (14.22), we obtain the required
random numbers for X.

Example 14.6: Let X1 and X2 be jointly normally distributed with

means μ1 and μ2, respectively, variances σ
2
1 and σ22, respectively, and co-

variance σ12. How would you generate random numbers of X1 and X2
given independent random numbers of the standard normal distribution?

Solution: We first solve for the Choleski decomposition of

Ω =

"
σ21 σ12
σ12 σ22

#
.
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It can be easily checked that

C =

"
σ1 0
ρσ2 σ2

√
1− ρ2

#
,

where ρ is the correlation coefficient, i.e.,

ρ =
σ12
σ1σ2

.

Hence, if Z1 and Z2 are independently distributed N (0, 1) variates, then
we can generate X1 and X2 from the equation"
X1
X2

#
=

"
σ1 0
ρσ2 σ2

√
1− ρ2

# "
Z1
Z2

#
+

"
μ1
μ2

#
=

"
σ1Z1 + μ1
ρσ2Z1 + σ2

√
1− ρ2 Z2 + μ2

#
.

It is easy to verify that E(X1) = μ1, E(X2) = μ2, Var(X1) = σ21,

Var(X2) = ρ2σ22 + σ22
³
1− ρ2

´
= σ22,

and

Cov(X1, X2) = ρσ1σ2 = σ12. 2
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14.4 Specific Random Number Generators

14.4.1 Some Continuous Distributions

Normal distribution

• The Box-Muller method generates pairs of standard normal vari-
ates from pairs of uniform variates using trigonometric transforma-

tion.

• TheMarsaglia-Bray method uses a mixture distribution together
with the acceptance-rejection method.

Gamma distribution

• A G(α,β) variate has the same distribution as a βG(α, 1) variate,
and we only need to consider standard gamma distributions.
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• If α is an integer (Erlang distribution),X ∼ G(α, 1) can be generated
by the equation

X = −
αX
i=1

logUi, (14.25)

where Ui ∼ iid U(0, 1), for i = 1, · · · ,α.

• G(α, 1) is the sum of two gamma variates, one of which has an Erlang
distribution and the other has a standard gamma distribution with

parameter in the interval (0, 1).

• We now consider the case of generating a G(α, 1) variate with α ∈
(0, 1).

• The Ahrens method provides an efficient procedure to generate
a G(α, 1) variate with α ∈ (0, 1) using the acceptance-rejection ap-
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proach. The required pdf is

f(x) =
1

Γ(α)
xα−1e−x, for α ∈ (0, 1), x ≥ 0. (14.26)

The majorizing frequency consists of two segments defined as follows

q(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e

α+ e
αxα−1, for 0 ≤ x ≤ 1,

α

α+ e
e1−x, for 1 < x.

(14.27)

The df of this density, denoted by Q(·), is

Q(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
e

α+ e
xα, for 0 ≤ x ≤ 1,

1− α

α+ e
e1−x, for 1 < x.

(14.28)
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Using the inverse transformation we can generate a random number

X with df Q(·) from a U(0, 1) variate U as follows

X =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

"
(α+ e)U

e

# 1
α

, for 0 ≤ U ≤ e

α+ e
,

1− log
"
(1− U)(α+ e)

α

#
, for

e

α+ e
< U < 1.

(14.29)

To envelope the pdf f(·) we use the majorizing function M(x) =
cq(x), where c is given by

c =
α+ e

Γ(α)αe
. (14.30)
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Thus, the majorizing function is

M(x) = cq(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

Γ(α)
xα−1, for 0 ≤ x ≤ 1,

1

Γ(α)
e−x, for 1 < x.

(14.31)

We further note that

f(x)

M(x)
=

⎧⎪⎨⎪⎩
e−x, for 0 ≤ x ≤ 1,

xα−1, for 1 < x.
(14.32)

• The Ahrens method for the generation of the random variable X

with pdf f(·) is as follows

1. Generate a random number u1 from U(0, 1). If u1 > e/(α + e), go
to Step 3. Otherwise, continue with Step 2.
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2. Set z = [(α+ e)u1/e]
1
α and generate independently another random

number u2 from U(0, 1). If u2 > e−z, go to Step 1, otherwise assign
X = z.

3. Set z = 1 − log [(1− u1)(α+ e)/α] and generate independently an-
other random number u2 from U(0, 1). If u2 > zα−1, go to Step 1,
otherwise assign X = z.

14.4.2 Some discrete distributions

Binomial distribution

• We can use a simple table look-up method to generate the random
numbers.

• Alternatively X can be generated as the number of successes in n

independent trials where the probability of success in each trial is θ.
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• Thus, we generate n random variates Ui, i = 1, · · · , n, from U(0, 1)
and compute X as the number of Ui that are less than θ.

Poisson distribution

• As the Poisson distribution has an infinite support, the table look-up
method does not work.

• We may make use of the relationship between the exponential dis-
tribution and the Poisson distribution to derive an algorithm.

• LetX ∼ PN (λ) be the number of arrivals of a certain event in a unit
time interval. Then the inter-arrival time Y of the events follows an

exponential distribution E(λ), i.e., an exponential distribution with
mean waiting time 1/λ.
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• Thus, we can generate Yi from E(λ) and accumulate them to obtain
the total waiting time. We then set X to be the largest number of

Yi accumulated such that their total is less than 1, i.e.,

X = min {n :
n+1X
i=1

Yi > 1}. (14.35)

• As Yi can be generated by (− logUi)/λ, where Ui ∼ U(0, 1), we re-
write the above as

X = min {n :
n+1X
i=1

1

λ
(− logUi) > 1}

= min {n :
n+1X
i=1

logUi < −λ}

= min {n :
n+1Y
i=1

Ui < e
−λ}. (14.36)
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14.5 Accuracy and Monte Carlo Sample Size

• We may use the Monte Carlo sample to estimate the standard error
of the estimated solution and obtain a confidence interval for the

solution.

• The standard error may also be used to estimate the required sample
size to produce a solution within a required accuracy given a certain

probability level.

Example 14.7: The specific damagesX covered by a liability insurance

policy are distributed as G(4, 3). The total damages, inclusive of punitive
damages, are given by cX, where c > 1. The policy has a maximum

covered loss of u. Using Monte Carlo methods or otherwise, determine the

expected loss of the insured and the probability that the total damages do
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not exceed u. Discuss the accuracy of your solutions. Consider the case

of c = 1.1 and u = 20.

Solution: The pdf of X is

f(x) =
1

Γ(α)βα x
α−1e−

x
β , x ≥ 0.

We denote the df of X ∼ G(α, β) by
γx(α,β) = Pr(X ≤ x),

and note that

γx(α,β) = γ x
β
(α, 1) ≡ γ x

β
(α).

The function γx(α) is also called the (lower) incomplete gamma function.

The expected loss is

E [(cx) ∧ u] =
Z u

c

0
cx
xα−1e−

x
β

Γ(α)βα dx+ u
Z ∞
u
c

xα−1e−
x
β

Γ(α)βα dx
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=
cΓ(α+ 1)β

Γ(α)

Z u
c

0

x(α+1)−1e−
x
β

Γ(α+ 1)βα+1 dx+ u
∙
1− γ u

cβ
(α)

¸
= cαβγ u

cβ
(α+ 1) + u

∙
1− γ u

cβ
(α)

¸
.

Thus, the expected loss can be computed using the incomplete gamma

function. Similarly, we can derive the second moment of the loss as

E
h
((cx) ∧ u)2

i
= c2(α+ 1)αβ2γ u

cβ
(α+ 2) + u2

∙
1− γ u

cβ
(α)

¸
,

from which we can compute Var[(cx) ∧ u] .
Now with the given values of c = 1.1 and u = 20 we obtain

E [(cx) ∧ u] = 12.4608 and Var [(cx) ∧ u] = 25.9197.

Using a Monte Carlo sample of 10,000 observations, we obtain estimates

of the mean and variance of the loss as (these are the sample mean and

39



the sample variance of the simulated losses)

Ê [(cx) ∧ u] = 12.5466 and dVar [(cx) ∧ u] = 25.7545.
The Monte Carlo standard error of Ê[(cx) ∧ u] isvuutdVar [(cx) ∧ u]

10,000
=

s
25.7545

10,000
= 0.0507.

Thus, using normal approximation, the Monte Carlo estimate of the 95%

confidence interval of the expected loss is

12.5466± (1.96)(0.0507) = (12.4471, 12.6461),
which covers the true value of 12.4608.

The probability of the total damages not exceeding u is

Pr (cX ≤ u) =
Z u

c

0

xα−1e−
x
β

Γ(α)βα dx = γ u
cβ
(α),
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and we have

γ 20
(1.1)(3)

(4) = 0.8541.

The Monte Carlo estimate of this probability is the sample proportion of

1.1X ≤ 20, which was found to be 0.8543. The 95% confidence interval of
the true probability is

0.8543± 1.96
s
(0.8543)(1− 0.8543)

10,000
= (0.8474, 0.8612),

which again covers the true probability. 2
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14.6 Variance Reduction Techniques

• Consider a deterministic problem with solution equal to E[h(X)],

whereX is a random variable (not necessarily uniformly distributed)

and h(·) is an integrable function over the support of X.

• The crude Monte Carlo estimate of the solution is

Ê[h(X)] =
1

n

nX
i=1

h(xi), (14.37)

where x1, · · · , xn are a random sample of X.

• The accuracy of this stochastic solution depends on the variance of
the estimator.
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14.6.1 Antithetic Variable

• Consider a Monte Carlo sample of two observations X1 and X2. If
X1 and X2 are iid, The variance of the Monte Carlo estimator is

Var
³
Ê[h(X)]

´
=
Var[h(X)]

2
. (14.38)

• If X1 and X2 are identically distributed as X, but not independent,
then the variance of the Monte Carlo estimator is

Var
³
Ê[h(X)]

´
=
Var[h(X)] + Cov(h(X1), h(X2))

2
. (14.39)

• Now if Cov(h(X1), h(X2)) < 0, the variance of the Monte Carlo

estimator is reduced.

• Random numbers generated in such a way that the functional eval-

uations at these numbers are negatively correlated are said to be

antithetic variables.
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• If X1 ∼ U(0, 1), then X2 = 1 − X1 ∼ U(0, 1) and is negatively
correlated with X1.

• It should be noted, however, that for the antithetic variable tech-
nique to work well, it is the negative correlation between h(X1) and

h(X2) that is required.

14.6.2 Control Variable

• To estimate E[h(X)] using control variable, we consider an auxiliary
function g(·) and the associated expectation E[g(X)]. We select the
function g(·) so that it is close to h(·) and yet E[g(X)] is known.

• Now a Monte Carlo estimate of E[h(X)] can be computed as

ÊCV[h(X)] = E[g(X)] +
1

n

nX
i=1

[h(Xi)− g(Xi)] . (14.40)
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• ÊCV[h(X)] is an unbiased estimate of E[h(X)]. The variance of this
estimator is

Var(ÊCV[h(X)]) =
Var [h(X)− g(X)]

n
, (14.41)

which is smaller than the variance of ÊCR [h(X)] if

Var [h(X)− g(X)] < Var [h(X)] . (14.42)

Example 14.10: Consider the distribution of the loss in a loss event

variable XL in Example 14.4. Estimate E(XL) using a Monte Carlo sim-

ulation with control variable.

Solution: To estimate E(XL) using control variable, we consider a
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random variable X̃L with the following df

FX̃L(x) =

⎧⎪⎨⎪⎩
0.3606, for x = 0,
0.3606 + 0.0510x, for 0 < x < 7,
1, for x ≥ 7,

where

0.0510 =
0.7177− 0.3606

7
=
0.3571

7

is the slope of the line joining the points (0, 0.3606) and (7, 0.7177).

Comparing the above with equation (14.9) we can see that the df of XL
in the interval [0.3606, 0.7177) is now linearized. The mean of X̃L is

E(X̃L) = (0.3571)(3.5) + (0.2823)(7) = 3.2260.

Given a U(0, 1) variate Ui, XL can be generated using equation (14.10),
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and we denote this by XL(Ui). Now the inverse transformation of X̃L is

X̃L =

⎧⎪⎨⎪⎩
0, for 0 ≤ U < 0.3606,
(U − 0.3606)/0.0510, for 0.3606 ≤ U < 0.7177,
7, for 0.7177 ≤ U < 1.

Hence, the Monte Carlo estimate of E(XL) using the control variable X̃L
is computed as

3.2260 +
1

n

nX
i=1

h
XL(Ui)− X̃L(Ui)

i
.

Note that XL(Ui)− X̃L(Ui) is nonzero only when Ui ∈ [0.3606, 0.7177), in
which case we have

XL(Ui)− X̃L(Ui) = 5 [− log (1− Ui)]2 − 1− Ui − 0.3606
0.0510

.

We performed a Monte Carlo simulation with n = 10,000. The sample
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mean and sample variance are

ÊCV(XL) = 2.8650, s2CV = 0.3150.

Thus, there is a substantial increase in efficiency versus the crude Monte

Carlo and Monte Carlo with antithetic variable.

14.6.3 Importance Sampling

• Consider the following integral of a smooth integrable function h(·)
over the interval [a, b] Z b

a
h(x) dx, (14.43)

which can be re-written asZ b

a
[(b− a)h(x)] 1

b− a dx. (14.44)
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• Thus, the integral can be estimated by
1

n

nX
i=1

(b− a)h(Xi), (14.45)

where Xi are iid U(a, b).

• If X̃ is a random variable with support [a, b] and pdf q(·), the integral
in equation (14.43) can be written as

Z b

a
h(x) dx =

Z b

a

"
h(x)

q(x)

#
q(x) dx, (14.46)

which can be estimated by

1

n

nX
i=1

h(X̃i)

q(X̃i)
, (14.47)
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where X̃i are iid as X̃. The estimator in equation (14.47) has a

smaller variance than the estimator in equation (14.45) if

Var

"
h(X̃i)

q(X̃i)

#
< Var [(b− a)h(Xi)] . (14.48)

• The advantage of importance sampling is likely to be large if the
variation in the ratio h(·)/q(·) is small over the interval [a, b] (i.e.,
the two functions are close to each other).

Example 14.11: Consider the distribution of the loss in a loss event

variable XL in Example 14.4. Estimate E(XL) using a Monte Carlo sim-

ulation with importance sampling.

Solution: Defining h(U) as XL(U) in equation (14.10), we have

E(XL) =
Z 1

0
h(x) dx
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=
Z 0.7177

0.3606

³
5 [− log(1− x)]2 − 1

´
dx+

Z 1

0.7177
7 dx

=
Z 0.7177

0.3606

³
5 [− log(1− x)]2 − 1

´
dx+ 1.9761.

The integral above is the expected value of

(0.7177− 0.3606)(5[− log(1− Ũ)]2 − 1),

where Ũ ∼ U(0.3606, 0.7177). Thus, we estimate E(XL) by

1.9761 +
0.3571

n

nX
i=1

(5[− log(1− Ũi)]2 − 1),

where

Ũi = 0.3606 + 0.3571Ui,

with Ui ∼ iid U(0, 1).
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We performed a Monte Carlo simulation with 10,000 observations, and

obtained Ê(XL) = 2.8654, with a sample variance of 0.4937. Thus, the

importance sampling method produced a big gain in efficiency over the

crude Monte Carlo method, although the gain is not as much as that from

the control variable method in Example 14.10. 2
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