
Nonlife Actuarial Models

Chapter 13

Model Evaluation and Selection



Learning Objectives

1. Graphical presentation and comparison

2. Misspecification tests and diagnostic checks

3. Kolmogorov-Smirnov test and Anderson-Darling test

4. Likelihood ratio test and chi-square goodness-of-fit test

5. Model selection and information criteria
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13.1 Graphical Methods

• We denote F̂ (·) as an estimated df using nonparametric method and
F ∗(·) as a hypothesized df or parametrically estimated df.

• One way to assess if the assumption concerning the distribution is
correct is to plot the estimated parametric df against the empirical

df.

• If the distributional assumption is incorrect, we would expect the
two plotted graphs to differ.
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Example 13.1: A sample of 20 loss observations are as follows

0.003, 0.012, 0.180, 0.253, 0.394, 0.430, 0.491, 0.743, 1.066, 1.126,

1.303, 1.508, 1.740, 4.757, 5.376, 5.557, 7.236, 7.465, 8.054, 14.938.

Two parametric models are fitted to the data using the MLE, assuming

that the underlying distribution is (a) W(α,λ), and (b) G(α,β). The
fitted models are W(0.6548, 2.3989) and G(0.5257, 5.9569). Compare the
empirical df against the df of the two estimated parametric models.

Solution: The plots of the empirical df and the estimated parametric

df are given in Figure 13.1. It can be seen that both estimated parametric

models fit the data quite well. Thus, from the df plots it is difficult to

ascertain which is the preferred model. 2

• Another useful graphical device is the p-p plot.
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• We approximate the probability of having an observation less than
or equal to x(i) using the sample data by the sample proportion

pi = i/(n+ 1).

• A plot of F ∗(x(i)) against pi is called the p-p plot. If F ∗(·) fits the
data well, the p-p plot should approximately follow the 45 degree

line.

Example 13.2: For the data and the fitted Weibull model in Example

13.1, assess the model using the p-p plot.

Solution: The p-p plot is presented in Figure 13.2. It can be seen that

most points lie closely to the 45 degree line, apart from some deviations

around pi = 0.7. 2

• Another graphical method equivalent to the p-p plot is the q-q plot.
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• In a q-q plot, F ∗−1(pi) is plotted against x(i). If F ∗(·) fits the data
well, the q-q plot should approximately follow a straight line.

Example 13.3: For the data in Example 13.1, assume that observations

larger than 7.4 are censored. Compare the estimated df based on the MLE

under the Weibull assumption against the Kaplan-Meier estimate.

Solution: In the data set three observations are larger than 7.4 and

are censored. The plots of the Kaplan-Meier estimate and the estimated

df using the MLE of the Weibull model are given in Figure 13.3. For

the Kaplan-Meier estimate we also plot the lower and upper bounds of

the 95% confidence interval estimates of the df. It can be seen that the

estimated parametric df falls inside the band of the estimated Kaplan-

Meier estimate. 2
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13.2 Misspecification Tests and Diagnostic Checks

13.2.1 Kolmogorov-Smirnov Test

• We specify a null hypothesis about the df of a continuous loss vari-
able, and denote it by F ∗(·). To examine if the data support the
null hypothesis, we compare F ∗(·) against the empirical df F̂ (·) and
consider the statistic

max
x(1)≤x≤x(n)

| F̂ (x)− F ∗(x) |, (13.1)

where x(1) and x(n) are the minimum and maximum of the observa-

tions, respectively.

• As F̂ (·) is a right-continuous increasing step function and F ∗(·) is
also increasing we only need to compare the differences at the ob-
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served data points, namely, at the order statistics x(1) ≤ x(2) ≤ · · · ≤
x(n).

• The maximum may only occur at a jump point x(i) or immediately

to the left of it. We now denote the statistic in expression (13.1) by

D, which is called theKolmogorov-Smirnov statistic and can be
written as

D = max
i∈ {1,···,n}

n
max

n
| F̂ (x(i−1))− F ∗(x(i)) |, | F̂ (x(i))− F ∗(x(i)) |

oo
,

(13.2)

where F̂ (x(0)) ≡ 0.

• When we have complete individual observations,

F̂ (x(i)) =
i

n
, (13.3)
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and D can be written as

D = max
i∈ {1, ···, n}

½
max

½¯̄̄̄
i− 1
n
− F ∗(x(i))

¯̄̄̄
,
¯̄̄̄
i

n
− F ∗(x(i))

¯̄̄̄¾¾
. (13.4)

• When F ∗(·) is completely specified the critical values of D for some

selected values of α are given as follows

Level of significance α 0.10 0.05 0.01

Critical value
1.22√
n

1.36√
n

1.63√
n

• The critical values above apply to all df, as long as they are com-
pletely specified.

• Any unknown parameters in the df have to be estimated for the
computation of F ∗(x(i)). Then the critical values above will not
apply.
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Example 13.5: Compute the Kolmogorov-Smirnov statistics for the

data in Example 13.1, with the estimated Weibull and gamma models as

the hypothesized distributions.

Solution: We denote F ∗1 (x(j)) as the df of W(0.6548, 2.3989) evaluated
at x(j), and F ∗2 (x(j)) as the df of G(0.5257, 5.9569) evaluated at x(j), which
are the df of the estimated Weibull and gamma distributions in Example

13.1. We further denote

Dij = max
n¯̄̄
F̂ (x(j−1))− F ∗i (x(j))

¯̄̄
,
¯̄̄
F̂ (x(j))− F ∗i (x(j))

¯̄̄o
,

for i = 1, 2, and j = 1, · · · , 20. Note that

F̂ (x(j)) =
j

20
,

as we have complete individual data. The results are summarized in Table

13.1.
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Table 13.1: Results for Example 13.5

F̂ (x(j)) F∗1 (x(j)) D1j F∗2 (x(j)) D2j
0.0500 0.0112 0.0388 0.0191 0.0309
0.1000 0.0301 0.0699 0.0425 0.0575
0.1500 0.1673 0.0673 0.1770 0.0770
0.2000 0.2050 0.0550 0.2112 0.0612
0.2500 0.2639 0.0639 0.2643 0.0643
0.3000 0.2771 0.0271 0.2761 0.0261
0.3500 0.2981 0.0519 0.2951 0.0549
0.4000 0.3714 0.0286 0.3617 0.0383
0.4500 0.4445 0.0445 0.4294 0.0294
0.5000 0.4563 0.0437 0.4405 0.0595
0.5500 0.4885 0.0615 0.4710 0.0790
0.6000 0.5218 0.0782 0.5030 0.0970
0.6500 0.5553 0.0947 0.5357 0.1143
0.7000 0.7910 0.1410 0.7813 0.1313
0.7500 0.8166 0.1166 0.8097 0.1097
0.8000 0.8233 0.0733 0.8172 0.0672
0.8500 0.8726 0.0726 0.8728 0.0728
0.9000 0.8779 0.0279 0.8789 0.0289
0.9500 0.8903 0.0597 0.8929 0.0571
1.0000 0.9636 0.0364 0.9728 0.0272

11



The Kolmogorov-Smirnov statistics D for the Weibull and gamma distri-

butions are, 0.1410 and 0.1313, respectively, both occurring at x(14). The

critical value of D at the level of significance of 10% is

1.22√
20
= 0.2728,

which is larger than the computed D for both models. However, as the

hypothesized df are estimated, the critical value has to be adjusted. Monte

Carlo methods can be used to estimate the p-value of the tests, which will

be discussed in Chapter 15. 2
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13.2.2 Anderson-Darling Test

• The Anderson-Darling test can be used to test for the null hy-
pothesis that the variable of interest has the df F ∗(·).

• Assuming we have complete and individual observations arranged in
the order: x(1) ≤ x(2) ≤ · · · ≤ x(n), the Anderson-Darling statistic,
denoted by A2, is defined as

A2 = −1
n

⎡⎣ nX
j=1

(2j − 1)
n
log

h
F ∗(x(j))

i
+ log

h
1− F ∗(x(n+1−j))

io⎤⎦−n.
(13.6)

• If F ∗(·) is fully specified with no unknown parameters, the critical
values of A2 are 1.933, 2.492 and 3.857 for level of significance α =

0.10, 0.05 and 0.01, respectively.
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• Critical values are available for certain distributions with unknown
parameters. Otherwise, they may be estimated using Monte Carlo

methods.

13.2.3 Chi-Square Goodness-of-Fit Test

• The chi-square goodness-of-fit test is applicable to grouped data.

• Suppose the sample observations are classified into the intervals
(0, c1], (c1, c2], · · · , (ck−1,∞), with nj observations in (cj−1, cj] such
that

Pk
j=1 nj = n.

• The expected number of observations in (cj−1, cj] based on F ∗(·) is

ej = n [F
∗(cj)− F ∗(cj−1)] . (13.7)
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• The chi-square goodness-of-fit statistic X2 is defined as

X2 =
kX
j=1

(ej − nj)2
ej

=

⎛⎝ kX
j=1

n2j
ej

⎞⎠− n. (13.8)

• If F ∗(·) is fully specified with no unknown parameters, X2 is ap-

proximately distributed as a χ2k−1.

• If the parameters of F ∗(·) are estimated using the multinomial
MLE, then the asymptotic distribution of X2 is χ2k−r−1, where r is
the number of parameters estimated.

• To compute the multinomial MLE, we use the log-likelihood function

logL(θ;n) =
kX
j=1

nj log [F
∗(θ; cj)− F ∗(θ; cj−1)] , (13.9)

where θ is the r-element parameter vector.
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• The expected frequency ej in interval (cj−1, cj] is then given by

ej = n [F
∗(θ̂; cj)− F ∗(θ̂; cj−1)]. (13.10)

Example 13.7: For the data in Example 13.4, compute the chi-square

goodness-of-fit statistic assuming the loss distribution is (a) G(α,β) and
(b)W(α,λ). In each case, estimate the parameters using the multinomial
MLE.

Solution: The multinomial MLE for the G(α, β) assumption can be
found in Example 13.4. We estimate the Weibull case using the multino-

mial MLEmethod to obtain the distributionW(1.9176, 17.3222). For each
of the fitted distributions the expected frequencies are computed and com-

pared alongside the observed frequencies in each interval. The results are

given in Table 13.2.
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Table 13.2: Results for Example 13.7

(cj−1, cj ] (0, 6] (6, 12] (12, 18] (18, 24] (24, 30] (30, ∞)
nj 3 9 9 4 3 2
gamma 3.06 9.02 8.27 5.10 2.58 1.97
Weibull 3.68 8.02 8.07 5.60 2.92 1.71

Thus, for the gamma distribution, the chi-square statistic is

X2 =
(3)2

3.06
+
(9)2

9.02
+
(9)2

8.27
+
(4)2

5.10
+
(3)2

2.58
+
(2)2

1.97
− 30 = 0.3694.

Similarly, the X2 statistic for the fitted Weibull distribution is 0.8595.

The degrees of freedom of the test statistics is 6 − 2 − 1 = 3 for both

fitted distributions, and the critical value of the test statistic at the 5%

level of significance is χ23, 0.95 = 7.815. Thus, both the gamma and Weibull

assumptions cannot be rejected for the loss distribution. 2
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13.2.4 Likelihood Ratio Test

• We have an unconstrained model defined by the alternative hy-
pothesis.

• The model under the parametric constraints is the null hypothesis,
which is nested within the alternative hypothesis.

• The constraints imposed on the parameter vector θ can be zero re-
strictions (i.e., some of the parameters in θ are zero), linear restric-

tions or nonlinear restrictions.

• Let θ̂U denote the unrestricted MLE under the alternative hypoth-
esis, θ̂R denote the restricted MLE under the null hypothesis, and r

denote the number of restrictions.
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• The unrestricted and restricted maximized likelihoods are denoted
by L(θ̂U ,x) and L(θ̂R,x), respectively.

• The likelihood ratio statistic, denoted by �, is defined as

� = 2 log

"
L(θ̂U ,x)

L(θ̂R,x)

#
= 2

h
logL(θ̂U ,x)− logL(θ̂R,x)

i
. (13.11)

• When the null is true, � → χ2r as n → ∞.

• Reject the null hypothesis (i.e., conclude the restrictions do not hold)
if � > χ2r, 1−α at level of significance α, where χ

2
r, 1−α is the 100(1−α)-

percentile of the χ2r distribution.

Example 13.8: For the data in Example 13.1, estimate the loss distrib-

ution assuming it is exponential. Test the exponential assumption against

the gamma assumption using the likelihood ratio test.
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Solution: The exponential distribution is the G(α, β) distribution with
α = 1. For the alternative hypothesis where α is not restricted, the fitted

distribution is G(0.5257, 5.9569) and the log-likelihood is

logL(θ̂U ,x) = −39.2017.

The MLE of λ for the E(λ) distribution is 1/x̄ (or the estimate of β in
G(α,β) with α = 1 is x̄). Now x̄ = 3.1315 and the maximized restricted

log-likelihood is

logL(θ̂R,x) = −42.8305.
Thus, the likelihood ratio statistic is

� = 2(42.8305− 39.2017) = 7.2576.

As χ21, 0.95 = 3.841 < 7.2576, the null hypothesis of α = 1 is rejected at the

5% level of significance. 2
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13.3 Information Criteria for Model selection

• When two non-nested models are compared, the larger model with
more parameters have the advantage of being able to fit the in-

sample data with a more flexible function and thus possibly a larger

log-likelihood.

• To compare models on more equal terms, penalized log-likelihood
may be adopted.

• The Akaike information criterion, denoted by AIC, is defined as

AIC = logL(θ̂;x)− p, (13.13)

where p is the number of estimated parameters in the model.

• Based on this approach the model with the largest AIC is selected.
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• Consider two modelsM1 andM2, so thatM1 ⊂M2. Using AIC,

the probability of choosingM1 when it is true converges to a number

that is strictly less than 1 when the sample size tends to infinity.

• In this sense, we say that the Akaike information criterion is incon-
sistent.

• The above problem can be corrected by imposing a different penalty
on the log-likelihood.

• The Schwarz information criterion, also called the Bayesian
information criterion, denoted by BIC, is defined as

BIC = logL(θ̂;x)− p
2
log n. (13.13)

• Unlike the AIC, the BIC is consistent.
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Example 13.10: For the data in Example 13.1, consider the following

models: (a)W(α,λ), (b)W(0.5,λ), (c) G(α,β), and (d) G(1,β). Compare
these models using AIC and BIC.

Solution: Table 13.3 summarizes the results.

Table 13.3: Results for Example 13.10

Model logL(θ̂;x) AIC BIC
W(α,λ) −39.5315 −41.5315 −42.5272
W(0.5,λ) −40.5091 −41.5091 −42.0070
G(α,β) −39.2017 −41.2017 −42.1974
G(1,β) −42.8305 −43.8305 −45.3284

AIC is maximized for the G(α,β) model. BIC is maximized for the

W(0.5,λ) model. Based on the BIC, W(0.5,λ) is the preferred model.

23


