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Chapter 12

Parametric Model Estimation



Learning Objectives

1. Methods of moments and percentile matching

2. Maximum likelihood estimation

3. Bayesian estimation

4. Cox’s proportional hazards model

5. Modeling joint distributions using copula
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12.1 Methods of Moments and Percentile Matching

• Let f(·; θ) be the pdf or pf of a failure-time or loss variable X, where
θ = (θ1, · · · , θk)0 is a k-element parameter vector.

• We denote μ0r as the rth raw moment of X. Assuming the functional
dependence of μ0r on θ, we write μ0r(θ).

• Given a random sample x = (x1, · · · , xn) of X, the sample analogues
of μ0r(θ), denoted by μ̂0r, is

μ̂0r =
1

n

nX
i=1

xri . (12.1)
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12.1.1 Method of Moments

• The method-of-moments estimate θ̂ is the solution of θ in the

equations

μ0r(θ) = μ̂0r, for r = 1, · · · , k. (12.2)

• Thus, we have a set of k equations involving k unknowns θ1, · · · , θk.

• We assume that a solution to the equations in (12.2) exists.

Example 12.1: Let X be the claim-frequency random variable. Deter-

mine the method-of-moments estimates of the parameter of the distribu-

tion ofX, ifX is distributed as (a) PN (λ), (b) GM(θ), and (c) BN (m, θ),
where m is a known constant.

Solution: All the distributions in this example are discrete with a

single parameter in the pf. Hence, k = 1 and we need to match only the
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population mean E(X) to the sample mean x̄. For (a), E(X) = λ. Hence,

λ̂ = x̄. For (b), we have

E(X) =
1− θ

θ
= x̄,

so that

θ̂ =
1

1 + x̄
.

For (c), we equate E(X) = mθ to x̄ and obtain

θ̂ =
x̄

m
,

which is the sample proportion. 2

Example 12.2: Let X be the claim-severity random variable. De-

termine the method-of-moments estimates of the parameters of the dis-

tribution of X, if X is distributed as (a) G(α,β), (b) P(α, γ), and (c)
U(a, b).

5



Solution: All the distributions in this example are continuous with 2

parameters in the pdf. Thus, k = 2, and we need to match the first 2

population moments μ01 and μ02 to the sample moments μ̂
0
1 and μ̂02. For (a),

we have

μ01 = αβ = μ̂01 and μ02 = αβ2 + α2β2 = μ̂02,

from which we obtain

βμ01 + μ021 = μ02.

Hence, the method-of-moments estimates are

β̂ =
μ̂02 − μ̂021

μ̂01

and

α̂ =
μ̂01
β̂
=

μ̂021
μ̂02 − μ̂021

.
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For (b), the population moments are

μ01 =
γ

α− 1 and μ02 =
2γ2

(α− 1) (α− 2) ,

from which we obtain

μ02 =
2μ021 (α− 1)

α− 2 .

Hence,

α̂ =
2(μ̂02 − μ̂021 )
μ̂02 − 2μ̂021

and

γ̂ = (α̂− 1)μ̂01.
Note that if μ̂02 − 2μ̂021 < 0, then α̂ < 0 and the model P(α̂, γ̂) is not well
defined.
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For (c), the population moments are

μ01 =
a+ b

2
and μ02 =

(b− a)2
12

+ μ021 .

Solving for a and b, and evaluating the solutions at μ̂01 and μ̂02, we obtain

â = μ̂01 −
q
3(μ̂02 − μ̂021 ) and b̂ = μ̂01 +

q
3(μ̂02 − μ̂021 ).

However, if min {x1, · · · , xn} < â, or max {x1, · · · , xn} > b̂, the model

U(â, b̂) is incompatible with the claim-severity data. 2

• As can be seen from Example 12.2, the estimates may be incompat-
ible with the model assumption.

• However, provided the parameters of the distribution can be solved
uniquely from the population moments, the method-of-moments es-

timates are consistent for the model parameters.
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• The method of moments can also be applied to censored or truncated
distributions.

Example 12.3: A random sample of 15 ground-up losses, X, with a

policy limit of 15 has the following observations

2, 3, 4, 5, 8, 8, 9, 10, 11, 11, 12, 12, 15, 15, 15.

If X is distributed as U(0, b), determine the method-of-moments estimate
of b.

Solution: To estimate b we match the sample mean of the loss payments

to the mean of the censored uniform distribution. The mean of the sample

of 15 observations is 9.3333. As

E [(X ∧ u)] =
Z u

0
[1− F (x)] dx =

Z u

0

b− x
b

dx = u− u
2

2b
,
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and u = 15,we have

15− (15)
2

2b̂
= 9.3333,

so that b̂ = 19.8528. 2

12.1.2 Method of Percentile Matching

• Some statistical distributions with thick tails (such as the Cauchy
distribution and somemembers of the stable distribution family),
do not have any moments.

• For such distributions, the method of moments breaks down.

• On the other hand, as quantiles or percentiles of a distribution al-
ways exist, we may estimate the model parameters by matching the
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population percentiles (as functions of the parameters) to the sam-

ple percentiles. This approach is called the method of percentile
or quantile matching.

• Consider k quantities 0 < δ1, · · · , δk < 1, and let δi = F (xδi; θ) so
that xδi = F

−1(δi; θ), where θ is a k-element vector of the parameters
of the df.

• We write xδi(θ), emphasizing its dependence on θ.

• Let x̂δi be the δi-quantile computed from the sample. The quantile-
matching method solves for the value of θ̂, so that

xδi(θ̂) = x̂δi, for i = 1, · · · , k. (12.5)

• Again we assume that a solution of θ̂ exists for the above equations,
and it is called the percentile- or quantile-matching estimate.
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Example 12.5: Let X be distributed as W(α,λ). Determine the

quantile-matching estimates of α and λ.

Solution: Let 0 < δ1, δ2 < 1. From equation (2.36), we have

δi = 1− exp
∙
−
µ
xδi
λ

¶α¸
, i = 1, 2,

so that

−
µ
xδi
λ

¶α

= log(1− δi), i = 1, 2.

We take the ratio of the case of i = 1 to i = 2 to obtainÃ
xδ1
xδ2

!α

=
log(1− δ1)

log(1− δ2)
,

which implies

α̂ =

log

"
log(1− δ1)

log(1− δ2)

#

log

Ã
x̂δ1
x̂δ2

! ,
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where x̂δ1 and x̂δ2 are sample quantiles. Given α̂ we further solve for λ̂ to

obtain

λ̂ =
x̂δ1

[− log(1− δ1)]
1
α̂

=
x̂δ2

[− log(1− δ2)]
1
α̂

.

Thus, analytical solutions of α̂ and λ̂ are obtainable. 2
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12.2 Bayesian Estimation Method

• The Bayesian estimator of Θ is a decision rule of assigning a value

to Θ based on the observed data.

• Given a loss function, the decision rule is chosen to give as small an
expected loss as possible.

• If the squared-error loss (or quadratic loss) function is adopted, the
Bayesian estimator (the decision rule) is the mean of the posterior

distribution (given the data) of Θ.

• See Section 8.1 for more details.

14



12.3 Maximum Likelihood Estimation Method

• Suppose we have a random sample of n observations of X, denoted

by x = (x1, · · · , xn). Given the pdf or pf of X, f(·; θ), we define
the likelihood function of the sample as the product of f(xi; θ),
denoted by L(θ;x). Thus, we have

L(θ;x) =
nY
i=1

f(xi; θ), (12.6)

which is taken as a function of θ given x.

• As the observations are independent, L(θ;x) is the joint probability
or joint density of the observations.

• We further define the log-likelihood function as the logarithm of
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L(θ;x), i.e.,

logL(θ;x) =
nX
i=1

log f(xi; θ). (12.7)

• The value of θ, denoted by θ̂, that maximizes the likelihood function
is called the maximum likelihood estimator (MLE) of θ.

• θ̂ also maximizes the log-likelihood function.

• Maximization of the log-likelihood function is often easier than max-
imization of the likelihood function, as the former is the sum of n

terms involving θ while the latter is a product.

• We now discuss the asymptotic properties of the MLE and its ap-
plications.
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— We first consider the case whereX are independently and iden-

tically distributed. This is the case where we have complete

individual loss observations.

— We then extend the discussion to the case where X are not

identically distributed, such as for grouped or incomplete data.

— The properties of the MLE are well established in the statistics
literature and their validity depends on some technical condi-

tions, referred to as regularity conditions.

• We summarize the properties of the MLE here, with the details

deferred to the Appendix A.18.

• We first consider the case where θ is a scalar. The Fisher infor-
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mation in a single observation, denoted by I(θ), is defined as

I(θ) = E

⎡⎣Ã∂ log f(X; θ)
∂θ

!2⎤⎦ , (12.8)

which is also equal to

E

"
−∂2 log f(X; θ)

∂θ2

#
. (12.9)

• In addition, the Fisher information in a random sample X,
denoted by In(θ), is defined as

In(θ) = E

⎡⎣Ã∂ logL(θ;X)
∂θ

!2⎤⎦ , (12.10)

which is n times the Fisher information in a single observation, i.e.,

In(θ) = nI(θ). (12.11)
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• Also, In(θ) can be computed as

In(θ) = E

"
−∂2 logL(θ;X)

∂θ2

#
. (12.12)

• For any unbiased estimator θ̃ of θ, the Cramér-Rao inequality
states that

Var(θ̃) ≥ 1

In(θ)
=

1

nI(θ)
, (12.13)

and an unbiased estimator is said to be efficient if it attains the
Cramér-Rao lower bound.

• The MLE θ̂ is formally defined as

θ̂ = max
θ
{L(θ;x)} = max

θ
{logL(θ;x)} , (12.14)

which can be computed by solving the first-order condition

∂ logL(θ;x)

∂θ
=

nX
i=1

∂ log f(xi; θ)

∂θ
= 0. (12.15)
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Theorem 12.1: Under certain regularity conditions, the distribution of√
n(θ̂− θ) converges to the normal distribution with mean 0 and variance

1/I(θ), i.e.,
√
n(θ̂ − θ)

D→ N
Ã
0,

1

I(θ)

!
, (12.16)

where D→ denotes convergence in distribution.

• Theorem 12.1 has several important implications.

• First, θ̂ is asymptotically unbiased and consistent.

• Second, in large samples θ̂ is approximately normally distributed

with mean θ and variance 1/In(θ).

• Third, since the variance of θ̂ converges to the Cramér-Rao lower
bound, θ̂ is asymptotically efficient.
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• We now generalize the results to the case where θ = (θ1, · · · , θk)0 is
a k-element vector. The Fisher information matrix in an obser-
vation is now defined as the k × k matrix

I(θ) = E

"
∂ log f(X; θ)

∂θ

∂ log f(X; θ)

∂θ0

#
, (12.17)

which is also equal to

E

"
−∂2 log f(X; θ)

∂θ ∂θ0

#
. (12.18)

• The Fisher information matrix in a random sample of n observations
is In(θ) = nI(θ).

• Let θ̃ be any unbiased estimator of θ. We denote the variance matrix
of θ̃ by Var(θ̃).

21



• Hence, the ith diagonal element of Var(θ̃) is Var(θ̃i), and its (i, j)th
element is Cov(θ̃i, θ̃j).

• Denoting I−1n (θ) as the inverse of In(θ), the multivariate version of
the Cramér-Rao inequality states that

Var(θ̃)− I−1n (θ) (12.19)

is a non-negative definite matrix.

• As a property of non-negative definite matrices, the diagonal ele-
ments of Var(θ̃) − I−1n (θ) are non-negative, i.e., the lower bound of
Var(θ̃i) is the ith diagonal element of I−1n (θ).

• An unbiased estimator is said to be efficient if it attains the Cramér-
Rao lower bound I−1n (θ).
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Theorem 12.2: Under certain regularity conditions, the distribution

of
√
n(θ̂ − θ) converges to the multivariate normal distribution with

mean vector 0 and variance matrix I−1(θ), i.e.,

√
n(θ̂ − θ)

D→ N
³
0, I−1(θ)

´
. (12.20)

• Theorem 12.2 says that the MLE is asymptotically unbiased, con-

sistent, asymptotically normal and efficient.

• The MLE has the convenient property that it satisfies the invari-
ance principle. Suppose g(·) is a one-to-one function and θ̂ is the

MLE of θ, then the invariance principle states that g(θ̂) is the MLE

of g(θ).
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12.3.1 Complete Individual Data

• Complete individual observations form a random sample, for which

the likelihood and log-likelihood functions are given in equations

(12.6) and (12.7), respectively.

• Maximization through equation (12.15) then applies.

Example 12.8: Determine the MLE of the following models with a

random sample of n observations: (a) PN (λ), (b) GM(θ), (c) E(λ), and
(d) U(0, θ).
Solution: Note that (a) and (b) are discrete models, while (c) and

(d) are continuous. The same method, however, applies. For (a) the

log-likelihood function is

logL(λ;x) = nx̄ log λ− nλ−
nX
i=1

log(xi!),
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and the first-order condition is

∂ logL(λ;x)

∂λ
=
nx̄

λ
− n = 0.

Thus, the MLE of λ is

λ̂ = x̄,

which is equal to the method-of-moments estimate derived in Example

12.1.

For (b) the log-likelihood function is

logL(θ;x) = n log θ + [log(1− θ)]
nX
i=1

xi,

and the first-order condition is

∂ logL(θ;x)

∂θ
=
n

θ
− nx̄

1− θ
= 0.
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Solving for the above, we obtain

θ̂ =
1

1 + x̄
,

which is also the method-of-moments estimate derived in Example 12.1.

For (c) the log-likelihood function is

logL(λ;x) = n log λ− nλx̄,

with the first-order condition being

∂ logL(λ;x)

∂λ
=
n

λ
− nx̄ = 0.

Thus, the MLE of λ is

λ̂ =
1

x̄
.
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For (d), it is more convenient to consider the likelihood function, which is

L(θ;x) =
µ
1

θ

¶n
,

for 0 < x1, · · · , xn ≤ θ, and 0 otherwise. Thus, the value of θ that maxi-

mizes the above expression is θ̂ = max {x1, · · · , xn}. Note that in this case
the MLE is not solved from equation (12.15).

A remark for the U(0, θ) case is of interest. Note that from Theorem 12.1,
we conclude that Var(

√
nθ̂) converges to a positive constant when n tends

to infinity, where θ̂ is the MLE. From Example 10.2, however, we learn

that the variance of max {x1, · · · , xn} is

nθ2

(n+ 2)(n+ 1)2
,

so that Var(nmax {x1, · · · , xn}) converges to a positive constant when n
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tends to infinity. Hence, Theorem 12.1 breaks down. This is due to the

violation of a regularity condition for this model.

Example 12.10: Determine the asymptotic distribution of the MLE of

the following models with a random sample of n observations: (a) PN (λ),
and (b) GM(θ). Hence, derive 100(1− α)% confidence interval estimates

for the parameters of the models.

Solution: For (a) the second derivative of the log-likelihood of an

observation is
∂2 log f(x;λ)

∂λ2
= − x

λ2
.

Thus,

I(λ) = E

"
−∂2 log f(X;λ)

∂λ2

#
=
1

λ
,

so that √
n(λ̂− λ)

D→ N (0,λ) .
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As in Example 12.8, λ̂ = x̄, which is also the estimate for the variance.

Hence, in large samples x̄ is approximately normally distributed with mean

λ and variance λ/n (estimated by x̄/n). A 100(1−α)% confidence interval
of λ is computed as

x̄± z1−α
2

s
x̄

n
.

Note that we can also estimate the 100(1 − α)% confidence interval of λ

by

x̄± z1−α
2

s√
n
,

where s2 is the sample variance. This estimate, however, will not be as

efficient if X is Poisson.

For (b) the second derivative of the log-likelihood of an observation is

∂2 log f(x; θ)

∂θ2
= − 1

θ2
− x

(1− θ)2
.
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As E(X) = (1− θ)/θ, we have

I(θ) = E

"
−∂2 log f(X; θ)

∂θ2

#
=
1

θ2
+

1

θ(1− θ)
=

1

θ2(1− θ)
.

Thus, √
n(θ̂ − θ)

D→ N
³
0, θ2(1− θ)

´
,

where, from Example 12.8,

θ̂ =
1

1 + x̄
.

A 100(1− α)% confidence interval of θ can be computed as

θ̂ ± z1−α
2

vuut θ̂
2
(1− θ̂)

n
.
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12.3.2 Grouped and Incomplete Data

• When the sample data are grouped and/or incomplete, the observa-
tions are no longer iid.

• Nonetheless, we can still formulate the likelihood function and com-
pute the MLE.

• The first step is to write down the likelihood function or log-likelihood
function of the sample that is appropriate for the way the observa-

tions are sampled.

• We first consider the case where we have complete observations that
are grouped into k intervals: (c0, c1], (c1, c2], · · · , (ck−1, ck], where
0 ≤ c0 < c1 < · · · < ck =∞.
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• Let the number of observations in the interval (cj−1, cj] be nj so thatPk
j=1 nj = n.Given a parametric df F (·; θ), the probability of a single

observation falling inside the interval (cj−1, cj] is F (cj; θ)−F (cj−1; θ).

• Assuming the individual observations are iid, the likelihood of having
nj observations in the interval (cj−1, cj], for j = 1, · · · , k, is

L(θ;n) =
kY
j=1

[F (cj; θ)− F (cj−1; θ)]nj , (12.21)

where n = (n1, · · · , nk).

• The log-likelihood function of the sample is

logL(θ;n) =
kX
j=1

nj log [F (cj; θ)− F (cj−1; θ)] . (12.22)
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• Now we consider the case where we have individual observations that
are right censored.

• If the ground-up loss is continuous, the claim amount will have a

distribution of the mixed type, described by a pf-pdf. Specifically,

if there is a policy limit of u, only claims of amounts in the interval

(0, u] are observable. Losses of amount exceeding u are censored, so

that the probability of a claim of amount u is 1− F (u; θ).

• Thus, if the claim data consist of x = (x1, · · · , xn1), where 0 <
x1, · · · , xn1 < u, and n2 claims of amount u, with n = n1 + n2, then
the likelihood function is given by

L(θ;x, n2) =

"
n1Y
i=1

f(xi; θ)

#
[1− F (u; θ)]n2 . (12.23)
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• The log-likelihood function is

logL(θ;x, n2) = n2 log [1− F (u; θ)] +
n1X
i=1

log f(xi; θ). (12.24)

• If the insurance policy has a deductible of d, the data of claim pay-

ments are sampled from a population with truncation, i.e., only

losses with amounts exceeding d are sampled.

• Thus, the pdf of the ground-up loss observed is
f(x; θ)

1− F (d; θ) , for d < x. (12.25)

• If we have a sample of claim data x = (x1, · · · , xn1), then the likeli-
hood function is given by

L(θ;x) =
nY
i=1

f(xi; θ)

1− F (d; θ) =
1

[1− F (d; θ)]n
nY
i=1

f(xi; θ), where d < x1, · · · , xn.
(12.26)
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• Thus, the log-likelihood function is

logL(θ;x) = −n log [1− F (d; θ)] +
nX
i=1

log f(xi; θ). (12.27)

• We denote yi as the modified loss amount, such that yi = xi−d. Let
y = (y1, · · · , yn). Suppose we wish to model the distribution of the
payment in a payment event, and denote the pdf of this distribution

by f̃(·; θ∗), then the likelihood function of y is

L(θ∗;y) =
nY
i=1

f̃(yi; θ
∗), for 0 < y1, · · · , yn. (12.28)

• This model is called the shifted model. It captures the distribution
of the loss in a payment event and may be very different from the
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model of the ground-up loss distribution, i.e., f̃(·) may differ from
f(·).

• As the observations in general may not be iid, Theorems 12.1 and
12.2 may not apply. The asymptotic properties of the MLE beyond

the iid assumption are summarized in the theorem below, which

applies to a broad class of models.

Theorem 12.3: Let θ̂ denote the MLE of the k-element parameter θ of

the likelihood function L(θ;x). Under certain regularity conditions, the

distribution of
√
n(θ̂−θ) converges to the multivariate normal distribution

with mean vector 0 and variance matrix I−1(θ), i.e.,
√
n(θ̂ − θ)

D→ N
³
0, I−1(θ)

´
, (12.29)
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where

I(θ) = lim
n→∞ E

"
−1
n

∂2 logL(θ;x)

∂θ ∂θ0

#
. (12.30)

• Note that I(θ) requires the evaluation of an expectation and de-
pend on the unknown parameter θ. In practical applications it may

be estimated by its sample counterpart. Once I(θ) is estimated,
confidence intervals of θ may be computed.

Example 12.11: Let the ground-up loss X be distributed as E(λ).
Consider the following cases

(a) Claims are grouped into k intervals: (0, c1], (c1, c2], · · · , (ck−1,∞],
with no deductible nor policy limit. Let n = (n1, · · · , nk) denote the
numbers of observations in the intervals.
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(b) There is a policy limit of u. n1 uncensored claims with ground-up

losses x = (x1, · · · , xn1) are available, and n2 claims have a censored
amount u.

(c) There is a deductible of d, and n claims with ground-up losses x =

(x1, · · · , xn) are available.

(d) Policy has a deductible of d and maximum covered loss of u. n1
uncensored claims with ground-up losses x = (x1, · · · , xn1) are avail-
able, and n2 claims have a censored claim amount u − d. Denote
n = n1 + n2.

(e) Similar to (d), but there are two blocks of policies with deductibles

of d1 and d2 for Block 1 and Block 2, respectively. The maximum

covered losses are u1 and u2 for Block 1 and Block 2, respectively. In

Block 1 there are n11 uncensored claim observations and n12 censored
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claims of amount u1−d1. In Block 2 there are n21 uncensored claim
observations and n22 censored claims of amount u2 − d2.

Determine the MLE of λ in each case.

Solution: The df of E(λ) is F (x;λ) = 1− e−λx. For (a), using equation
(12.21), the likelihood function is (with c0 = 0)

L(λ;n) =

⎡⎣k−1Y
j=1

³
e−cj−1λ − e−cjλ

´nj⎤⎦ ³e−ck−1λ´nk ,
so that the log-likelihood function is

logL(λ;n) =− ck−1nkλ+
k−1X
j=1

nj log
³
e−cj−1λ − e−cjλ

´
.

The MLE is solved by maximizing the above expression with respect to

λ, for which numerical method is required.
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For (b) the likelihood function is

L(λ;x) =

"
n1Y
i=1

λe−λxi
#
e−λun2,

and the log-likelihood function is

logL(λ;x) = −λun2 − λn1x̄+ n1 log λ.

The first-order condition is
∂ logL(λ;x)

∂λ
= −un2 − n1x̄+ n1

λ
= 0,

which produces the MLE

λ̂ =
n1

n1x̄+ n2u
.

For (c) the likelihood function is

L(λ;x) =
1

e−λdn

"
nY
i=1

λe−λxi
#
,
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and the log-likelihood function is

logL(λ;x) = λdn− λnx̄+ n log λ.

The first-order condition is

∂ logL(λ;x)

∂λ
= nd− nx̄+ n

λ
= 0,

so that the MLE is

λ̂ =
1

x̄− d.
For (d) the likelihood function is

L(λ;x) =
1

e−λdn

"
n1Y
i=1

λe−λxi
#
e−λun2,

with log-likelihood

logL(λ;x) = λdn− λn1x̄+ n1 log λ− λun2,
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and first-order condition

∂ logL(λ;x)

∂λ
= nd− n1x̄+ n1

λ
− un2 = 0.

The MLE is

λ̂ =
n1

n1(x̄− d) + n2(u− d) .

For (e) the log-likelihood is the sum of the two blocks of log-likelihoods

given in (d). Solving for the first-order condition, we obtain the MLE as

λ̂ =
n11 + n21

n11(x̄1 − d1) + n21(x̄2 − d2) + n12(u1 − d1) + n22(u2 − d2)
=

P2
i=1 ni1P2

i=1 [ni1(x̄i − di) + ni2(ui − di)]
.

2
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12.4 Models with Covariates

• We have so far assumed that the failure-time or loss distributions
are homogeneous, i.e., the same distribution applies to all insured

objects.

• In practice, the future lifetime of smokers and non-smokers might
differ. The accident rates of teenage drivers and middle-aged drivers

might differ, etc.

• We now discuss some approaches in modeling the failure-time and
loss distributions in which some attributes (called the covariates)
of the objects affect the distributions.

• Let S(x; θ) denote the survival function of interest, called the base-
line survival function, which applies to the distribution indepen-
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dent of the object’s attributes.

• Suppose for the ith insured object, there is a vector of k attributes,
denoted by zi = (zi1, · · · , zik)0, which affects the survival function.

• We denote the survival function of the ith object by S(x; θ, zi).

12.4.1 Proportional Hazards Model

• Given the survival function S(x; θ), the hazard function h(x; θ) is
defined as

h(x; θ) = −d logS(x; θ)
dx

, (12.31)

from which we have

S(x; θ) = exp
µ
−
Z x

0
h(x; θ) dx

¶
. (12.32)
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• We now allow the hazard function to vary with the individuals and
denote it by h(x; θ, zi). In contrast, h(x; θ), which does not vary

with i, is called the baseline hazard function.

• A simple model can be constructed by assuming that there exists a
function m(·), such that if we denote mi = m(zi), then

h(x; θ, zi) = mi h(x; θ). (12.33)

• This is called the proportional hazards model, which postulates that
the hazard function of the ith individual is a multiple of the baseline

hazard function, and the multiple depends on the covariate zi.

• An important implication of the proportional hazards model is that
the survival function of the ith individual is given by

S(x; θ, zi) = exp
µ
−
Z x

0
h(x; θ, zi) dx

¶
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= exp
µ
−
Z x

0
mi h(x; θ) dx

¶
=

∙
exp

µ
−
Z x

0
h(x; θ) dx

¶¸mi

= [S(x; θ)]mi . (12.34)

• For equation (12.33) to provide a well-defined hazard function, mi

must be positive for all zi. We choose

mi = exp(β
0zi), (12.35)

where β = (β1, · · · ,βk)0 is a vector of parameters.

• Thus, an individual has the baseline hazard function if zi = 0. The
pdf of the ith individual can be written as

f(x; θ, zi) = −dS(x; θ, zi)
dx
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= −d [S(x; θ)]
mi

dx
= mi [S(x; θ)]

mi−1 f(x; θ), (12.36)

where f(x; θ) = −dS(x; θ)/dx is the baseline pdf.

• The MLE of the full model may be quite complicated even for a
simple baseline model such as the exponential.

• Furthermore, it may be desirable to separate the estimation of the
parameters in the proportional hazards function, i.e., β, versus the

estimation of the baseline hazard function.

• The estimation can be done in two stages. The first stage involves
estimating β using the partial likelihood method, and the sec-
ond stage involves estimating the baseline hazard function using a
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nonparametric method, such as the Kaplan-Meier or Nelson-Aalen

estimators.

• We now explain this method using the failure-time data terminology.

• Assume the data are arranged in the order 0 < y1 < · · · < ym, where
m ≤ n. There are wj failures at time yj and the risk set at time yj
is rj.

• Suppose object i fails at time yj, the partial likelihood of object i,
denoted by Li(β), is defined as the probability of object i failing at

time yj given that some objects fail at time yj. Thus, we have

Li(β) = Pr(object i fails at time yj | some objects fail at time yj)
=

Pr(object i fails at time yj)
Pr(some objects fail at time yj)
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=
h(yj; θ, zi)P

i0 ∈ rj h(yj; θ, zi0)

=
mi h(yj; θ)P

i0 ∈ rj mi0 h(yj; θ)

=
miP

i0 ∈ rj mi0

=
exp(β0zi)P

i0 ∈ rj exp(β
0zi0)

, for i = 1, · · · , n. (12.37)

• The partial likelihood of the sample, denoted by L(β), is defined as

L(β) =
nY
i=1

Li(β). (12.38)

• Note that only β appears in the partial likelihood function, which can
be maximized to obtain the estimate of β without any assumptions

about the baseline hazard function and its estimates.
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Example 12.15: A proportional hazards model has two covariates

z = (z1, z2)
0, each taking possible values 0 and 1. We denote z(1) =

(0, 0)0, z(2) = (1, 0)0, z(3) = (0, 1)0 and z(4) = (1, 1)0. The failure times
observed are

2 (1), 3 (2), 4 (3), 4 (4), 5 (1), 7 (3), 8 (1), 8 (4), 9 (2), 11 (2), 11 (2), 12 (3),

where the index i of the covariate vector z(i) of the observed failures are

given in parentheses. Also, an object with covariate vector z(2) is censored

at time 6, and another object with covariate vector z(4) is censored at time

8. Compute the partial likelihood estimate of β.

Solution: As there are 2 covariates, we let β = (β1, β2)
0. Next we

compute the multiples of the baseline hazard function. Thus, m(1) =

exp(β0z(1)) = 1, m(2) = exp(β0z(2)) = exp(β1), m(3) = exp(β0z(3)) =
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exp(β2) and m(4) = exp(β0z(4)) = exp(β1 + β2). We tabulate the data

and the computation of the partial likelihood in Table 12.1.

Table 12.1: Computation of the partial likelihood for Example 12.15

Covariate rj of covariate z(i) Lj(β) = numj/denj
j yj vector (1) (2) (3) (4) numj denj
1 2 z(1) 3 5 3 3 m(1) 3m(1) + 5m(2) + 3m(3) + 3m(4)

2 3 z(2) 2 5 3 3 m(2) 2m(1) + 5m(2) + 3m(3) + 3m(4)

3 4 z(3), z(4) 2 4 3 3 m(3)m(4)

£
2m(1) + 4m(2) + 3m(3) + 3m(4)

¤2
4 5 z(1) 2 4 2 2 m(1) 2m(1) + 4m(2) + 2m(3) + 2m(4)

5 7 z(3) 1 3 2 2 m(3) m(1) + 3m(2) + 2m(3) + 2m(4)

6 8 z(1), z(4) 1 3 1 2 m(1)m(4)

£
m(1) + 3m(2) +m(3) + 2m(4)

¤2
7 9 z(2) 0 3 1 0 m(2) 3m(2) +m(3)

8 11 z(2), z(2) 0 2 1 0 m2
(2)

£
2m(2) +m(3)

¤2
9 12 z(3) 0 0 1 0 m(3) m(3)

If two objects, i and i0, have the same failure time yj, their partial like-
lihoods have the same denominator (see equation (12.37)). With a slight

abuse of notation, we denote Lj(β) as the partial likelihood of the object
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(or the product of the partial likelihoods of the objects) with failure time

yj. Then the partial likelihood of the sample is equal to

L(β) =
12Y
i=1

Li(β) =
9Y
j=1

Lj(β) =
9Y
j=1

numj
denj

,

where numj and denj are given in the last two columns of Table 12.1.

Maximizing L(β) with respect to β, we obtain β̂1 = −0.6999 and β̂2 =

−0.5518. These results imply m̂(1) = 1, m̂(2) = 0.4966, m̂(3) = 0.5759 and

m̂(4) = 0.2860. 2

• Having estimated the parameter β in the proportional hazards model,
we can continue to estimate the baseline hazard function nonpara-

metrically using the Nelson-Aalen method.
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• Equation (12.40) may be modified as follows

Ĥ(y; θ) =
jX
=1

w

r∗
, for yj ≤ y < yj+1, (12.42)

where r∗ is the modified risk set defined by

r∗ =
X
i0 ∈ r

mi0. (12.43)

Example 12.16: For the data in Example 12.15, compute the Nelson-

Aalen estimate of the baseline hazard function and the baseline survival

function. Estimate the survival functions S(3.5; z(2)) and S(8.9; z(4)).

Solution: The results are summarized in Table 12.2. Note that r∗ in
Column 4 are taken from the last Column of Table 12.1 (ignore the square,

if any) evaluated at β̂.
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Table 12.2: Nelson-Aalen estimates for Example 12.16

y w r∗
w

r∗
Ĥ(y) =

P
j=1

wj
r∗j

Ŝ(y) = exp
h
−Ĥ(y)

i

1 2 1 8.0689 0.1239 0.1239 0.8834
2 3 1 7.0689 0.1414 0.2654 0.7669
3 4 2 6.5723 0.3043 0.5697 0.5656
4 5 1 5.7104 0.1751 0.7448 0.4748
5 7 1 4.2137 0.2373 0.9821 0.3745
6 8 2 3.6378 0.5497 1.5319 0.2161
7 9 1 2.0658 0.4840 2.0159 0.1331
8 11 2 1.5691 1.2745 3.2905 0.0372
9 12 1 0.5759 1.7363 5.0269 0.0065

We can now compute the survival functions for given covariates. In par-

54



ticular, we have

Ŝ(3.5; z(2)) = (0.7669)
0.4966 = 0.8765,

and

Ŝ(8.9; z(4)) = (0.2161)
0.2860 = 0.6452.

The values of m̂(2) = 0.4966 and m̂(4) = 0.2860 are taken from Example

12.15.

12.4.2 Generalized Linear Model

• A modeling strategy in which the mean of the loss variable X, de-
noted by μ, is assumed to be a function of the covariate z.

• To ensure the mean loss is positive, we adopt the following model

E(X) = μ = exp(β0z). (12.45)
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• The exponential function used in the above equation is called the
link function, which relates the mean loss to the covariate.

12.4.3 Accelerated Failure-Time Model

• In the accelerated failure-time model, the survival function of object
i with covariate zi, S(x; θ, zi), is related to the baseline (i.e., z = 0)

survival function as follows

S(x; θ, zi) = S(mix; θ, 0), (12.47)

where mi = m(zi) for an appropriate function m(·).
• Again, a convenient assumption is m(zi) = exp(β0zi).
• We now denote X(zi) as the failure-time random variable for an

object with covariate zi. The expected lifetime (at birth) is

E [X(zi)] =
Z ∞
0
S(x; θ, zi) dx
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=
Z ∞
0
S(mix; θ, 0) dx

=
1

mi

Z ∞
0
S(x; θ, 0) dx

=
1

mi
E [X(0)] . (12.48)

• Hence, the expected lifetime at birth of an object with covariate zi
is 1/mi times the expected lifetime at birth of a baseline object.
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12.5 Modeling Joint Distribution using Copula

• In many practical applications researchers are often required to an-
alyze multiple risks of the same group, similar risks from different

groups, or different aspects of a risk group.

• Thus, techniques for modeling multivariate distributions are required.

• The use of copula provides a flexible approach to modeling multi-
variate distributions.

Definition 12.1: A bivariate copula C(u1, u2) is a mapping from the unit
square [0, 1]2 to the unit interval [0, 1]. It is increasing in each component

and satisfies the following conditions

1. C(1, u2) = u2 and C(u1, 1) = u1, for 0 ≤ u1, u2 ≤ 1,
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2. For any 0 ≤ a1 ≤ b1 ≤ 1 and 0 ≤ a2 ≤ b2 ≤ 1, C(b1, b2)−C(a1, b2)−
C(b1, a2) + C(a1, a2) ≥ 0.

• A bivariate copula is in fact a joint df on [0, 1]2 with standard uniform
marginals, i.e., C(u1, u2) = Pr(U1 ≤ u1, U2 ≤ u2), where U1 and U2
are uniformly distributed on [0, 1].

• Let FX1X2(·, ·) be the joint df of X1 and X2, with marginal df FX1(·)
and FX2(·). The theorem below, called the Sklar Theorem, states
the representation of the joint df using a copula. It also shows how

a joint distribution can be created via a copula.

Theorem 12.4: Given the joint and marginal df of X1 and X2, there

exists a unique copula C(·, ·), such that

FX1X2(x1, x2) = C(FX1(x1), FX2(x2)). (12.51)
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Conversely, if C(·, ·) is a copula, and FX1(x1) and FX2(x2) are univariate
df of X1 and X2, respectively, then C(FX1(x1), FX2(x2)) is a bivariate df

with marginal df FX1(x1) and FX2(x2).

Theorem 12.6: Let X1 and X2 be two continuous distributions with

pdf fX1(·) and fX2(·), respectively. If the joint df of X1 and X2 is given
by equation (12.51), their joint pdf can be written as

fX1X2(x1, x2) = fX1(x1)fX2(x2)c(FX1(x1), FX2(x2)), (12.54)

where

c(u1, u2) =
∂2C(u1, u2)

∂u1 ∂u2
(12.55)

is called the copula density.

Proof: This can be obtained by differentiating equation (12.51). 2
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• From Theorem 12.6, we can conclude that the log-likelihood of a

bivariate random variable with df given by equation (12.51) is

log [fX1X2(x1, x2)] = log [fX1(x1)]+log [fX2(x2)]+log [c(FX1(x1), FX2(x2))] ,

(12.56)

which is the log-likelihood of two independent observations of X1
and X2, plus a term which measures the dependence.

• We now introduce some simple bivariate copulas. Clayton’s cop-
ula, denoted by CC(u1, u2), is defined as

CC(u1, u2) =
³
u−α1 + u−α2 − 1

´− 1
α , α > 0. (12.57)

The Clayton copula density is given by

cC(u1, u2) =
1 + α

(u1u2)
1+α

³
u−α1 + u−α2 − 1

´−2− 1
α . (12.58)
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• Frank’s copula, denoted by CF (u1, u2), is defined as

CF (u1, u2) = − 1
α
log

"
1 +

(e−αu1 − 1) (e−αu2 − 1)
e−α − 1

#
, α 6= 0,

(12.59)

which has the following copula density

cF (u1, u2) =
αe−α(u1+u2) (1− e−α)

[e−α(u1+u2) − e−αu1 − e−αu2 + e−α]2 . (12.60)

• Another popular copula is the Gaussian copula defined by

CG(u1, u2) = Ψα(Φ
−1(u1),Φ−1(u2)), −1 < α < 1, (12.61)

where Φ−1(·) is the inverse of the standard normal df and Ψα(·, ·)
is the df of a standard bivariate normal variate with correlation
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coefficient α. The Gaussian copula density is

cG(u1, u2) =
1√
1− α2

exp

"
−η21 − 2αη1η2 + η22

2(1− α2)

#
exp

"
η21 + η22
2

#
,

(12.62)

where ηi = Φ−1(ui), for i = 1, 2.

Example 12.19: Let X1 ∼ W(0.5, 2) and X2 ∼ G(3, 2), and assume
that Clayton’s copula with parameter α fits the bivariate distribution of

X1 and X2. Determine the probability p = Pr(X1 ≤ E(X1), X2 ≤ E(X2))
for α = 0.001, 1, 2, 3 and 10.

Solution: The means of X1 and X2 are

E(X1) = 2Γ(3) = 4 and E(X2) = (2)(3) = 6.

Let u1 = FX1(4) = 0.7569 and u2 = FX2(6) = 0.5768, so that

p = Pr(X1 ≤ 4, X2 ≤ 6)
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= CC(0.7569, 0.5768)

=
h
(0.7569)−α + (0.5768)−α − 1

i− 1
α .

The computed values of p are

α 0.001 1 2 3 10
p 0.4366 0.4867 0.5163 0.5354 0.5734

Note that when X1 and X2 are independent, p = (0.7569)(0.5768) =

0.4366, which corresponds to the case where α approaches 0. The de-

pendence between X1 and X2 increases with α, as can be seen from the

numerical results. 2
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