Nonlife Actuarial Models

Chapter 11

Nonparametric Model Estimation

Learning Objectives

1. Empirical distribution
2. Moments and df of the empirical distribution
3. Kernel estimates of df and pdf
4. Kaplan-Meier (product-limit) estimator and Nelson-Aalen estimator
5. Greenwood formula
6. Estimation based on grouped observations

11.1 Estimation with Complete Individual Data

11.1.1 Empirical Distribution

- We have a sample of n observations of failure times or losses X, denoted by x_{1}, \cdots, x_{n}.
- The distinct values of the observations are arranged in increasing order and are denoted by $0<y_{1}<\cdots<y_{m}$, where $m \leq n$. The value of y_{j} is repeated w_{j} times, so that $\sum_{j=1}^{m} w_{j}=n$.
- We also denote g_{j} as the partial sum of the number of observations not more than y_{j}, i.e., $g_{j}=\sum_{h=1}^{j} w_{h}$.
- The empirical distribution of the data is defined as the discrete distribution which can take values y_{1}, \cdots, y_{m} with probabilities $w_{1} / n, \cdots, w_{m} / n$, respectively.
- Also, it is a discrete distribution for which the values x_{1}, \cdots, x_{n} (with possible repetitions) occur with equal probabilities.
- Denoting $\hat{f}(\cdot)$ as the empirical pf and $\hat{F}(\cdot)$ as the empirical df, respectively, these functions are given by

$$
\hat{f}(y)= \begin{cases}\frac{w_{j}}{n}, & \text { if } y=y_{j} \text { for some } j \tag{11.1}\\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\hat{F}(y)= \begin{cases}0, & \text { for } y<y_{1} \tag{11.2}\\ \frac{g_{j}}{n}, & \text { for } y_{j} \leq y<y_{j+1}, j=1, \cdots, m-1 \\ 1, & \text { for } y_{m} \leq y\end{cases}
$$

- Thus, the mean of the empirical distribution is

$$
\begin{equation*}
\sum_{j=1}^{m} \frac{w_{j}}{n} y_{j}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \tag{11.3}
\end{equation*}
$$

which is the sample mean of x_{1}, \cdots, x_{n}, i.e., \bar{x}.

- The variance of the empirical distribution is

$$
\begin{equation*}
\sum_{j=1}^{m} \frac{w_{j}}{n}\left(y_{j}-\bar{x}\right)^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \tag{11.4}
\end{equation*}
$$

which is not equal to the sample variance of x_{1}, \cdots, x_{n}, and is biased for the variance of X.

- Estimates of the moments of X can be computed from their sample analogues. In particular, censored moments can be estimated from the censored sample.
- For example, for a policy with policy limit u, the censored k th moment $\mathrm{E}\left[(X \wedge u)^{k}\right]$ can be estimated by

$$
\begin{equation*}
\sum_{j=1}^{r} \frac{w_{j}}{n} y_{j}^{k}+\frac{n-g_{r}}{n} u^{k}, \quad \text { where } y_{r} \leq u<y_{r+1} \text { for some } r \text {. } \tag{11.5}
\end{equation*}
$$

- The empirical survival function of X is $\hat{S}(y)=1-\hat{F}(y)$, which is an estimate of $\operatorname{Pr}(X>y)$.
- To compute an estimate of the df for a value of y not in the set y_{1}, \cdots, y_{m}, we may smooth the empirical df to obtain $\tilde{F}(y)$ as follows

$$
\tilde{F}(y)=\frac{y-y_{j}}{y_{j+1}-y_{j}} \hat{F}\left(y_{j+1}\right)+\frac{y_{j+1}-y}{y_{j+1}-y_{j}} \hat{F}\left(y_{j}\right),
$$

where $y_{j} \leq y<y_{j+1}$ for some $j=1, \cdots, m-1$.

- $\tilde{F}(y)$ is the linear interpolation of $\hat{F}\left(y_{j+1}\right)$ and $\hat{F}\left(y_{j}\right)$, called the smoothed empirical distribution function.
- To estimate the quantiles of the distribution, we also use interpolation.
- Recall that the quantile x_{δ} is defined as $F^{-1}(\delta)$. We use y_{j} as an estimate of the $\left(g_{j} /(n+1)\right)$-quantile (or the $\left(100 g_{j} /(n+1)\right)$ th percentile) of X.
- The δ-quantile of X, denoted by \hat{x}_{δ}, may be computed as

$$
\begin{equation*}
\hat{x}_{\delta}=\left[\frac{(n+1) \delta-g_{j}}{w_{j+1}}\right] y_{j+1}+\left[\frac{g_{j+1}-(n+1) \delta}{w_{j+1}}\right] y_{j}, \tag{11.7}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{g_{j}}{n+1} \leq \delta<\frac{g_{j+1}}{n+1}, \quad \text { for some } j \tag{11.8}
\end{equation*}
$$

- Thus, \hat{x}_{δ} is a smoothed estimate of the sample quantiles, and is obtained by linearly interpolating y_{j} and y_{j+1}.
- When there are no ties in the observations, $w_{j}=1$ and $g_{j}=j$ for $j=1, \cdots, n$. Equation (11.7) then reduces to

$$
\begin{equation*}
\hat{x}_{\delta}=[(n+1) \delta-j] y_{j+1}+[j+1-(n+1) \delta] y_{j}, \tag{11.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{j}{n+1} \leq \delta<\frac{j+1}{n+1}, \quad \text { for some } j \tag{11.10}
\end{equation*}
$$

Example 11.1: A sample of losses has the following 10 observations

$$
2,4,5,8,8,9,11,12,12,16
$$

Plot the empirical distribution function, the smoothed empirical distribution function and the smoothed quantile function. Determine the estimates $\tilde{F}(7.2)$ and $\hat{x}_{0.75}$. Also, estimate the censored variance $\operatorname{Var}[(X \wedge 11.5)]$.

Solution: The plots of various functions are given in Figure 11.1. The empirical distribution function is a step function represented by the solid lines. The dashed line represents the smoothed empirical df, and the dotted line gives the (inverse) of the quantile function.For $\tilde{F}(7.2)$, we first note that $\hat{F}(5)=0.3$ and $\hat{F}(8)=0.5$. Thus, using equation (11.6) we have

$$
\begin{aligned}
\tilde{F}(7.2) & =\left[\frac{7.2-5}{8-5}\right] \hat{F}(8)+\left[\frac{8-7.2}{8-5}\right] \hat{F}(5) \\
& =\left[\frac{2.2}{3}\right](0.5)+\left[\frac{0.8}{3}\right](0.3) \\
& =0.4467
\end{aligned}
$$

For $\hat{x}_{0.75}$, we first note that $g_{6}=7$ and $g_{7}=9$ (note that $y_{6}=11$ and $y_{7}=12$). With $n=10$, we have

$$
\frac{7}{11} \leq 0.75<\frac{9}{11}
$$

so that j defined in equation (11.8) is 6 . Hence, using equation (11.7), we compute the smoothed quantile as

$$
\hat{x}_{0.75}=\left[\frac{(11)(0.75)-7}{2}\right](12)+\left[\frac{9-(11)(0.75)}{2}\right](11)=11.625 .
$$

We estimate the first moment of the censored loss $\mathrm{E}[(X \wedge 11.5)]$ by
$(0.1)(2)+(0.1)(4)+(0.1)(5)+(0.2)(8)+(0.1)(9)+(0.1)(11)+(0.3)(11.5)=8.15$, and the second raw moment of the censored loss $\mathrm{E}\left[(X \wedge 11.5)^{2}\right]$ by $(0.1)(2)^{2}+(0.1)(4)^{2}+(0.1)(5)^{2}+(0.2)(8)^{2}+(0.1)(9)^{2}+(0.1)(11)^{2}+(0.3)(11.5)^{2}=77.175$.

Hence, the estimated variance of the censored loss is

$$
77.175-(8.15)^{2}=10.7525
$$

- In large samples an approximate $100(1-\alpha) \%$ confidence interval estimate of $F(y)$ may be computed as

$$
\begin{equation*}
\hat{F}(y) \pm z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{F}(y)[1-\hat{F}(y)]}{n}} \tag{11.14}
\end{equation*}
$$

- A drawback of (11.14) is that it may fall outside the interval $(0,1)$.

11.1.2 Kernel Estimation of Probability Density Function

- The empirical pf summarizes the data as a discrete distribution.
- If the variable of interest (loss or failure time) is continuous, it is desirable to estimate a pdf. This can be done using the kernel density estimation method.
- Consider the observation x_{i} in the sample. The empirical pf assigns a probability mass of $1 / n$ to the point x_{i}. Given that X is continuous,
we may wish to distribute the probability mass to a neighborhood of x_{i} rather than assigning it completely to point x_{i}.
- Let us assume that we wish to distribute the mass evenly in the interval $\left[x_{i}-b, x_{i}+b\right]$ for a given value of b, called the bandwidth. To do this, we define a function $f_{i}(x)$ as follows

$$
f_{i}(x)= \begin{cases}\frac{0.5}{b}, & \text { for } x_{i}-b \leq x \leq x_{i}+b \tag{11.15}\\ 0, & \text { otherwise }\end{cases}
$$

- This function is rectangular in shape, with a base of length $2 b$ and height of $0.5 / b$, so that its area is 1 .
- It may be interpreted as the pdf contributed by the observation x_{i}.
- Note that $f_{i}(x)$ is also the pdf of a $\mathcal{U}\left(x_{i}-b, x_{i}+b\right)$ variable. Thus,
only values of x in the interval $\left[x_{i}-b, x_{i}+b\right]$ receive contributions from x_{i}.
- As each x_{i} contributes a probability mass of $1 / n$, the pdf of X may be estimated as

$$
\begin{equation*}
\tilde{f}(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x) \tag{11.16}
\end{equation*}
$$

- We now rewrite $f_{i}(x)$ in equation (11.15) as

$$
f_{i}(x)= \begin{cases}\frac{0.5}{b}, & \text { for }-1 \leq \frac{x-x_{i}}{b} \leq 1 \tag{11.17}\\ 0, & \text { otherwise }\end{cases}
$$

and define

$$
K_{R}(\psi)= \begin{cases}0.5, & \text { for }-1 \leq \psi \leq 1 \tag{11.18}\\ 0, & \text { otherwise }\end{cases}
$$

- Then it can be seen that

$$
\begin{equation*}
f_{i}(x)=\frac{1}{b} K_{R}\left(\psi_{i}\right), \tag{11.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{i}=\frac{x-x_{i}}{b} . \tag{11.20}
\end{equation*}
$$

- Using equation (11.19), we rewrite equation (11.16) as

$$
\begin{equation*}
\tilde{f}(x)=\frac{1}{n b} \sum_{i=1}^{n} K_{R}\left(\psi_{i}\right) \tag{11.21}
\end{equation*}
$$

- $K_{R}(\psi)$ as defined in equation (11.18) is called the rectangular (or box, uniform) kernel function. $\tilde{f}(x)$ defined in equation (11.21) is the estimate of the pdf of X using the rectangular kernel.
- It can be seen that $K_{R}(\psi)$ satisfies the following properties

$$
\begin{equation*}
K_{R}(\psi) \geq 0, \quad \text { for }-\infty<\psi<\infty \tag{11.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-\infty}^{\infty} K_{R}(\psi) d \psi=1 \tag{11.23}
\end{equation*}
$$

- Hence, $K_{R}(\psi)$ is itself the pdf of a random variable taking values over the real line.
- Any function $K(\psi)$ satisfying equations (11.22) and (11.23) may be called a kernel function.
- The expression in equation (11.21), with $K(\psi)$ replacing $K_{R}(\psi)$ and ψ_{i} defined in equation (11.20), is called the kernel estimate of the pdf.
- Apart from the rectangular kernel, two other commonly used kernels are the triangular kernel, denoted by $K_{T}(\psi)$, and the Gaussian
kernel, denoted by $K_{G}(\psi)$. The triangular kernel is defined as

$$
K_{T}(\psi)= \begin{cases}1-|\psi|, & \text { for }-1 \leq \psi \leq 1 \tag{11.24}\\ 0, & \text { otherwise }\end{cases}
$$

and the Gaussian kernel is given by

$$
\begin{equation*}
K_{G}(\psi)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{\psi^{2}}{2}\right), \quad \text { for }-\infty<\psi<\infty \tag{11.25}
\end{equation*}
$$

which is just the standard normal density function.

- Figure 11.2 presents the plots of the rectangular, triangular and Gaussian kernels.

Example 11.2: A sample of losses has the following 10 observations

$$
5,6,6,7,8,8,10,12,13,15
$$

Determine the kernel estimate of the pdf of the losses using the rectangular kernel for $x=8.5$ and 11.5 with a bandwidth of 3 .

Solution: For $x=8.5$ with $b=3$, there are 6 observations within the interval [5.5, 11.5]. From equation (11.21) we have

$$
\tilde{f}(8.5)=\frac{1}{(10)(3)}(6)(0.5)=\frac{1}{10}
$$

Similarly, there are 3 observations in the interval [8.5, 14.5], so that

$$
\tilde{f}(11.5)=\frac{1}{(10)(3)}(3)(0.5)=\frac{1}{20}
$$

Figures 11.3 and 11.4 show the kernel estimates of a sample of 40 observations in Example 11.3.

11.2 Estimation with Incomplete Individual Data

11.2.1 Kaplan-Meier (Product-Limit) Estimator

- We consider the estimation of $S\left(y_{j}\right)=\operatorname{Pr}\left(X>y_{j}\right)$, for $j=1, \cdots, m$.
- Using the rule of conditional probability, we have

$$
\begin{align*}
S\left(y_{j}\right) & =\operatorname{Pr}\left(X>y_{1}\right) \operatorname{Pr}\left(X>y_{2} \mid X>y_{1}\right) \cdots \operatorname{Pr}\left(X>y_{j} \mid X>y_{j-1}\right) \\
& =\operatorname{Pr}\left(X>y_{1}\right) \prod_{h=2}^{j} \operatorname{Pr}\left(X>y_{h} \mid X>y_{h-1}\right) . \tag{11.27}
\end{align*}
$$

- As the risk set for y_{1} is r_{1} and w_{1} observations are found to have value $y_{1}, \operatorname{Pr}\left(X>y_{1}\right)$ can be estimated by

$$
\begin{equation*}
\widehat{\operatorname{Pr}}\left(X>y_{1}\right)=1-\frac{w_{1}}{r_{1}} \tag{11.28}
\end{equation*}
$$

- Likewise, $\operatorname{Pr}\left(X>y_{h} \mid X>y_{h-1}\right)$ can be estimated by

$$
\begin{equation*}
\widehat{\operatorname{Pr}}\left(X>y_{h} \mid X>y_{h-1}\right)=1-\frac{w_{h}}{r_{h}}, \quad \text { for } h=2, \cdots, m \tag{11.29}
\end{equation*}
$$

- Hence, we may estimate $S\left(y_{j}\right)$ by

$$
\begin{align*}
\hat{S}\left(y_{j}\right) & =\widehat{\operatorname{Pr}}\left(X>y_{1}\right) \prod_{h=2}^{j} \widehat{\operatorname{Pr}}\left(X>y_{h} \mid X>y_{h-1}\right) \\
& =\prod_{h=1}^{j}\left(1-\frac{w_{h}}{r_{h}}\right) \tag{11.30}
\end{align*}
$$

- We now summarize the above arguments and define the Kaplan-

Meier estimator, denoted by $\hat{S}_{K}(y)$, as follows

$$
\hat{S}_{K}(y)= \begin{cases}1, & \text { for } 0<y<y_{1} \tag{11.31}\\ \prod_{h=1}^{j}\left(1-\frac{w_{h}}{r_{h}}\right), & \text { for } y_{j} \leq y<y_{j+1}, j=1, \cdots, m-1 \\ \prod_{h=1}^{m}\left(1-\frac{w_{h}}{r_{h}}\right), & \text { for } y_{m} \leq y\end{cases}
$$

- Note that if $w_{m}=r_{m}$, then $\hat{S}_{K}(y)=0$ for $y_{m} \leq y$.
- If $w_{m}<r_{m}$ (i.e., the largest observation is a censored observation and not a failure time), then $\hat{S}_{K}\left(y_{m}\right)>0$. We may adopt the definition in equation (11.31).or let $\hat{S}_{K}(y)=0$ for $y>y_{m}$, or allow $\hat{S}_{K}(y)$ to decay geometrically to 0 by defining

$$
\begin{equation*}
\hat{S}_{K}(y)=\hat{S}_{K}\left(y_{m}\right)^{\frac{y}{y_{m}}}, \quad \text { for } y>y_{m} \tag{11.32}
\end{equation*}
$$

Example 11.5: Refer to the loss claims in Example 10.8. Determine the Kaplan-Meier estimate of the sf.

Solution: As all policies are with a deductible of 4, we can only estimate the conditional sf $S(y \mid y>4)$. Also, as there is a maximum covered loss of 20 for all policies, we can only estimate the conditional sf up to $S(20 \mid y>4)$. Using the data compiled in Table 10.8, the KaplanMeier estimates are summarized in Table 11.2.

Table 11.2: Kaplan-Meier estimates of Example 11.5

Interval containing y	$\hat{S}_{K}(y \mid y>4)$
$(4,5)$	1
$[5,7)$	0.9333
$[7,8)$	0.8667
$[8,10)$	0.8000
$[10,16)$	0.6667
$[16,17)$	0.6000
$[17,19)$	0.4000
$[19,20)$	0.3333
20	0.2667

- The variance estimate of the Kaplan-Meier estimator can be com-
puted as

$$
\begin{equation*}
\widehat{\operatorname{Var}}\left[\hat{S}_{K}\left(y_{j}\right) \mid \mathcal{C}\right] \simeq\left[\hat{S}_{K}\left(y_{j}\right)\right]^{2}\left(\sum_{h=1}^{j} \frac{w_{h}}{r_{h}\left(r_{h}-w_{h}\right)}\right) \tag{11.45}
\end{equation*}
$$

(see NAM for the proof) which is called the Greenwood approximation for the variance of the Kaplan-Meier estimator.

Example 11.6: Refer to the loss claims in Examples 10.7 and 11.4. Determine the approximate variance of $\hat{S}_{K}(10.5)$ and the 95% confidence interval of $S_{K}(10.5)$.

Solution: From Table 11.1, we can see that Kaplan-Meier estimate of $S_{K}(10.5)$ is 0.65 . The Greenwood approximate for the variance of $\hat{S}_{K}(10.5)$ is

$$
(0.65)^{2}\left[\frac{1}{(20)(19)}+\frac{3}{(19)(16)}+\frac{1}{(16)(15)}+\frac{2}{(15)(13)}\right]=0.0114
$$

Thus, the estimate of the standard deviation of $\hat{S}_{K}(10.5)$ is $\sqrt{0.0114}=$ 0.1067 , and, assuming the normality of $\hat{S}_{K}(10.5)$, the 95% confidence interval of $S_{K}(10.5)$ is

$$
0.65 \pm(1.96)(0.1067)=(0.4410,0.8590) .
$$

- The above example uses the normal approximation for the distribution of $\hat{S}_{K}\left(y_{j}\right)$ to compute the confidence interval of $S\left(y_{j}\right)$. This is sometimes called the linear confidence interval.
- A disadvantage of this estimate is that the computed confidence interval may fall outside the range $(0,1)$.
- This drawback can be remedied by considering a transformation of the survival function. We first define the transformation $\zeta(\cdot)$ by

$$
\begin{equation*}
\zeta(x)=\log [-\log (x)], \tag{11.47}
\end{equation*}
$$

and let

$$
\begin{equation*}
\hat{\zeta}=\zeta(\hat{S}(y))=\log [-\log (\hat{S}(y))] \tag{11.48}
\end{equation*}
$$

where $\hat{S}(y)$ is an estimate of the $\operatorname{sf} S(y)$ for a given y.

- A $100(1-\alpha) \%$ confidence interval of $S(y)$ can be computed as

$$
\begin{equation*}
\left(\hat{S}(y)^{U}, \hat{S}(y)^{\frac{1}{U}}\right) \tag{11.56}
\end{equation*}
$$

where

$$
\begin{equation*}
U=\exp \left[z_{1-\frac{\alpha}{2}} \sqrt{\hat{V}(y)}\right] \tag{11.57}
\end{equation*}
$$

(see NAM for a proof). This is known as the logarithmic transformation method.

Example 11.7: Refer to the loss claims in Examples 10.8 and 11.5. Determine the approximate variance of $\hat{S}_{K}(7)$ and the 95% confidence interval of $S(7)$.

Solution: From Table 11.2, we have $\hat{S}_{K}(7)=0.8667$. The Greenwood approximate variance of $\hat{S}_{K}(7)$ is

$$
(0.8667)^{2}\left[\frac{1}{(15)(14)}+\frac{1}{(14)(13)}\right]=0.0077
$$

Using normal approximation to the distribution of $\hat{S}_{K}(7)$, the 95% confidence interval of $S(7)$ is

$$
0.8667 \pm 1.96 \sqrt{0.0077}=(0.6947,1.0387)
$$

Thus, the upper limit exceeds 1 , which is undesirable. To apply the logarithmic transformation method, we compute $\hat{V}(7)$ in equation (11.52) toobtain

$$
\hat{V}(7)=\frac{0.0077}{[0.8667(\log 0.8667)]^{2}}=0.5011
$$

so that U in equation (11.57) is

$$
\exp [(1.96) \sqrt{0.5011}]=4.0048
$$

From (11.56), the 95% confidence interval of $S(7)$ is

$$
\left\{(0.8667)^{4.0048},(0.8667)^{\frac{1}{4.0048}}\right\}=(0.5639,0.9649)
$$

which is within the range $(0,1)$.
We finally remark that as all policies in this example have a deductible of
4. The sf of interest is conditional on the loss exceeding 4.

11.2.2 Nelson-Aalen Estimator

- The cumulative hazard function $H(y)$ is

$$
\begin{equation*}
H(y)=\int_{0}^{y} h(y) d y \tag{11.58}
\end{equation*}
$$

so that

$$
\begin{equation*}
S(y)=\exp [-H(y)] \tag{11.59}
\end{equation*}
$$

and

$$
\begin{equation*}
H(y)=-\log [S(y)] \tag{11.60}
\end{equation*}
$$

- If we use $\hat{S}_{K}(y)$ to estimate $S(y)$ for $y_{j} \leq y<y_{j+1}$, an estimate of the cumulative hazard function can be computed as

$$
\begin{align*}
\hat{H}(y) & =-\log \left[\hat{S}_{K}(y)\right] \\
& =-\log \left[\prod_{h=1}^{j}\left(1-\frac{w_{h}}{r_{h}}\right)\right] \\
& =-\sum_{h=1}^{j} \log \left(1-\frac{w_{h}}{r_{h}}\right) . \tag{11.61}
\end{align*}
$$

- Using the approximation

$$
\begin{equation*}
-\log \left(1-\frac{w_{h}}{r_{h}}\right) \simeq \frac{w_{h}}{r_{h}} \tag{11.62}
\end{equation*}
$$

we obtain $\hat{H}(y)$ as

$$
\begin{equation*}
\hat{H}(y)=\sum_{h=1}^{j} \frac{w_{h}}{r_{h}} \tag{11.63}
\end{equation*}
$$

which is the Nelson-Aalen estimate of the cumulative hazard function.

- We complete its formula as follows:

$$
\hat{H}(y)= \begin{cases}0, & \text { for } 0<y<y_{1} \tag{11.64}\\ \sum_{h=1}^{j} \frac{w_{h}}{r_{h}}, & \text { for } y_{j} \leq y<y_{j+1}, j=1, \cdots, m-1 \\ \sum_{h=1}^{m} \frac{w_{h}}{r_{h}}, & \text { for } y_{m} \leq y\end{cases}
$$

- The Nelson-Aalen estimator of the survival function, denoted
by $\hat{S}_{N}(y)$ is

$$
\hat{S}_{N}(y)= \begin{cases}1, & \text { for } 0<y<y_{1} \tag{11.65}\\ \exp \left(-\sum_{h=1}^{j} \frac{w_{h}}{r_{h}}\right), & \text { for } y_{j} \leq y<y_{j+1}, j=1, \cdots, m-1 \\ \exp \left(-\sum_{h=1}^{m} \frac{w_{h}}{r_{h}}\right), & \text { for } y_{m} \leq y\end{cases}
$$

- For $y>y_{m}$, we may also compute $\hat{S}_{N}(y)$ as 0 or $\left[\hat{S}_{N}\left(y_{m}\right)\right)^{\frac{y}{y_{m}}}$.
- In the case of complete data, with one observation at each point y_{j}, we have $w_{h}=1$ and $r_{h}=n-h+1$ for $h=1, \cdots, n$, so that

$$
\begin{equation*}
\hat{S}_{N}\left(y_{j}\right)=\exp \left(-\sum_{h=1}^{j} \frac{1}{n-h+1}\right) . \tag{11.66}
\end{equation*}
$$

- To derive an approximate formula for the variance of $\hat{H}(y)$, we assume the conditional distribution of W_{h} given the information set \mathcal{C}
to be Poisson.
- We estimate $\operatorname{Var}\left(W_{h}\right)$ by w_{h}. An estimate of $\operatorname{Var}\left[\hat{H}\left(y_{j}\right)\right]$ can then be computed as

$$
\begin{equation*}
\widehat{\operatorname{Var}}\left[\hat{H}\left(y_{j}\right)\right]=\widehat{\operatorname{Var}}\left(\sum_{h=1}^{j} \frac{W_{h}}{r_{h}}\right)=\sum_{h=1}^{j} \frac{\widehat{\operatorname{Var}}\left(W_{h}\right)}{r_{h}^{2}}=\sum_{h=1}^{j} \frac{w_{h}}{r_{h}^{2}} \tag{11.67}
\end{equation*}
$$

- A100 $(1-\alpha) \%$ confidence interval of $H\left(y_{j}\right)$, assuming normal approximation, is given by

$$
\begin{equation*}
\hat{H}\left(y_{j}\right) \pm z_{1-\frac{\alpha}{2}} \sqrt{\widehat{\operatorname{Var}}\left[\hat{H}\left(y_{j}\right)\right]} \tag{11.68}
\end{equation*}
$$

- To ensure the lower limit of the confidence interval of $H\left(y_{j}\right)$ to be positive, we consider the transformation

$$
\begin{equation*}
\zeta(x)=\log (x) \tag{11.69}
\end{equation*}
$$

and a $100(1-\alpha) \%$ approximate confidence interval of $H\left(y_{j}\right)$ is

$$
\begin{equation*}
\left(\hat{H}\left(y_{j}\right)\left(\frac{1}{U}\right), \hat{H}\left(y_{j}\right) U\right) \tag{11.73}
\end{equation*}
$$

where

$$
\begin{equation*}
U=\exp \left[z_{1-\frac{\alpha}{2}} \frac{\sqrt{\widehat{\operatorname{Var}}\left[\hat{H}\left(y_{j}\right)\right]}}{\hat{H}\left(y_{j}\right)}\right] \tag{11.74}
\end{equation*}
$$

11.3 Estimation with Grouped Data

- We assume that the values of the failure-time or loss data x_{i} are grouped into k intervals: $\left(c_{0}, c_{1}\right],\left(c_{1}, c_{2}\right], \cdots,\left(c_{k-1}, c_{k}\right]$, where $0 \leq$ $c_{0}<c_{1}<\cdots<c_{k}$.
- We first consider the case where the data are complete, with no truncation nor censoring.
- Let there be n observations of x in the sample, with n_{j} observations in the interval $\left(c_{j-1}, c_{j}\right]$, so that $\sum_{j=1}^{k} n_{j}=n$.
- Assuming the observations within each interval are uniformly distributed, the empirical pdf of the failure-time or loss variable X can
be written as

$$
\begin{equation*}
\hat{f}(x)=\sum_{j=1}^{k} p_{j} f_{j}(x) \tag{11.75}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{j}=\frac{n_{j}}{n} \tag{11.76}
\end{equation*}
$$

and

$$
f_{j}(x)= \begin{cases}\frac{1}{c_{j}-c_{j-1}}, & \text { for } c_{j-1}<x \leq c_{j} \tag{11.77}\\ 0, & \text { otherwise }\end{cases}
$$

- Thus, $\hat{f}(x)$ is the pdf of a mixture distribution. To compute the moments of X we note that

$$
\begin{equation*}
\int_{0}^{\infty} f_{j}(x) x^{r} d x=\frac{1}{c_{j}-c_{j-1}} \int_{c_{j-1}}^{c_{j}} x^{r} d x=\frac{c_{j}^{r+1}-c_{j-1}^{r+1}}{(r+1)\left(c_{j}-c_{j-1}\right)} \tag{11.78}
\end{equation*}
$$

- Hence, the mean of the empirical pdf is

$$
\begin{equation*}
\mathrm{E}(X)=\sum_{j=1}^{k} p_{j}\left[\frac{c_{j}^{2}-c_{j-1}^{2}}{2\left(c_{j}-c_{j-1}\right)}\right]=\sum_{j=1}^{k} \frac{n_{j}}{n}\left[\frac{c_{j}+c_{j-1}}{2}\right], \tag{11.79}
\end{equation*}
$$

and its r th raw moment is

$$
\begin{equation*}
\mathrm{E}\left(X^{r}\right)=\sum_{j=1}^{k} \frac{n_{j}}{n}\left[\frac{c_{j}^{r+1}-c_{j-1}^{r+1}}{(r+1)\left(c_{j}-c_{j-1}\right)}\right] \tag{11.80}
\end{equation*}
$$

- The censored moments are more complex. Suppose it is desired to compute $\mathrm{E}\left[(X \wedge u)^{r}\right]$. First, we consider the case where $u=c_{h}$ for some $h=1, \cdots, k-1$, i.e., u is the end point of an interval.
- Then the r th raw moment is

$$
\begin{equation*}
E\left[\left(X \wedge c_{h}\right)^{r}\right]=\sum_{j=1}^{h} \frac{n_{j}}{n}\left[\frac{c_{j}^{r+1}-c_{j-1}^{r+1}}{(r+1)\left(c_{j}-c_{j-1}\right)}\right]+c_{h}^{r} \sum_{j=h+1}^{k} \frac{n_{j}}{n} \tag{11.81}
\end{equation*}
$$

- If $c_{h-1}<u<c_{h}$, for some $h=1, \cdots, k$, then we have

$$
\begin{align*}
E\left[(X \wedge u)^{r}\right]= & \sum_{j=1}^{h-1} \frac{n_{j}}{n}\left[\frac{c_{j}^{r+1}-c_{j-1}^{r+1}}{(r+1)\left(c_{j}-c_{j-1}\right)}\right]+u^{r} \sum_{j=h+1}^{k} \frac{n_{j}}{n} \\
& +\frac{n_{h}}{n\left(c_{h}-c_{h-1}\right)}\left[\frac{u^{r+1}-c_{h-1}^{r+1}}{r+1}+u^{r}\left(c_{h}-u\right)\right] . \tag{11.82}
\end{align*}
$$

- The empirical df at the upper end of each interval is easy to compute. Specifically, we have

$$
\begin{equation*}
\hat{F}\left(c_{j}\right)=\frac{1}{n} \sum_{h=1}^{j} n_{h}, \quad \text { for } j=1, \cdots, k \tag{11.83}
\end{equation*}
$$

- For other values of x, we use the interpolation formula given in equation (11.6), i.e.,

$$
\begin{equation*}
\hat{F}(x)=\frac{x-c_{j}}{c_{j+1}-c_{j}} \hat{F}\left(c_{j+1}\right)+\frac{c_{j+1}-x}{c_{j+1}-c_{j}} \hat{F}\left(c_{j}\right) \tag{11.84}
\end{equation*}
$$

where $c_{j} \leq x<c_{j+1}$, for some $j=0,1, \cdots, k-1$, with $\hat{F}\left(c_{0}\right)=0$. $\hat{F}(x)$ is also called the ogive.

- When the observations are incomplete, we may use the Kaplan-Meier and Nelson-Aalen methods to estimate the sf.
- Using equations (10.10) or (10.11), we calculate the risk sets R_{j} and the number of failures or losses V_{j} in the interval $\left(c_{j-1}, c_{j}\right]$.
- These numbers are taken as the risk sets and observed failures or losses at points $c_{j} . \hat{S}_{K}\left(c_{j}\right)$ and $\hat{S}_{N}\left(c_{j}\right)$ may then be computed using equations (11.31) and (11.65), respectively, with R_{h} replacing r_{h} and V_{h} replacing w_{h}.

