
Nonlife Actuarial Models

Chapter 11

Nonparametric Model Estimation



Learning Objectives

1. Empirical distribution

2. Moments and df of the empirical distribution

3. Kernel estimates of df and pdf

4. Kaplan-Meier (product-limit) estimator and Nelson-Aalen estimator

5. Greenwood formula

6. Estimation based on grouped observations

2



11.1 Estimation with Complete Individual Data

11.1.1 Empirical Distribution

• We have a sample of n observations of failure times or losses X,
denoted by x1, · · · , xn.

• The distinct values of the observations are arranged in increasing
order and are denoted by 0 < y1 < · · · < ym, where m ≤ n. The
value of yj is repeated wj times, so that

Pm
j=1wj = n.

• We also denote gj as the partial sum of the number of observations

not more than yj, i.e., gj =
Pj
h=1wh.

• The empirical distribution of the data is defined as the dis-

crete distribution which can take values y1, · · · , ym with probabilities
w1/n, · · · , wm/n, respectively.
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• Also, it is a discrete distribution for which the values x1, · · · , xn (with
possible repetitions) occur with equal probabilities.

• Denoting f̂(·) as the empirical pf and F̂ (·) as the empirical df,
respectively, these functions are given by

f̂(y) =

⎧⎨⎩
wj
n
, if y = yj for some j,

0, otherwise,
(11.1)

and

F̂ (y) =

⎧⎪⎪⎨⎪⎪⎩
0, for y < y1,
gj
n
, for yj ≤ y < yj+1, j = 1, · · · ,m− 1,

1, for ym ≤ y.
(11.2)
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• Thus, the mean of the empirical distribution is
mX
j=1

wj
n
yj =

1

n

nX
i=1

xi, (11.3)

which is the sample mean of x1, · · · , xn, i.e., x̄.

• The variance of the empirical distribution is
mX
j=1

wj
n
(yj − x̄)2 = 1

n

nX
i=1

(xi − x̄)2, (11.4)

which is not equal to the sample variance of x1, · · · , xn, and is biased
for the variance of X.

• Estimates of the moments of X can be computed from their sample

analogues. In particular, censored moments can be estimated from

the censored sample.
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• For example, for a policy with policy limit u, the censored kth mo-
ment E

h
(X ∧ u)k

i
can be estimated by

rX
j=1

wj
n
ykj +

n− gr
n

uk, where yr ≤ u < yr+1 for some r. (11.5)

• The empirical survival function of X is Ŝ(y) = 1− F̂ (y), which
is an estimate of Pr(X > y).

• To compute an estimate of the df for a value of y not in the set
y1, · · · , ym, we may smooth the empirical df to obtain F̃ (y) as follows

F̃ (y) =
y − yj
yj+1 − yj F̂ (yj+1) +

yj+1 − y
yj+1 − yj F̂ (yj), (11.6)

where yj ≤ y < yj+1 for some j = 1, · · · ,m− 1.
• F̃ (y) is the linear interpolation of F̂ (yj+1) and F̂ (yj), called the
smoothed empirical distribution function.
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• To estimate the quantiles of the distribution, we also use interpola-
tion.

• Recall that the quantile xδ is defined as F−1(δ). We use yj as an esti-
mate of the (gj/(n+1))-quantile (or the (100gj/(n+1))th percentile)

of X.

• The δ-quantile of X, denoted by x̂δ, may be computed as

x̂δ =

"
(n+ 1)δ − gj

wj+1

#
yj+1 +

"
gj+1 − (n+ 1)δ

wj+1

#
yj, (11.7)

where
gj
n+ 1

≤ δ <
gj+1
n+ 1

, for some j. (11.8)

• Thus, x̂δ is a smoothed estimate of the sample quantiles, and is
obtained by linearly interpolating yj and yj+1.
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• When there are no ties in the observations, wj = 1 and gj = j for
j = 1, · · · , n. Equation (11.7) then reduces to

x̂δ = [(n+ 1)δ − j] yj+1 + [j + 1− (n+ 1)δ] yj, (11.9)

where
j

n+ 1
≤ δ <

j + 1

n+ 1
, for some j. (11.10)

Example 11.1: A sample of losses has the following 10 observations

2, 4, 5, 8, 8, 9, 11, 12, 12, 16.

Plot the empirical distribution function, the smoothed empirical distrib-

ution function and the smoothed quantile function. Determine the esti-

mates F̃ (7.2) and x̂0.75. Also, estimate the censored variance Var[(X ∧ 11.5)] .
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Solution: The plots of various functions are given in Figure 11.1.

The empirical distribution function is a step function represented by the

solid lines. The dashed line represents the smoothed empirical df, and the

dotted line gives the (inverse) of the quantile function.For F̃ (7.2), we first

note that F̂ (5) = 0.3 and F̂ (8) = 0.5. Thus, using equation (11.6) we

have

F̃ (7.2) =
∙
7.2− 5
8− 5

¸
F̂ (8) +

∙
8− 7.2
8− 5

¸
F̂ (5)

=
∙
2.2

3

¸
(0.5) +

∙
0.8

3

¸
(0.3)

= 0.4467.

For x̂0.75, we first note that g6 = 7 and g7 = 9 (note that y6 = 11 and

y7 = 12). With n = 10, we have

7

11
≤ 0.75 < 9

11
,
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so that j defined in equation (11.8) is 6. Hence, using equation (11.7), we

compute the smoothed quantile as

x̂0.75 =

"
(11)(0.75)− 7

2

#
(12) +

"
9− (11)(0.75)

2

#
(11) = 11.625.

We estimate the first moment of the censored loss E [(X ∧ 11.5)] by

(0.1)(2)+(0.1)(4)+(0.1)(5)+(0.2)(8)+(0.1)(9)+(0.1)(11)+(0.3)(11.5) = 8.15,

and the second raw moment of the censored loss E [(X ∧ 11.5)2] by
(0.1)(2)2+(0.1)(4)2+(0.1)(5)2+(0.2)(8)2+(0.1)(9)2+(0.1)(11)2+(0.3)(11.5)2 = 77.175.

Hence, the estimated variance of the censored loss is

77.175− (8.15)2 = 10.7525.
2
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• In large samples an approximate 100(1 − α)% confidence interval

estimate of F (y) may be computed as

F̂ (y)± z1−α
2

s
F̂ (y)[1− F̂ (y)]

n
. (11.14)

• A drawback of (11.14) is that it may fall outside the interval (0, 1).

11.1.2 Kernel Estimation of Probability Density Function

• The empirical pf summarizes the data as a discrete distribution.

• If the variable of interest (loss or failure time) is continuous, it is
desirable to estimate a pdf. This can be done using the kernel
density estimation method.

• Consider the observation xi in the sample. The empirical pf assigns a
probability mass of 1/n to the point xi. Given that X is continuous,
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we may wish to distribute the probability mass to a neighborhood

of xi rather than assigning it completely to point xi.

• Let us assume that we wish to distribute the mass evenly in the
interval [xi− b, xi+ b] for a given value of b, called the bandwidth.
To do this, we define a function fi(x) as follows

fi(x) =

⎧⎨⎩
0.5

b
, for xi − b ≤ x ≤ xi + b,

0, otherwise.
(11.15)

• This function is rectangular in shape, with a base of length 2b and
height of 0.5/b, so that its area is 1.

• It may be interpreted as the pdf contributed by the observation xi.

• Note that fi(x) is also the pdf of a U(xi − b, xi + b) variable. Thus,
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only values of x in the interval [xi − b, xi + b] receive contributions
from xi.

• As each xi contributes a probability mass of 1/n, the pdf of Xmay
be estimated as

f̃(x) =
1

n

nX
i=1

fi(x). (11.16)

• We now rewrite fi(x) in equation (11.15) as

fi(x) =

⎧⎨⎩
0.5

b
, for − 1 ≤ x− xi

b
≤ 1,

0, otherwise,
(11.17)

and define

KR(ψ) =

(
0.5, for − 1 ≤ ψ ≤ 1,
0, otherwise. (11.18)
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• Then it can be seen that
fi(x) =

1

b
KR(ψi), (11.19)

where

ψi =
x− xi
b

. (11.20)

• Using equation (11.19), we rewrite equation (11.16) as

f̃(x) =
1

nb

nX
i=1

KR(ψi). (11.21)

• KR(ψ) as defined in equation (11.18) is called the rectangular (or
box, uniform) kernel function. f̃(x) defined in equation (11.21)
is the estimate of the pdf of X using the rectangular kernel.

• It can be seen that KR(ψ) satisfies the following properties

KR(ψ) ≥ 0, for−∞ < ψ <∞, (11.22)
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and Z ∞
−∞
KR(ψ) dψ = 1. (11.23)

• Hence, KR(ψ) is itself the pdf of a random variable taking values

over the real line.

• Any function K(ψ) satisfying equations (11.22) and (11.23) may be
called a kernel function.

• The expression in equation (11.21), with K(ψ) replacing KR(ψ) and

ψi defined in equation (11.20), is called the kernel estimate of the
pdf.

• Apart from the rectangular kernel, two other commonly used kernels
are the triangular kernel, denoted by KT (ψ), and the Gaussian
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kernel, denoted by KG(ψ). The triangular kernel is defined as

KT (ψ) =

(
1− |ψ|, for − 1 ≤ ψ ≤ 1,
0, otherwise, (11.24)

and the Gaussian kernel is given by

KG(ψ) =
1√
2π

exp

Ã
−ψ2

2

!
, for−∞ < ψ <∞, (11.25)

which is just the standard normal density function.

• Figure 11.2 presents the plots of the rectangular, triangular and
Gaussian kernels.

Example 11.2: A sample of losses has the following 10 observations

5, 6, 6, 7, 8, 8, 10, 12, 13, 15.
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Determine the kernel estimate of the pdf of the losses using the rectangular

kernel for x = 8.5 and 11.5 with a bandwidth of 3.

Solution: For x = 8.5 with b = 3, there are 6 observations within the

interval [5.5, 11.5]. From equation (11.21) we have

f̃(8.5) =
1

(10)(3)
(6)(0.5) =

1

10
.

Similarly, there are 3 observations in the interval [8.5, 14.5], so that

f̃(11.5) =
1

(10)(3)
(3)(0.5) =

1

20
.

2

Figures 11.3 and 11.4 show the kernel estimates of a sample of 40 obser-

vations in Example 11.3.
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11.2 Estimation with Incomplete Individual Data

11.2.1 Kaplan-Meier (Product-Limit) Estimator

• We consider the estimation of S(yj) = Pr(X > yj), for j = 1, · · · ,m.

• Using the rule of conditional probability, we have

S(yj) = Pr(X > y1) Pr(X > y2 |X > y1) · · ·Pr(X > yj |X > yj−1)

= Pr(X > y1)
jY
h=2

Pr(X > yh |X > yh−1). (11.27)

• As the risk set for y1 is r1 and w1 observations are found to have
value y1, Pr(X > y1) can be estimated by

cPr(X > y1) = 1− w1
r1
. (11.28)
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• Likewise, Pr(X > yh |X > yh−1) can be estimated by

cPr(X > yh |X > yh−1) = 1− wh
rh
, for h = 2, · · · ,m. (11.29)

• Hence, we may estimate S(yj) by

Ŝ(yj) = cPr(X > y1)
jY
h=2

cPr(X > yh |X > yh−1)

=
jY
h=1

µ
1− wh

rh

¶
. (11.30)

• We now summarize the above arguments and define the Kaplan-
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Meier estimator, denoted by ŜK(y), as follows

ŜK(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, for 0 < y < y1,Qj
h=1

µ
1− wh

rh

¶
, for yj ≤ y < yj+1, j = 1, · · · ,m− 1,Qm

h=1

µ
1− wh

rh

¶
, for ym ≤ y.

(11.31)

• Note that if wm = rm, then ŜK(y) = 0 for ym ≤ y.

• Ifwm < rm (i.e., the largest observation is a censored observation and
not a failure time), then ŜK(ym) > 0. We may adopt the definition

in equation (11.31).or let ŜK(y) = 0 for y > ym, or allow ŜK(y) to

decay geometrically to 0 by defining

ŜK(y) = ŜK(ym)
y
ym , for y > ym. (11.32)
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Example 11.5: Refer to the loss claims in Example 10.8. Determine

the Kaplan-Meier estimate of the sf.

Solution: As all policies are with a deductible of 4, we can only

estimate the conditional sf S(y | y > 4). Also, as there is a maximum

covered loss of 20 for all policies, we can only estimate the conditional sf

up to S(20 | y > 4). Using the data compiled in Table 10.8, the Kaplan-
Meier estimates are summarized in Table 11.2.
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Table 11.2: Kaplan-Meier estimates
of Example 11.5

Interval
containing y ŜK(y | y > 4)
(4, 5) 1
[5, 7) 0.9333
[7, 8) 0.8667
[8, 10) 0.8000
[10, 16) 0.6667
[16, 17) 0.6000
[17, 19) 0.4000
[19, 20) 0.3333
20 0.2667

• The variance estimate of the Kaplan-Meier estimator can be com-
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puted as

dVar hŜK(yj) | Ci ' [ŜK(yj)]2
⎛⎝ jX
h=1

wh
rh(rh − wh)

⎞⎠ , (11.45)

(see NAM for the proof) which is called the Greenwood approx-
imation for the variance of the Kaplan-Meier estimator.

Example 11.6: Refer to the loss claims in Examples 10.7 and 11.4.

Determine the approximate variance of ŜK(10.5) and the 95% confidence

interval of SK(10.5).

Solution: From Table 11.1, we can see that Kaplan-Meier estimate of

SK(10.5) is 0.65. The Greenwood approximate for the variance of ŜK(10.5)

is

(0.65)2
"

1

(20)(19)
+

3

(19)(16)
+

1

(16)(15)
+

2

(15)(13)

#
= 0.0114.
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Thus, the estimate of the standard deviation of ŜK(10.5) is
√
0.0114 =

0.1067, and, assuming the normality of ŜK(10.5), the 95% confidence in-

terval of SK(10.5) is

0.65± (1.96)(0.1067) = (0.4410, 0.8590).
2

• The above example uses the normal approximation for the distrib-
ution of ŜK(yj) to compute the confidence interval of S(yj). This is

sometimes called the linear confidence interval.

• A disadvantage of this estimate is that the computed confidence

interval may fall outside the range (0, 1).

• This drawback can be remedied by considering a transformation of
the survival function. We first define the transformation ζ(·) by

ζ(x) = log [− log(x)] , (11.47)
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and let

ζ̂ = ζ(Ŝ(y)) = log[− log(Ŝ(y))], (11.48)

where Ŝ(y) is an estimate of the sf S(y) for a given y.

• A 100(1− α)% confidence interval of S(y) can be computed as³
Ŝ(y)U , Ŝ(y)

1
U

´
, (11.56)

where

U = exp
∙
z1−α

2

q
V̂ (y)

¸
, (11.57)

(see NAM for a proof). This is known as the logarithmic trans-
formation method.

Example 11.7: Refer to the loss claims in Examples 10.8 and 11.5.

Determine the approximate variance of ŜK(7) and the 95% confidence

interval of S(7).
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Solution: From Table 11.2, we have ŜK(7) = 0.8667. The Greenwood

approximate variance of ŜK(7) is

(0.8667)2
"

1

(15)(14)
+

1

(14)(13)

#
= 0.0077.

Using normal approximation to the distribution of ŜK(7), the 95% confi-

dence interval of S(7) is

0.8667± 1.96√0.0077 = (0.6947, 1.0387).
Thus, the upper limit exceeds 1, which is undesirable. To apply the log-

arithmic transformation method, we compute V̂ (7) in equation (11.52)

toobtain

V̂ (7) =
0.0077

[0.8667 (log 0.8667)]2
= 0.5011,

so that U in equation (11.57) is

exp
h
(1.96)

√
0.5011

i
= 4.0048.
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From (11.56), the 95% confidence interval of S(7) is

{(0.8667)4.0048, (0.8667) 1
4.0048} = (0.5639, 0.9649),

which is within the range (0, 1).

We finally remark that as all policies in this example have a deductible of

4. The sf of interest is conditional on the loss exceeding 4. 2

11.2.2 Nelson-Aalen Estimator

• The cumulative hazard function H(y) is
H(y) =

Z y

0
h(y) dy, (11.58)

so that

S(y) = exp [−H(y)] . (11.59)

and

H(y) = − log [S(y)] . (11.60)
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• If we use ŜK(y) to estimate S(y) for yj ≤ y < yj+1, an estimate of
the cumulative hazard function can be computed as

Ĥ(y) = − log
h
ŜK(y)

i
= − log

⎡⎣ jY
h=1

µ
1− wh

rh

¶⎤⎦
= −

jX
h=1

log
µ
1− wh

rh

¶
. (11.61)

• Using the approximation

− log
µ
1− wh

rh

¶
' wh
rh
, (11.62)

we obtain Ĥ(y) as

Ĥ(y) =
jX
h=1

wh
rh
, (11.63)
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which is the Nelson-Aalen estimate of the cumulative hazard
function.

• We complete its formula as follows:

Ĥ(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, for 0 < y < y1,Pj
h=1

wh
rh
, for yj ≤ y < yj+1, j = 1, · · · ,m− 1,Pm

h=1

wh
rh
, for ym ≤ y.

(11.64)

• TheNelson-Aalen estimator of the survival function, denoted
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by ŜN(y) is

ŜN(y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, for 0 < y < y1,

exp
µ
−Pj

h=1

wh
rh

¶
, for yj ≤ y < yj+1, j = 1, · · · ,m− 1,

exp
µ
−Pm

h=1

wh
rh

¶
, for ym ≤ y.

(11.65)

• For y > ym, we may also compute ŜN(y) as 0 or [ŜN(ym)]
y
ym .

• In the case of complete data, with one observation at each point yj,
we have wh = 1 and rh = n− h+ 1 for h = 1, · · · , n, so that

ŜN(yj) = exp

⎛⎝− jX
h=1

1

n− h+ 1

⎞⎠ . (11.66)

• To derive an approximate formula for the variance of Ĥ(y), we as-
sume the conditional distribution of Wh given the information set C
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to be Poisson.

• We estimate Var(Wh) by wh. An estimate of Var[Ĥ(yj)] can then

be computed as

dVar[Ĥ(yj)] = dVar
⎛⎝ jX
h=1

Wh

rh

⎞⎠ = jX
h=1

dVar(Wh)

r2h
=

jX
h=1

wh
r2h
. (11.67)

• A100(1 − α)% confidence interval of H(yj), assuming normal ap-

proximation, is given by

Ĥ(yj)± z1−α
2

qdVar[Ĥ(yj)]. (11.68)

• To ensure the lower limit of the confidence interval of H(yj) to be
positive, we consider the transformation

ζ(x) = log(x), (11.69)
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and a 100(1− α)% approximate confidence interval of H(yj) isµ
Ĥ(yj)

µ
1

U

¶
, Ĥ(yj)U

¶
, (11.73)

where

U = exp

⎡⎣z1−α
2

qdVar[Ĥ(yj)]
Ĥ(yj)

⎤⎦ . (11.74)
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11.3 Estimation with Grouped Data

• We assume that the values of the failure-time or loss data xi are
grouped into k intervals: (c0, c1], (c1, c2], · · · , (ck−1, ck], where 0 ≤
c0 < c1 < · · · < ck.

• We first consider the case where the data are complete, with no
truncation nor censoring.

• Let there be n observations of x in the sample, with nj observations
in the interval (cj−1, cj], so that

Pk
j=1 nj = n.

• Assuming the observations within each interval are uniformly dis-
tributed, the empirical pdf of the failure-time or loss variable X can
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be written as

f̂(x) =
kX
j=1

pjfj(x), (11.75)

where

pj =
nj
n

(11.76)

and

fj(x) =

⎧⎪⎨⎪⎩
1

cj − cj−1 , for cj−1 < x ≤ cj,
0, otherwise.

(11.77)

• Thus, f̂(x) is the pdf of a mixture distribution. To compute the
moments of X we note thatZ ∞

0
fj(x)x

r dx =
1

cj − cj−1
Z cj

cj−1
xr dx =

cr+1j − cr+1j−1
(r + 1)(cj − cj−1) .

(11.78)
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• Hence, the mean of the empirical pdf is

E(X) =
kX
j=1

pj

"
c2j − c2j−1
2(cj − cj−1)

#
=

kX
j=1

nj
n

∙
cj + cj−1

2

¸
, (11.79)

and its rth raw moment is

E(Xr) =
kX
j=1

nj
n

"
cr+1j − cr+1j−1

(r + 1)(cj − cj−1)
#
. (11.80)

• The censored moments are more complex. Suppose it is desired to
compute E[(X ∧ u)r]. First, we consider the case where u = ch for
some h = 1, · · · , k − 1, i.e., u is the end point of an interval.

• Then the rth raw moment is

E [(X ∧ ch)r] =
hX
j=1

nj
n

"
cr+1j − cr+1j−1

(r + 1)(cj − cj−1)
#
+ crh

kX
j=h+1

nj
n
. (11.81)
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• If ch−1 < u < ch, for some h = 1, · · · , k, then we have

E [(X ∧ u)r] =
h−1X
j=1

nj
n

"
cr+1j − cr+1j−1

(r + 1)(cj − cj−1)

#
+ ur

kX
j=h+1

nj
n

+
nh

n(ch − ch−1)

"
ur+1 − cr+1h−1

r + 1
+ ur(ch − u)

#
. (11.82)

• The empirical df at the upper end of each interval is easy to compute.
Specifically, we have

F̂ (cj) =
1

n

jX
h=1

nh, for j = 1, · · · , k. (11.83)

• For other values of x, we use the interpolation formula given in
equation (11.6), i.e.,

F̂ (x) =
x− cj
cj+1 − cj F̂ (cj+1) +

cj+1 − x
cj+1 − cj F̂ (cj), (11.84)
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where cj ≤ x < cj+1, for some j = 0, 1, · · · , k − 1, with F̂ (c0) = 0.
F̂ (x) is also called the ogive.

• When the observations are incomplete, we may use the Kaplan-Meier
and Nelson-Aalen methods to estimate the sf.

• Using equations (10.10) or (10.11), we calculate the risk sets Rj and
the number of failures or losses Vj in the interval (cj−1, cj].

• These numbers are taken as the risk sets and observed failures or
losses at points cj. ŜK(cj) and ŜN(cj) may then be computed using

equations (11.31) and (11.65), respectively, with Rh replacing rh and

Vh replacing wh.
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