
Nonlife Actuarial Models

Chapter 10

Model Estimation and Types of Data



Learning Objectives

1. Parametric versus nonparametric estimation

2. Point estimate and interval estimate

3. Unbiasedness, consistency and efficiency

4. Failure-time data and loss data

5. Complete versus incomplete data, left truncation and right censoring

6. Individual versus grouped data
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10.1 Estimation

10.1.1 Parametric and Nonparametric Estimation

• In the parametric approach, the distribution is determined by a finite
number of parameters.

• Thus, the loss random variableX has df F (x; θ) and pdf (pf) f(x; θ),

where θ is the parameter of the df and pdf (pf).

• When θ is known, the distribution of X is completely specified.

• In practical situations θ is unknown and has to be estimated using
observed data. We denote θ̂ as an estimator of θ using the random

sample.
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• F (x) and f(x)may also be estimated directly for all values of x with-
out assuming specific parametric forms, resulting in nonparametric

estimates of these functions.

10.1.2 Point and Interval Estimation

• As θ̂ assigns a specific value to θ based on the sample, it is called a

point estimator.

• In contrast, an interval estimator of an unknown parameter is a
random interval constructed from the sample data, which covers the

true value of θ with a certain probability.

• Specifically, let θ̂L and θ̂U be functions of the sample data {X1, · · · , Xn},
with θ̂L < θ̂U . The interval (θ̂L, θ̂U) is said to be a 100(1 − α)%

confidence interval of θ if

Pr(θ̂L ≤ θ ≤ θ̂U) ≥ 1− α. (10.1)
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10.1.3 Properties of Estimators

• As there are possibly many different estimators for the same para-
meter, an intelligent choice among them is important.

• We desire the estimate to be close to the true parameter value on
average, leading to the unbiasedness criterion as follows.

Definition 10.1 (Unbiasedness): An estimator of θ, θ̂, is said to be

unbiased if and only if E(θ̂) = θ.

• In some applications, although E(θ̂) may not be equal to θ in finite

samples, it may approach to θ arbitrarily closely in large samples.

We say θ̂ is asymptotically unbiased for θ if

lim
n→∞ E(θ̂) = θ. (10.3)
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• If we have two unbiased estimators, the closeness requirement sug-
gests that the one with the smaller variance should be preferred.

This leads us to the following definition.

Definition 10.2 (Minimum Variance Unbiased Estimator): Sup-

pose θ̂ and θ̃ are two unbiased estimators of θ, θ̂ is more efficient than

θ̃ if Var(θ̂) < Var(θ̃). In particular, if the variance of θ̂ is smaller than

the variance of any other unbiased estimator of θ, then θ̂ is the minimum

variance unbiased estimator of θ.

• While asymptotic unbiasedness requires the mean of θ̂ to approach θ

arbitrarily closely in large samples, a stronger condition is to require

θ̂ itself to approach θ arbitrarily closely in large samples. This leads

us to the property of consistency.
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Definition 10.3 (Consistency): θ̂ is a consistent estimator of θ if it

converges in probability to θ, which means that for any δ > 0,

lim
n→∞Pr(|θ̂ − θ| < δ) = 1. (10.4)

• Note that unbiasedness is a property that refers to samples of all
sizes, large or small. In contrast, consistency is a property that

refers to large samples only.

Theorem 10.1: θ̂ is a consistent estimator of θ if it is asymptotically

unbiased and Var(θ̂)→ 0 when n→∞.
• Biased estimators are not necessarily inferior if their average devia-
tion from the true parameter value is small.

• We may use themean squared error as a criterion for selecting es-
timators. The mean squared error of θ̂ as an estimator of θ, denoted
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by MSE(θ̂), is defined as

MSE(θ̂) = E[(θ̂ − θ)2]. (10.5)

We note that

MSE(θ̂) = E[(θ̂ − θ)2]

= E[{(θ̂ − E(θ̂)) + (E(θ̂)− θ)}2]
= E[{θ̂ − E(θ̂)}2] + [E(θ̂)− θ]2 + 2[E(θ̂)− θ]E[θ̂ − E(θ̂)]
= Var(θ̂) + [bias(θ̂)]2. (10.6)

• MSE(θ̂) is the sum of the variance of θ̂ and the squared bias. A

small bias in θ̂ may be tolerated, if the variance of θ̂ is small so that

the overall MSE is low.

Example 10.2: Let {X1, · · · , Xn} be a random sample of X which is

distributed as U(0, θ). Define Y = max {X1, · · · , Xn}, which is used as an
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estimator of θ. Calculate the mean, variance and mean squared error of

Y . Is Y a consistent estimator of θ?

Solution: We first determine the distribution of Y . The df of Y is

FY (y) = Pr(Y ≤ y)
= Pr(X1 ≤ y, · · · , Xn ≤ y)
= [Pr(X ≤ y)]n

=
µ
y

θ

¶n
.

Thus, the pdf of Y is

fY (y) =
dFY (y)

dy
=
nyn−1

θn
.

Hence, the first two raw moments of Y are

E(Y ) =
n

θn

Z θ

0
yn dy =

nθ

n+ 1
,
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and

E(Y 2) =
n

θn

Z θ

0
yn+1 dy =

nθ2

n+ 2
.

The bias of Y is

bias(Y ) = E(Y )− θ =
nθ

n+ 1
− θ = − θ

n+ 1
,

so that Y is downward biased for θ. However, as bias(Y ) tends to 0 when

n tends to ∞, Y is asymptotically unbiased for θ. The variance of Y is

Var(Y ) = E(Y 2)− [E(Y )]2

=
nθ2

(n+ 2)(n+ 1)2
,

which tends to 0 when n tends to ∞. Thus, by Theorem 10.1, Y is a

consistent estimator of θ. Finally, the MSE of Y is

MSE(Y ) = Var(Y ) + [bias(Y )]2
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=
2θ2

(n+ 2)(n+ 1)
,

which also tends to 0 when n tends to ∞. 2
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10.2 Types of Data

10.2.1 Duration Data and Loss Data

• There are problems for which duration is the key variable of interest.

• Examples are: (a) the duration of unemployment of an individual in
the labor force, (b) the duration of stay of a patient in a hospital,

and (c) the survival time of a patient after a major operation.

• Depending on the specific problem of interest, the methodology may
be applied to failure-time data, age-at-death data, survival-
time data or any duration data in general.

• In nonlife actuarial risks a key variable of interest is the claim-
severity or loss distribution.
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• Examples of applications are: (a) the distribution of medical-cost
claims in a health insurance policy, (b) the distribution of car in-

surance claims, and (c) the distribution of compensations of work

accidents. These cases involve analysis of loss data.

10.2.2 Complete Individual Data

• Assume researcher has complete knowledge about the relevant du-
ration or loss data of the individuals.

• LetX denote the variable of interest (duration or loss), andX1, · · · , Xn
denote the values of X for n individuals.

• We denote the observed sample values by x1, · · · , xn.

• There may be duplications of values in the sample, and we assume
there are m distinct values arranged in the order 0 < y1 < · · · < ym,
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with m ≤ n.

• We assume yj occurs wj times in the sample, for j = 1, · · · ,m. Thus,Pm
j=1wj = n.

• In the case of age-at-death data, wj individuals die at age yj. If
all individuals are observed from birth until they die, we have a

complete individual data set.

• We define rj as the risk set at time yj, which is the number of
individuals in the sample exposed to the possibility of death at time

yj (prior to observing the deaths at yj).

• For example, r1 = n, as all individuals in the sample are exposed to
the risk of death just prior to time y1.
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• Similarly, we can see that rj = Pm
i=j wi, which is the number of

individuals who are surviving just prior to time yj.

Example 10.3: Let x1, · · · , x16 be a sample of failure times of a machine
part. The values of xi, arranged in increasing order, are as follows

2, 3, 5, 5, 5, 6, 6, 8, 8, 8, 12, 14, 18, 18, 24, 24.

Summarize the data in terms of the set-up above.

Solution: There are 9 distinct values of failure time in this data set, so

that m = 9. Table 10.1 summarizes the data in the notations described

above.
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Table 10.1: Failure-time data in Example 10.3

j yj wj rj
1 2 1 16
2 3 1 15
3 5 3 14
4 6 2 11
5 8 3 9
6 12 1 6
7 14 1 5
8 18 2 4
9 24 2 2

From the table it is obvious that rj+1 = rj − wj for j = 1, · · · ,m− 1. 2

Example 10.4: Let x1, · · · , x20 be a sample of claims of a group medical
insurance policy. The values of xi, arranged in increasing order, are as

follows
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15, 16, 16, 16, 20, 21, 24, 24, 24, 28, 28, 34, 35, 36, 36, 36, 40, 40, 48, 50.

There are no deductible and policy limit. Summarize the data in terms of

the set-up above.

Solution: There are 12 distinct values of claim costs in this data set, so

thatm = 12. As there are no deductible and policy limit, the observations

are ground-up losses with no censoring nor truncation. Thus, we have

a complete individual data set. Table 10.2 summarizes the data in the

notations described above.
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Table 10.2: Medical claims data in Example 10.4

j yj wj rj
1 15 1 20
2 16 3 19
3 20 1 16
4 21 1 15
5 24 3 14
6 28 2 11
7 34 1 9
8 35 1 8
9 36 3 7
10 40 2 4
11 48 1 2
12 50 1 1
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10.2.3 Incomplete Individual Data

• In certain studies the researcher may not have complete information
about each individual observed in the sample.

• Consider a study on the survival time of patients after a surgical
operation.

• When the study begins it includes data of patients who have recently
received an operation. New patients who are operated during the

study are included in the sample as well when they are operated. All

patients are observed until the end of the study, and their survival

times are recorded.

• If a patient received an operation some time before the study began,
the researcher has the information about how long this patient has
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survived after the operation and the future survival time is condi-

tional on this information.

• Other patients who received operations at the same time as this
individual but did not live till the study began would not be in the

sample.

• Thus, this individual is observed from a population which has been

left truncated, i.e., information is not available for patients who
do not survive till the beginning of the study.

• On the other hand, if an individual survives until the end of the
study, the researcher knows the survival time of the patient up to

that time, but has no information about when the patient dies.

• Thus, the observation pertaining to this individual is right cen-
sored, i.e., the researcher has the partial information that this indi-
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vidual’s survival time goes beyond the study but does not know its

exact value.

• We now define further notations for analyzing incomplete data. Us-
ing survival-time studies for exposition, we use di to denote the left-

truncation status of individual i in the sample. Specifically, di = 0 if

there is no left truncation (the operation was done during the study

period), and di > 0 if there is left truncation (the operation was

done di periods before the study began).

• Let xi denote the survival time (time till death after operation) of
the ith individual. If an individual i survives at the end of the study,

xi is not observed and we denote the survival time up to that time

by ui.

• Thus, for each individual i, there is a xi value or ui value (but
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not both) associated with it. The example below illustrates the

construction of the variables introduced.

Example 10.5: A sample of 10 patients receiving a major operation

is available. The data are collected over 12 weeks and are summarized

in Table 10.3. Column 2 gives the time when the individual was first

observed, with a value of zero indicating that the individual was first

observed when the study began. A nonzero value gives the time when

the operation was done, which is also the time when the individual was

first observed. For cases in which the operation was done prior to the

beginning of the study Column 3 gives the duration from the operation

to the beginning of the study. Column 4 presents the time when the

observation ceased, either due to death of patient (D in Column 5) or end

of study (S in Column 5).
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Table 10.3: Survival time after a surgical operation

Time ind i Time since operation Time when Status when
Ind i first obs when ind i first obs ind i ends ind i ends
1 0 2 7 D
2 0 4 4 D
3 2 0 9 D
4 4 0 10 D
5 5 0 12 S
6 7 0 12 S
7 0 2 12 S
8 0 6 12 S
9 8 0 12 S
10 9 0 11 D

Determine the di, xi and ui values of each individual.

Solution: The data are reconstructed in Table 10.4.
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Table 10.4: Reconstruction of Table 10.3

i di xi ui
1 2 9 —
2 4 8 —
3 0 7 —
4 0 6 —
5 0 — 7
6 0 — 5
7 2 — 14
8 6 — 18
9 0 — 4
10 0 2 —

• As in the case of a complete data set, we assume that there are m
distinct failure-time numbers xi in the sample, arranged in increasing

order, as 0 < y1 < · · · < ym, with m ≤ n.
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• Assume yj occurs wj times in the sample, for j = 1, · · · ,m.

• Again, we denote rj as the risk set at yj, which is the number of
individuals in the sample exposed to the possibility of death at time

yj (prior to observing the deaths at yj).

• To update the risk set rj after knowing the number of deaths at time
yj−1, we use the following formula

rj = rj−1 − wj−1 + number of observations with yj−1 ≤ di < yj
−number of observations with yj−1 ≤ ui < yj, j = 2, · · · ,m.

(10.8)

• Upon wj−1 deaths at failure-time yj−1, the risk set is reduced to
rj−1 − wj−1.
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• This number is supplemented by the number of individuals with
yj−1 ≤ di < yj, who are now exposed to risk at failure-time yj, but
are formerly not in the risk set due to left truncation.

• If an individual has a d value that ties with yj, this individual is not
included in the risk set rj.

• The risk set is reduced by the number of individuals with yj−1 ≤
ui < yj, i.e., those whose failure times are not observed due to right

censoring.

• If an individual has a u value that ties with yj, this individual is not
excluded from the risk set rj.

• Equation (10.8) can also be computed equivalently using the follow-
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ing formula

rj = number of observations with di < yj − (number of observations
with xi < yj + number of observations with ui < yj),

for j = 1, · · · ,m. (10.9)

• Note that the number of observations with di < yj is the total num-
ber of individuals who are potentially facing the risk of death at

failure-time yj.

• Individuals with xi < yj or ui < yj are removed from this risk set as
they have either died prior to time yj (when xi < yj) or have been

censored from the study (when ui < yj).

• To compute rj using equation (10.8), we need to calculate r1 using
equation (10.9) to begin the recursion.
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Example 10.6: Using the data in Example 10.5, determine the risk set

at each failure time in the sample.

Solution: The results are summarized in Table 10.5. Columns 5 and 6

describe the computation of the risk sets using equations (10.8) and (10.9),

respectively.

Table 10.5: Ordered death times and risk sets of Example 10.6

j yj wj rj Eq (10.8) Eq (10.9)
1 2 1 6 – 6− 0− 0
2 6 1 6 6− 1 + 3− 2 9− 1− 2
3 7 1 6 6− 1 + 1− 0 10− 2− 2
4 8 1 4 6− 1 + 0− 1 10− 3− 3
5 9 1 3 4− 1 + 0− 0 10− 4− 3

It can be seen that equations (10.8) and (10.9) give the same answers. 2
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Example 10.7: Table 10.6 summarizes the loss claims of 20 insurance

policies, numbered by i, with di = deductible, xi = ground-up loss, and

u∗i = maximum covered loss. For policies with losses larger than u∗i , only
the u∗i value is recorded. The right-censoring variable is denoted by ui.
Determine the risk set rj of each distinct loss value yj.

29



Table 10.6: Insurance claims data of Example 10.7

i di xi u∗i ui i di xi u∗i ui
1 0 12 15 — 11 3 14 15 —
2 0 10 15 — 12 3 — 15 15
3 0 8 12 — 13 3 12 18 —
4 0 — 12 12 14 4 15 18 —
5 0 — 15 15 15 4 — 18 18
6 2 13 15 — 16 4 8 18 —
7 2 10 12 — 17 4 — 15 15
8 2 9 15 — 18 5 — 20 20
9 2 — 18 18 19 5 18 20 —
10 3 6 12 — 20 5 8 20 —

Solution: The distinct values of xi, arranged in order, are

6, 8, 9, 10, 12, 13, 14, 15, 18,
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so that m = 9. The results are summarized in Table 10.7. As in Table

10.5 of Example 10.6, Columns 5 and 6 describe the computation of the

risk sets using equations (10.8) and (10.9), respectively.

Table 10.7: Ordered claim losses and risk sets of Example 10.7

j yj wj rj Eq (10.8) Eq (10.9)
1 6 1 20 – 20− 0− 0
2 8 3 19 20− 1 + 0− 0 20− 1− 0
3 9 1 16 19− 3 + 0− 0 20− 4− 0
4 10 2 15 16− 1 + 0− 0 20− 5− 0
5 12 2 13 15− 2 + 0− 0 20− 7− 0
6 13 1 10 13− 2 + 0− 1 20− 9− 1
7 14 1 9 10− 1 + 0− 0 20− 10− 1
8 15 1 8 9− 1 + 0− 0 20− 11− 1
9 18 1 4 8− 1 + 0− 3 20− 12− 4
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10.2.4 Grouped Data

• Sometimes we work with grouped observations rather than individ-
ual observations.

• Let the values of the failure-time or loss data be divided into k
intervals: (c0, c1], (c1, c2], · · · , (ck−1, ck], where 0 ≤ c0 < c1 < · · · <
ck.

• The observations are classified into the interval groups according to
the values of xi (failure time or loss).

• We first consider complete data. Let there be n observations of xi in
the sample, with nj observations of xi in interval (cj−1, cj], so thatPk
j=1 nj = n.
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• The risk set in interval (c0, c1] is n. The risk set in interval (c1, c2] is
n− n1.

• In general, the risk set in interval (cj−1, cj] is n−Pj−1
i=1 ni =

Pk
i=j ni.

• When the data are incomplete, with possible left truncation and/or
right censoring, approximations may be required to compute the risk

sets.

• We first define the following quantities based on the attributes of
individual observations

Dj = number of observations with cj−1 ≤ di < cj, for j = 1, · · · , k.
Uj = number of observations with cj−1 < ui ≤ cj, for j = 1, · · · , k.
Vj = number of observations with cj−1 < xi ≤ cj, for j = 1, · · · , k.
• Thus,Dj is the number of new additions to the risk set in the interval
(cj−1, cj], Uj is the number of right-censored observations that exit
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the sample in the interval (cj−1, cj], and Vj is the number of deaths
or loss values in (cj−1, cj].

• We now define Rj as the risk set for the interval (cj−1, cj], which is
the total number of observations in the sample exposed to the risk

of failure or loss in (cj−1, cj].

• For the first interval (c0, c1], we have R1 = D1. Subsequent updating
of the risk set is computed as

Rj = Rj−1 − Vj−1 +Dj − Uj−1, j = 2, · · · , k. (10.10)

An alternative formula for Rj is

Rj =
jX
i=1

Di −
j−1X
i=1

(Vi + Ui), j = 2, · · · , k. (10.11)
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Example 10.9: For the data in Table 10.6, the observations are grouped

into the intervals: (0, 4], (4, 8], (8, 12], (12, 16] and (16, 20]. Determine the

risk set in each interval.

Solution: We tabulate the results as follows

Table 10.9: Results of Example 10.9

Group j Dj Uj Vj Rj
(0, 4] 13 0 0 13
(4, 8] 7 0 4 20
(8, 12] 0 1 5 16
(12, 16] 0 3 3 10
(16, 20] 0 3 1 4

Dj and Uj are obtained from the d and u values in Table 10.6, respectively.

Likewise, Vj are obtained by accumulating the w values in Table 10.7. 2
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