Nonlife Actuarial Models

Chapter 1

Claim-Frequency Distribution

Learning Objectives

- Discrete distributions for modeling claim frequency
- Binomial, geometric, negative binomial and Poisson distributions
- The $(a, b, 0)$ and $(a, b, 1)$ classes of distributions
- Compound distribution
- Convolution
- Mixture distribution

1.2 Review of Statistics

- Distribution function (df) of random variable X

$$
\begin{equation*}
F_{X}(x)=\operatorname{Pr}(X \leq x) \tag{1.1}
\end{equation*}
$$

- Probability density function (pdf) of continuous random variable

$$
\begin{equation*}
f_{X}(x)=\frac{d F_{X}(x)}{d x} \tag{1.2}
\end{equation*}
$$

- Probability function (pf) of discrete random variable

$$
f_{X}(x)= \begin{cases}\operatorname{Pr}(X=x), & \text { if } x \in \Omega_{X} \tag{1.3}\\ 0, & \text { otherwise }\end{cases}
$$

where Ω_{X} is the support of X

- Moment generating function (mgf), defined as

$$
\begin{equation*}
M_{X}(t)=\mathrm{E}\left(e^{t X}\right) \tag{1.6}
\end{equation*}
$$

- Moments of X are obtainable from mgf by

$$
\begin{equation*}
M_{X}^{r}(t)=\frac{d^{r} M_{X}(t)}{d t^{r}}=\frac{d^{r}}{d t^{r}} \mathrm{E}\left(e^{t X}\right)=\mathrm{E}\left(X^{r} e^{t X}\right) \tag{1.7}
\end{equation*}
$$

so that

$$
\begin{equation*}
M_{X}^{r}(0)=\mathrm{E}\left(X^{r}\right)=\mu_{r}^{\prime} \tag{1.8}
\end{equation*}
$$

- If $X_{1}, X_{2}, \cdots, X_{n}$ are independently and identically distributed (iid) random variables with mgf $M(t)$, and $X=X_{1}+\cdots+X_{n}$, then the mgf of X is

$$
\begin{equation*}
M_{X}(t)=\mathrm{E}\left(e^{t X}\right)=\mathrm{E}\left(\prod_{i=1}^{n} e^{t X_{i}}\right)=\prod_{i=1}^{n} \mathrm{E}\left(e^{t X_{i}}\right)=[M(t)]^{n} \tag{1.9}
\end{equation*}
$$

- Probability generating function (pgf), defined as $P_{X}(t)=\mathrm{E}\left(t^{X}\right)$,

$$
\begin{equation*}
P_{X}(t)=\sum_{x=0}^{\infty} t^{x} f_{X}(x) \tag{1.13}
\end{equation*}
$$

so that for X taking nonnegative integer values.

- We have

$$
\begin{equation*}
P_{X}^{r}(t)=\sum_{x=r}^{\infty} x(x-1) \cdots(x-r+1) t^{x-r} f_{X}(x) \tag{1.14}
\end{equation*}
$$

so that

$$
f_{X}(r)=\frac{P_{X}^{r}(0)}{r!}
$$

- Raw moments can be obtained by differentiating mgf,
- pf can be obtained by differentiating pgf.
- The mgf and pgf are related through the following equations

$$
\begin{equation*}
M_{X}(t)=P_{X}\left(e^{t}\right) \tag{1.11}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{X}(t)=M_{X}(\log t) \tag{1.12}
\end{equation*}
$$

1.3 Some Discrete Distributions

(1) Binomial Distribution: $X \sim \mathcal{B N}(n, \theta)$ if

$$
\begin{equation*}
f_{X}(x)=\binom{n}{x} \theta^{x}(1-\theta)^{n-x}, \quad \text { for } \quad x=0,1, \cdots, n \tag{1.17}
\end{equation*}
$$

- The mean and variance of X are

$$
\begin{equation*}
\mathrm{E}(X)=n \theta \quad \text { and } \quad \operatorname{Var}(X)=n \theta(1-\theta), \tag{1.19}
\end{equation*}
$$

so that the variance of X is always smaller than its mean.

- How do you prove these results?
- The mgf of X is

$$
\begin{equation*}
M_{X}(t)=\left(\theta e^{t}+1-\theta\right)^{n} \tag{1.20}
\end{equation*}
$$

and its pgf is

$$
\begin{equation*}
P_{X}(t)=(\theta t+1-\theta)^{n} . \tag{1.21}
\end{equation*}
$$

- A recursive relationship for $f_{X}(x)$ is

$$
\begin{equation*}
f_{X}(x)=\left[\frac{(n-x+1) \theta}{x(1-\theta)}\right] f_{X}(x-1) \tag{1.23}
\end{equation*}
$$

(2) Geometric Distribution: $X \sim \mathcal{G \mathcal { M }}(\theta)$ if

$$
\begin{equation*}
f_{X}(x)=\theta(1-\theta)^{x}, \quad \text { for } x=0,1, \cdots \tag{1.24}
\end{equation*}
$$

- The mean and variance of X are

$$
\begin{equation*}
\mathrm{E}(X)=\frac{1-\theta}{\theta} \quad \text { and } \quad \operatorname{Var}(X)=\frac{1-\theta}{\theta^{2}} \tag{1.25}
\end{equation*}
$$

- How do you prove these results?
- The mgf of X is

$$
\begin{equation*}
M_{X}(t)=\frac{\theta}{1-(1-\theta) e^{t}} \tag{1.26}
\end{equation*}
$$

and its pgf is X

$$
\begin{equation*}
P_{X}(t)=\frac{\theta}{1-(1-\theta) t} \tag{1.27}
\end{equation*}
$$

- The pf satisfies the following recursive relationship

$$
\begin{equation*}
f_{X}(x)=(1-\theta) f_{X}(x-1) \tag{1.28}
\end{equation*}
$$

for $x=1,2, \cdots$, with starting value $f_{X}(0)=\theta$.
(3) Negative Binomial Distribution: $X \sim \mathcal{N B}(r, \theta)$ if

$$
\begin{equation*}
f_{X}(x)=\binom{x+r-1}{r-1} \theta^{r}(1-\theta)^{x}, \quad \text { for } \quad x=0,1, \cdots, \tag{1.29}
\end{equation*}
$$

- The mean and variance are

$$
\begin{equation*}
\mathrm{E}(X)=\frac{r(1-\theta)}{\theta} \quad \text { and } \quad \operatorname{Var}(X)=\frac{r(1-\theta)}{\theta^{2}}, \tag{1.30}
\end{equation*}
$$

- The mgf of $\mathcal{N B}(r, \theta)$ is

$$
\begin{equation*}
M_{X}(t)=\left[\frac{\theta}{1-(1-\theta) e^{t}}\right]^{r}, \tag{1.31}
\end{equation*}
$$

and its pgf is

$$
\begin{equation*}
P_{X}(t)=\left[\frac{\theta}{1-(1-\theta) t}\right]^{r} . \tag{1.32}
\end{equation*}
$$

- May extend the parameter r to any positive number (not necessarily integer).
- The recursive formula of the pf is

$$
\begin{equation*}
f_{X}(x)=\left[\frac{(x+r-1)(1-\theta)}{x}\right] f_{X}(x-1) \tag{1.37}
\end{equation*}
$$

with starting value

$$
\begin{equation*}
f_{X}(0)=\theta^{r} \tag{1.38}
\end{equation*}
$$

(4) Poisson Distribution: $X \sim \mathcal{P} \mathcal{N}(\lambda)$, if the pf of X is given by

$$
\begin{equation*}
f_{X}(x)=\frac{\lambda^{x} e^{-\lambda}}{x!}, \quad \text { for } \quad x=0,1, \cdots \tag{1.39}
\end{equation*}
$$

- The mean and variance of X are

$$
\begin{equation*}
\mathrm{E}(X)=\operatorname{Var}(X)=\lambda \tag{1.40}
\end{equation*}
$$

The mgf of X is

$$
\begin{equation*}
M_{X}(t)=\exp \left[\lambda\left(e^{t}-1\right)\right] \tag{1.41}
\end{equation*}
$$

and its pgf is

$$
\begin{equation*}
P_{X}(t)=\exp [\lambda(t-1)] \tag{1.42}
\end{equation*}
$$

- Two important theorems of Poisson distribution
- Theorem 1.1: If X_{1}, \cdots, X_{n} are independently distributed with $X_{i} \sim \mathcal{P N}\left(\lambda_{i}\right)$, for $i=1, \cdots, n$, then $X=X_{1}+\cdots+X_{n}$ is distributed as a Poisson with parameter $\lambda=\lambda_{1}+\cdots+\lambda_{n}$.
- Proof: To prove this result, we make use of the mgf. Note that the mgf of X is

$$
\begin{align*}
M_{X}(t) & =\mathrm{E}\left(e^{t X}\right) \\
& =\mathrm{E}\left(e^{t X_{1}+\cdots+t X_{n}}\right) \\
& =\mathrm{E}\left(\prod_{i=1}^{n} e^{t X_{i}}\right) \\
& =\prod_{i=1}^{n} \mathrm{E}\left(e^{t X_{i}}\right) \\
& =\prod_{i=1}^{n} \exp \left[\lambda_{i}\left(e^{t}-1\right)\right] \\
& =\exp \left[\left(e^{t}-1\right) \sum_{i=1}^{n} \lambda_{i}\right] \\
& =\exp \left[\left(e^{t}-1\right) \lambda\right] \tag{1.43}
\end{align*}
$$

which is the mgf of $\mathcal{P N}(\lambda)$.

- Theorem 1.2: \quad Suppose an event A can be partitioned into m mutually exclusive and exhaustive events A_{i}, for $i=1, \cdots, m$. Let X be the number of occurrences of A, and X_{i} be the number of occurrences of A_{i}, so that $X=X_{1}+\cdots+X_{m}$. Let the probability of occurrence of A_{i} given A has occurred be p_{i}, i.e., $\operatorname{Pr}\left(A_{i} \mid A\right)=p_{i}$, with $\sum_{i=1}^{m} p_{i}=1$. If $X \sim \mathcal{P N}(\lambda)$, then $X_{i} \sim \mathcal{P} \mathcal{N}\left(\lambda_{i}\right)$, where $\lambda_{i}=$ λp_{i}. Furthermore, X_{1}, \cdots, X_{n} are independently distributed.
- Proof: To prove this result, we first derive the marginal distribution of X_{i}. Given $X=x, X_{i} \sim \mathcal{B N}\left(x, p_{i}\right)$. Hence, the marginal pf of X_{i} is pf of $\mathcal{P} \mathcal{N}\left(\lambda p_{i}\right)$. Then we show that the joint pf of X_{1}, \cdots, X_{m} is the product of their marginal pf, so that X_{1}, \cdots, X_{m} are independent.

Table A.1: Some discrete distributions

Distribution, parameters, notation and support	pf $f_{X}(x)$	$\operatorname{mgf} M_{X}(t)$	Mean	Variance
Binomial $\begin{aligned} & \mathcal{B N}(n, \theta) \\ & x \in\{0,1, \cdots, n\} \end{aligned}$	$\binom{n}{x} \theta^{x}(1-\theta)^{n-x}$	$\left(\theta e^{t}+1-\theta\right)^{n}$	$n \theta$	$n \theta(1-\theta)$
$\begin{aligned} & \text { Poisson } \\ & \mathcal{P N}(\lambda) \\ & x \in\{0,1, \cdots\} \end{aligned}$	$\frac{\lambda^{x} e^{-\lambda}}{x!}$	$\exp \left[\lambda\left(e^{t}-1\right)\right]$	λ	λ
$\begin{aligned} & \text { Geometric } \\ & \mathcal{G \mathcal { M } (\theta)} \\ & x \in\{0,1, \cdots\} \end{aligned}$	$\theta(1-\theta)^{x}$	$\frac{\theta}{1-(1-\theta) e^{t}}$	$\frac{1-\theta}{\theta}$	$\frac{1-\theta}{\theta^{2}}$
Negative binomial $\begin{aligned} & \mathcal{N B}(r, \theta) \\ & x \in\{0,1, \cdots\} \end{aligned}$	$\binom{x+r-1}{r-1} \theta^{r}(1-\theta)^{x}$	$\left[\frac{\theta}{1-(1-\theta) e^{t}}\right]^{r}$	$\frac{r(1-\theta)}{\theta}$	$\frac{r(1-\theta)}{\theta^{2}}$

1.4 The ($a, b, 0$) Class of Distributions

- Definition 1.1: A nonnegative discrete random variable X is in the $(a, b, 0)$ class if its $\mathrm{pf} f_{X}(x)$ satisfies the following recursion

$$
\begin{equation*}
f_{X}(x)=\left(a+\frac{b}{x}\right) f_{X}(x-1), \quad \text { for } x=1,2, \cdots \tag{1.48}
\end{equation*}
$$

where a and b are constants, with given $f_{X}(0)$.

- As an example, we consider the binomial distribution. Its pf can be written as follows

$$
\begin{equation*}
f_{X}(x)=\left[-\frac{\theta}{1-\theta}+\frac{\theta(n+1)}{(1-\theta) x}\right] f_{X}(x-1) \tag{1.49}
\end{equation*}
$$

Thus, we let

$$
\begin{equation*}
a=-\frac{\theta}{1-\theta} \quad \text { and } \quad b=\frac{\theta(n+1)}{(1-\theta)} . \tag{1.50}
\end{equation*}
$$

- Binomial, geometric, negative binomial and Poisson belong to the $(a, b, 0)$ class of distributions.

Table 1.2: \quad The $(a, b, 0)$ class of distributions

Distribution	a	b	$f_{X}(0)$
Binomial: $\mathcal{B N}(n, \theta)$	$-\frac{\theta}{1-\theta}$	$\frac{\theta(n+1)}{1-\theta}$	$(1-\theta)^{n}$
Geometric: $\mathcal{G M}(\theta)$	$1-\theta$	0	θ
Negative binomial: $\mathcal{N B}(r, \theta)$	$1-\theta$	$(r-1)(1-\theta)$	θ^{r}
Poisson: $\mathcal{P N}(\lambda)$	0	λ	$e^{-\lambda}$

- It may be desirable to obtain a good fit of the distribution at zero claim based on empirical experience and yet preserve the shape to coincide with some simple parametric distributions.
- This can be achieved by specifying the zero probability while adopting the recursion to mimic a selected $(a, b, 0)$ distribution.
- Let $f_{X}(x)$ be the pf of a $(a, b, 0)$ distribution called the base distribution. We denote $f_{X}^{M}(x)$ as the pf that is a modification of $f_{X}(x)$.
- The probability at point zero, $f_{X}^{M}(0)$, is specified and $f_{X}^{M}(x)$ is related to $f_{X}(x)$ as follows

$$
\begin{equation*}
f_{X}^{M}(x)=c f_{X}(x), \quad \text { for } x=1,2, \cdots, \tag{1.52}
\end{equation*}
$$

where c is an appropriate constant.

- For $f_{X}^{M}(\cdot)$ to be a well defined pf, we must have

$$
\begin{align*}
1 & =f_{X}^{M}(0)+\sum_{x=1}^{\infty} f_{X}^{M}(x) \\
& =f_{X}^{M}(0)+c \sum_{x=1}^{\infty} f_{X}(x) \\
& =f_{X}^{M}(0)+c\left[1-f_{X}(0)\right] \tag{1.53}
\end{align*}
$$

Thus, we conclude that

$$
\begin{equation*}
c=\frac{1-f_{X}^{M}(0)}{1-f_{X}(0)} \tag{1.54}
\end{equation*}
$$

Substituting c into equation (1.52) we obtain $f_{X}^{M}(x)$, for $x=1,2, \cdots$.

- Together with the given $f_{X}^{M}(0)$, we have a distribution with the desired zero-claim probability and the same recursion as the base $(a, b, 0)$ distribution.
- This is called the zero-modified distribution of the base $(a, b, 0)$ distribution.
- In particular, if $f_{X}^{M}(0)=0$, the modified distribution cannot take value zero and is called the zero-truncated distribution.
- The zero-truncated distribution is a particular case of the zeromodified distribution.

1.5 Some Methods for Creating New Distributions

1.5.1 Compound distribution

- Let X_{1}, \cdots, X_{N} be iid nonnegative integer-valued random variables, each distributed like X. We denote the sum of these random variables by S, so that

$$
\begin{equation*}
S=X_{1}+\cdots+X_{N} \tag{1.60}
\end{equation*}
$$

- If N is itself a nonnegative integer-valued random variable distributed independently of X_{1}, \cdots, X_{N}, then S is said to have a compound distribution.
- The distribution of N is called the primary distribution, and the distribution of X is called the secondary distribution.
- We shall use the primary-secondary convention to name a compound distribution.
- Thus, if N is Poisson and X is geometric, S has a Poisson-geometric distribution.
- A compound Poisson distribution is a compound distribution where N is Poisson, for any secondary distribution.
- Consider the simple case where N has a degenerate distribution taking value n with probability $1 . S$ is then the sum of n terms of X_{i}, where n is fixed. Suppose $n=2$, so that $S=X_{1}+X_{2}$.
- As the pf of X_{1} and X_{2} are $f_{X}(\cdot)$, the pf of S is given by

$$
\begin{align*}
f_{S}(s) & =\operatorname{Pr}\left(X_{1}+X_{2}=s\right) \\
& =\sum_{x=0}^{s} \operatorname{Pr}\left(X_{1}=x \text { and } X_{2}=s-x\right) \\
& =\sum_{x=0}^{s} f_{X}(s) f_{X}(s-x) \tag{1.62}
\end{align*}
$$

where the last line above is due to the independence of X_{1} and X_{2}.

- The pf of $S, f_{S}(\cdot)$, is the convolution of $f_{X}(\cdot)$, denoted by $\left(f_{X} *\right.$ $\left.f_{X}\right)(\cdot)$, i.e.,

$$
\begin{equation*}
f_{X_{1}+X_{2}}(s)=\left(f_{X} * f_{X}\right)(s)=\sum_{x=0}^{s} f_{X}(x) f_{X}(s-x) \tag{1.63}
\end{equation*}
$$

- Convolutions can be evaluated recursively. When $n=3$, the 3 -fold
convolution is

$$
\begin{align*}
f_{X_{1}+X_{2}+X_{3}}(s) & =\left(f_{X_{1}+X_{2}} * f_{X_{3}}\right)(s)= \\
\left(f_{X_{1}} * f_{X_{2}} * f_{X_{3}}\right)(s) & =\left(f_{X} * f_{X} * f_{X}\right)(s) \tag{1.64}
\end{align*}
$$

- Example 1.7: Let the pf of X be $f_{X}(0)=0.1, f_{X}(1)=0$, $f_{X}(2)=0.4$ and $f_{X}(3)=0.5$. Find the 2 -fold and 3 -fold convolutions of X.
- Solution: We first compute the 2-fold convolution. For $s=0$ and 1, the probabilities are

$$
\left(f_{X} * f_{X}\right)(0)=f_{X}(0) f_{X}(0)=(0.1)(0.1)=0.01
$$

and

$$
\left(f_{X} * f_{X}\right)(1)=f_{X}(0) f_{X}(1)+f_{X}(1) f_{X}(0)=(0.1)(0)+(0)(0.1)=0
$$

Other values are similarly computed as follows

$$
\begin{gathered}
\left(f_{X} * f_{X}\right)(2)=(0.1)(0.4)+(0.4)(0.1)=0.08 \\
\left(f_{X} * f_{X}\right)(3)=(0.1)(0.5)+(0.5)(0.1)=0.10 \\
\quad\left(f_{X} * f_{X}\right)(4)=(0.4)(0.4)=0.16 \\
\left(f_{X} * f_{X}\right)(5)=(0.4)(0.5)+(0.5)(0.4)=0.40
\end{gathered}
$$

and

$$
\left(f_{X} * f_{X}\right)(6)=(0.5)(0.5)=0.25
$$

For the 3-fold convolution, we show some sample workings as follows

$$
\begin{aligned}
& f_{X}^{* 3}(0)=\left[f_{X}(0)\right]\left[f_{X}^{* 2}(0)\right]=(0.1)(0.01)=0.001 \\
& f_{X}^{* 3}(1)=\left[f_{X}(0)\right]\left[f_{X}^{* 2}(1)\right]+\left[f_{X}(1)\right]\left[f_{X}^{* 2}(0)\right]=0
\end{aligned}
$$

and

$$
\begin{aligned}
f_{X}^{* 3}(2) & =\left[f_{X}(0)\right]\left[f_{X}^{* 2}(2)\right]+\left[f_{X}(1)\right]\left[f_{X}^{* 2}(1)\right]+\left[f_{X}(2)\right]\left[f_{X}^{* 2}(0)\right] \\
& =0.012
\end{aligned}
$$

- The results are summarized in Table 1.4
- We now return to the compound distribution in which the primary distribution N has a pf $f_{N}(\cdot)$. Using the total law of probability, we obtain the pf of the compound distribution S as

$$
\begin{aligned}
f_{S}(s) & =\sum_{n=0}^{\infty} \operatorname{Pr}\left(X_{1}+\cdots+X_{N}=s \mid N=n\right) f_{N}(n) \\
& =\sum_{n=0}^{\infty} \operatorname{Pr}\left(X_{1}+\cdots+X_{n}=s\right) f_{N}(n)
\end{aligned}
$$

in which the term $\operatorname{Pr}\left(X_{1}+\cdots+X_{n}=s\right)$ can be calculated as the n-fold convolution of $f_{X}(\cdot)$.

- The evaluation of convolution is usually quite complex when n is large.
- Theorem 1.4: Let S be a compound distribution. If the primary distribution N has mgf $M_{N}(t)$ and the secondary distribution X has $\operatorname{mgf} M_{X}(t)$, then the mgf of S is

$$
\begin{equation*}
M_{S}(t)=M_{N}\left[\log M_{X}(t)\right] \tag{1.66}
\end{equation*}
$$

If N has pgf $P_{N}(t)$ and X is nonnegative integer valued with pgf $P_{X}(t)$, then the pgf of S is

$$
\begin{equation*}
P_{S}(t)=P_{N}\left[P_{X}(t)\right] . \tag{1.67}
\end{equation*}
$$

- Proof: The proof makes use of results in conditional expectation. We note that

$$
\begin{align*}
M_{S}(t) & =\mathrm{E}\left(e^{t S}\right) \\
& =\mathrm{E}\left(e^{t X_{1}+\cdots+t X_{N}}\right) \\
& =\mathrm{E}\left[\mathrm{E}\left(e^{t X_{1}+\cdots+t X_{N}} \mid N\right)\right] \\
& =\mathrm{E}\left\{\left[\mathrm{E}\left(e^{t X}\right)\right]^{N}\right\} \\
& =\mathrm{E}\left\{\left[M_{X}(t)\right]^{N}\right\} \\
& =\mathrm{E}\left\{\left[e^{\log M_{X}(t)}\right]^{N}\right\} \\
& =M_{N}\left[\log M_{X}(t)\right] \tag{1.68}
\end{align*}
$$

- Similarly we get $P_{S}(t)=P_{N}\left[P_{X}(t)\right]$.
- To compute the pf of S. We note that

$$
\begin{equation*}
f_{S}(0)=P_{S}(0)=P_{N}\left[P_{X}(0)\right] \tag{1.70}
\end{equation*}
$$

- Also, we have

$$
\begin{equation*}
f_{S}(1)=P_{S}^{\prime}(0) \tag{1.71}
\end{equation*}
$$

The derivative $P_{S}^{\prime}(t)$ may be computed by differentiating $P_{S}(t)$ directly, or by the chain rule using the derivatives of $P_{N}(t)$ and $P_{X}(t)$, i.e.,

$$
\begin{equation*}
P_{S}^{\prime}(t)=\left\{P_{N}^{\prime}\left[P_{X}(t)\right]\right\} P_{X}^{\prime}(t) \tag{1.72}
\end{equation*}
$$

- Example 1.8: Let $N \sim \mathcal{P N}(\lambda)$ and $X \sim \mathcal{G M}(\theta)$. Calculate $f_{S}(0)$ and $f_{S}(1)$.
- Solution: The pgf of N is

$$
P_{N}(t)=\exp [\lambda(t-1)]
$$

and the pgf of X is

$$
P_{X}(t)=\frac{\theta}{1-(1-\theta) t}
$$

The pgf of S is

$$
P_{S}(t)=P_{N}\left[P_{X}(t)\right]=\exp \left[\lambda\left(\frac{\theta}{1-(1-\theta) t}-1\right)\right]
$$

from which we obtain

$$
f_{S}(0)=P_{S}(0)=\exp [\lambda(\theta-1)]
$$

To calculate $f_{S}(1)$, we differentiate $P_{S}(t)$ directly to obtain

$$
P_{S}^{\prime}(t)=\exp \left[\lambda\left(\frac{\theta}{1-(1-\theta) t}-1\right)\right] \frac{\lambda \theta(1-\theta)}{[1-(1-\theta) t]^{2}}
$$

so that

$$
f_{S}(1)=P_{S}^{\prime}(0)=\exp [\lambda(\theta-1)] \lambda \theta(1-\theta)
$$

- The Panjer (1981) recursion is a recursive method for computing the pf of S, which applies to the case where the primary distribution N belongs to the $(a, b, 0)$ class.
- Theorem 1.5: If N belongs to the $(a, b, 0)$ class of distributions and X is a nonnegative integer-valued random variable, then the pf of S is given by the following recursion

$$
\begin{equation*}
f_{S}(s)=\frac{1}{1-a f_{X}(0)} \sum_{x=1}^{s}\left(a+\frac{b x}{s}\right) f_{X}(x) f_{S}(s-x), \quad \text { for } s=1,2, \cdots \tag{1.74}
\end{equation*}
$$

with initial value $f_{S}(0)$ given by equation (1.70).

- Proof: See Dickson (2005), Section 4.5.2.
- The mean and variance of a compound distribution can be obtained from the means and variances of the primary and secondary distri-
butions. Thus, the first two moments of the compound distribution can be obtained without computing its pf.
- Theorem 1.6: Consider the compound distribution. We denote $\mathrm{E}(N)=\mu_{N}$ and $\operatorname{Var}(N)=\sigma_{N}^{2}$, and likewise $\mathrm{E}(X)=\mu_{X}$ and $\operatorname{Var}(X)=\sigma_{X}^{2}$. The mean and variance of S are then given by

$$
\begin{equation*}
\mathrm{E}(S)=\mu_{N} \mu_{X} \tag{1.75}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}(S)=\mu_{N} \sigma_{X}^{2}+\sigma_{N}^{2} \mu_{X}^{2} \tag{1.76}
\end{equation*}
$$

- Proof: We use the results in Appendix A. 11 on conditional expectations to obtain
$\mathrm{E}(S)=\mathrm{E}[\mathrm{E}(S \mid N)]=\mathrm{E}\left[\mathrm{E}\left(X_{1}+\cdots+X_{N} \mid N\right)\right]=\mathrm{E}\left(N \mu_{X}\right)=\mu_{N} \mu_{X}$.

From (A.115), we have

$$
\begin{align*}
\operatorname{Var}(S) & =\mathrm{E}[\operatorname{Var}(S \mid N)]+\operatorname{Var}[\mathrm{E}(S \mid N)] \\
& =\mathrm{E}\left[N \sigma_{X}^{2}\right]+\operatorname{Var}\left(N \mu_{X}\right) \\
& =\mu_{N} \sigma_{X}^{2}+\sigma_{N}^{2} \mu_{X}^{2} \tag{1.78}
\end{align*}
$$

which completes the proof.

- If S is a compound Poisson distribution with $N \sim \mathcal{P N}(\lambda)$, so that $\mu_{N}=\sigma_{N}^{2}=\lambda$, then

$$
\begin{equation*}
\operatorname{Var}(S)=\lambda\left(\sigma_{X}^{2}+\mu_{X}^{2}\right)=\lambda \mathrm{E}\left(X^{2}\right) \tag{1.79}
\end{equation*}
$$

Proof of equation (1.78)

Given two random variables X and Y, the conditional variance $\operatorname{Var}(X \mid Y)$ is defined as $v(Y)$, where

$$
v(y)=\operatorname{Var}(X \mid y)=\mathrm{E}\left\{[X-\mathrm{E}(X \mid y)]^{2} \mid y\right\}=\mathrm{E}\left(X^{2} \mid y\right)-[\mathrm{E}(X \mid y)]^{2}
$$

Thus, we have

$$
\operatorname{Var}(X \mid Y)=\mathrm{E}\left(X^{2} \mid Y\right)-[\mathrm{E}(X \mid Y)]^{2}
$$

which implies

$$
\mathrm{E}\left(X^{2} \mid Y\right)=\operatorname{Var}(X \mid Y)+[\mathrm{E}(X \mid Y)]^{2}
$$

Now we have

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \\
& =\mathrm{E}\left[\mathrm{E}\left(X^{2} \mid Y\right)\right]-[\mathrm{E}(X)]^{2} \\
& =\mathrm{E}\left\{\operatorname{Var}(X \mid Y)+[\mathrm{E}(X \mid Y)]^{2}\right\}-[\mathrm{E}(X)]^{2} \\
& =\mathrm{E}[\operatorname{Var}(X \mid Y)]+\mathrm{E}\left\{[\mathrm{E}(X \mid Y)]^{2}\right\}-[\mathrm{E}(X)]^{2} \\
& =\mathrm{E}[\operatorname{Var}(X \mid Y)]+\mathrm{E}\left\{[\mathrm{E}(X \mid Y)]^{2}\right\}-\{\mathrm{E}[\mathrm{E}(X \mid Y)]\}^{2} \\
& =\mathrm{E}[\operatorname{Var}(X \mid Y)]+\operatorname{Var}[\mathrm{E}(X \mid Y)] .
\end{aligned}
$$

- Example 1.10: Let $N \sim \mathcal{P} \mathcal{N}(2)$ and $X \sim \mathcal{G} \mathcal{M}(0.2)$. Calculate $\mathrm{E}(S)$ and $\operatorname{Var}(S)$. Repeat the calculation for $N \sim \mathcal{G} \mathcal{M}(0.2)$ and $X \sim \mathcal{P N}(2)$.
- Solution: As $X \sim \mathcal{G} \mathcal{M}(0.2)$, we have

$$
\mu_{X}=\frac{1-\theta}{\theta}=\frac{0.8}{0.2}=4
$$

and

$$
\sigma_{X}^{2}=\frac{1-\theta}{\theta^{2}}=\frac{0.8}{(0.2)^{2}}=20
$$

If $N \sim \mathcal{P N}(2)$, we have $\mathrm{E}(S)=(4)(2)=8$. Since N is Poisson, we have

$$
\operatorname{Var}(S)=2\left(20+4^{2}\right)=72
$$

For $N \sim \mathcal{G} \mathcal{M}(0.2)$ and $X \sim \mathcal{P N}(2), \mu_{N}=4, \sigma_{N}^{2}=20$, and $\mu_{X}=$
$\sigma_{X}^{2}=2$. Thus, $\mathrm{E}(S)=(4)(2)=8$, and we have

$$
\operatorname{Var}(S)=(4)(2)+(20)(4)=88
$$

- We have seen that the sum of independently distributed Poisson distributions is also Poisson.
- It turns out that the sum of independently distributed compound Poisson distributions has also a compound Poisson distribution.
- Theorem 1.7: Suppose S_{1}, \cdots, S_{n} have independently distributed compound Poisson distributions, where the Poisson parameter of S_{i} is λ_{i} and the pgf of the secondary distribution of S_{i} is $P_{i}(\cdot)$. Then $S=S_{1}+\cdots+S_{n}$ has a compound Poisson distribution with Poisson parameter $\lambda=\lambda_{1}+\cdots+\lambda_{n}$. The pgf of the secondary distribution of S is $P(t)=\sum_{i=1}^{n} w_{i} P_{i}(t)$, where $w_{i}=\lambda_{i} / \lambda$.
- Proof: The pgf of S is (see Example 1.11 for an application)

$$
\begin{align*}
P_{S}(t) & =\mathrm{E}\left(t^{S_{1}+\cdots+S_{n}}\right) \\
& =\prod_{i=1}^{n} P_{S_{i}}(t) \\
& =\prod_{i=1}^{n} \exp \left\{\lambda_{i}\left[P_{i}(t)-1\right]\right\} \\
& =\exp \left\{\sum_{i=1}^{n} \lambda_{i} P_{i}(t)-\sum_{i=1}^{n} \lambda_{i}\right\} \\
& =\exp \left\{\sum_{i=1}^{n} \lambda_{i} P_{i}(t)-\lambda\right\} \\
& =\exp \left\{\lambda\left[\sum_{i=1}^{n} \frac{\lambda_{i}}{\lambda}\left[P_{i}(t)\right]-1\right]\right\} \\
& =\exp \{\lambda[P(t)-1]\} \tag{1.80}
\end{align*}
$$

1.5.2 Mixture distribution

- Let X_{1}, \cdots, X_{n} be random variables with corresponding pf or pdf $f_{X_{1}}(\cdot), \cdots, f_{X_{n}}(\cdot)$ in the common support Ω. A new random variable X may be created with pf or $\operatorname{pdf} f_{X}(\cdot)$ given by

$$
\begin{equation*}
f_{X}(x)=p_{1} f_{X_{1}}(x)+\cdots+p_{n} f_{X_{n}}(x), \quad x \in \Omega \tag{1.82}
\end{equation*}
$$

where $p_{i} \geq 0$ for $i=1, \cdots, n$ and $\sum_{i=1}^{n} p_{i}=1$.

- Theorem 1.8: The mean of X is

$$
\begin{equation*}
\mathrm{E}(X)=\mu=\sum_{i=1}^{n} p_{i} \mu_{i} \tag{1.83}
\end{equation*}
$$

and its variance is

$$
\begin{equation*}
\operatorname{Var}(X)=\sum_{i=1}^{n} p_{i}\left[\left(\mu_{i}-\mu\right)^{2}+\sigma_{i}^{2}\right] \tag{1.84}
\end{equation*}
$$

- Example 1.12: The claim frequency of a bad driver is distributed as $\mathcal{P N}(4)$, and the claim frequency of a good driver is distributed as $\mathcal{P N}(1)$. A town consists of 20% bad drivers and 80% good drivers. What is the mean and variance of the claim frequency of a randomly selected driver from the town?
- Solution: The mean of the claim frequency is

$$
(0.2)(4)+(0.8)(1)=1.6
$$

and its variance is

$$
(0.2)\left[(4-1.6)^{2}+4\right]+(0.8)\left[(1-1.6)^{2}+1\right]=3.04
$$

- The above can be generalized to continuous mixing.

1.5 Excel Computation Notes

Table 1.5: Some Excel functions

X	Excel function	Example	
		input	output
$\mathcal{B N}(n, \theta)$	$\begin{aligned} & \text { BINOMDIST }(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \text { ind }) \\ & \mathrm{x} 1=x \\ & \mathrm{x} 2=n \\ & \mathrm{x} 3=\theta \end{aligned}$	BINOMDIST (4, 10, 0.3,FALSE) BINOMDIST (4, 10, 0.3,TRUE)	$\begin{aligned} & 0.2001 \\ & 0.8497 \end{aligned}$
$\mathcal{P N}(\lambda)$	$\begin{aligned} & \text { POISSON }(\mathrm{x} 1, \mathrm{x} 2, \text { ind }) \\ & \mathrm{x} 1=x \\ & \mathrm{x} 2=\lambda \end{aligned}$	POISSON(4,3.6,FALSE) POISSON(4,3.6,TRUE)	$\begin{aligned} & 0.1912 \\ & 0.7064 \end{aligned}$
$\mathcal{N B}(r, \theta)$	$\begin{aligned} & \text { NEGBINOMDIST }(\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3) \\ & \mathrm{x} 1=x \\ & \mathrm{x} 2=r \\ & \mathrm{x} 3=\theta \end{aligned}$	NEGBINOMDIST (3,1,0.4) NEGBINOMDIST (3,3,0.4)	$\begin{aligned} & 0.0864 \\ & 0.1382 \end{aligned}$

