
Nonlife Actuarial Models

Chapter 1

Claim-Frequency Distribution



Learning Objectives

• Discrete distributions for modeling claim frequency

• Binomial, geometric, negative binomial and Poisson distributions

• The (a, b, 0) and (a, b, 1) classes of distributions

• Compound distribution

• Convolution

• Mixture distribution
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1.2 Review of Statistics

• Distribution function (df) of random variable X

FX(x) = Pr(X ≤ x). (1.1)

• Probability density function (pdf) of continuous random vari-

able

fX(x) =
dFX(x)

dx
. (1.2)

• Probability function (pf) of discrete random variable

fX(x) =

(
Pr(X = x), if x ∈ ΩX ,
0, otherwise.

(1.3)

where ΩX is the support of X
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• Moment generating function (mgf), defined as

MX(t) = E(e
tX). (1.6)

• Moments of X are obtainable from mgf by

M r
X(t) =

drMX(t)

dtr
=
dr

dtr
E(etX) = E(XretX), (1.7)

so that

M r
X(0) = E(X

r) = μ0r. (1.8)
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• If X1, X2, · · · , Xn are independently and identically distrib-

uted (iid) random variables with mgfM(t), and X = X1+· · ·+Xn,
then the mgf of X is

MX(t) = E(e
tX) = E

Ã
nY
i=1

etXi
!
=

nY
i=1

E(etXi) = [M(t)]n . (1.9)

• Probability generating function (pgf), defined as PX(t) = E(tX),

PX(t) =
∞X
x=0

txfX(x), (1.13)

so that for X taking nonnegative integer values.

• We have

P rX(t) =
∞X
x=r

x(x− 1) · · · (x− r + 1)tx−rfX(x) (1.14)
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so that

fX(r) =
P rX(0)

r!

• Raw moments can be obtained by differentiating mgf,

• pf can be obtained by differentiating pgf.

• The mgf and pgf are related through the following equations

MX(t) = PX(e
t), (1.11)

and

PX(t) =MX(log t). (1.12)
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1.3 Some Discrete Distributions

(1) Binomial Distribution: X ∼ BN (n, θ) if

fX(x) =

Ã
n

x

!
θx(1− θ)n−x, for x = 0, 1, · · · , n, (1.17)

• The mean and variance of X are

E(X) = nθ and Var(X) = nθ(1− θ), (1.19)

so that the variance of X is always smaller than its mean.

• How do you prove these results?

• The mgf of X is

MX(t) = (θe
t + 1− θ)n, (1.20)
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and its pgf is

PX(t) = (θt+ 1− θ)n. (1.21)

• A recursive relationship for fX(x) is

fX(x) =

"
(n− x+ 1)θ
x(1− θ)

#
fX(x− 1) (1.23)

(2) Geometric Distribution: X ∼ GM(θ) if

fX(x) = θ(1− θ)x, for x = 0, 1, · · · . (1.24)

• The mean and variance of X are

E(X) =
1− θ

θ
and Var(X) =

1− θ

θ2
, (1.25)
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• How do you prove these results?

• The mgf of X is

MX(t) =
θ

1− (1− θ)et
, (1.26)

and its pgf is X

PX(t) =
θ

1− (1− θ)t
. (1.27)

• The pf satisfies the following recursive relationship

fX(x) = (1− θ) fX(x− 1), (1.28)

for x = 1, 2, · · ·, with starting value fX(0) = θ.
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(3) Negative Binomial Distribution: X ∼ NB(r, θ) if

fX(x) =

Ã
x+ r − 1
r − 1

!
θr(1− θ)x, for x = 0, 1, · · · , (1.29)

• The mean and variance are

E(X) =
r(1− θ)

θ
and Var(X) =

r(1− θ)

θ2
, (1.30)

• The mgf of NB(r, θ) is

MX(t) =

"
θ

1− (1− θ)et

#r
, (1.31)

and its pgf is

PX(t) =

"
θ

1− (1− θ)t

#r
. (1.32)
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• May extend the parameter r to any positive number (not necessarily
integer).

• The recursive formula of the pf is

fX(x) =

"
(x+ r − 1)(1− θ)

x

#
fX(x− 1), (1.37)

with starting value

fX(0) = θr. (1.38)

(4) Poisson Distribution: X ∼ PN (λ), if the pf of X is given by

fX(x) =
λxe−λ

x!
, for x = 0, 1, · · · , (1.39)

• The mean and variance of X are

E(X) = Var(X) = λ. (1.40)
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The mgf of X is

MX(t) = exp
h
λ(et − 1)

i
, (1.41)

and its pgf is

PX(t) = exp [λ(t− 1)] . (1.42)

• Two important theorems of Poisson distribution

• Theorem 1.1: If X1, · · · , Xn are independently distributed with
Xi ∼ PN (λi), for i = 1, · · · , n, then X = X1+· · ·+Xn is distributed
as a Poisson with parameter λ = λ1 + · · ·+ λn.
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• Proof: To prove this result, we make use of the mgf. Note that

the mgf of X is

MX(t) = E(etX)

= E(etX1+ ···+ tXn)

= E

Ã
nY
i=1

etXi
!

=
nY
i=1

E(etXi)

=
nY
i=1

exp
h
λi(e

t − 1)
i

= exp

"
(et − 1)

nX
i=1

λi

#
= exp

h
(et − 1)λ

i
, (1.43)

which is the mgf of PN (λ).
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• Theorem 1.2: Suppose an event A can be partitioned into m

mutually exclusive and exhaustive events Ai, for i = 1, · · · ,m. Let
X be the number of occurrences of A, and Xi be the number of

occurrences of Ai, so that X = X1 + · · · +Xm. Let the probability
of occurrence of Ai given A has occurred be pi, i.e., Pr(Ai |A) = pi,
with

Pm
i=1 pi = 1. If X ∼ PN (λ), then Xi ∼ PN (λi), where λi =

λpi. Furthermore, X1, · · · , Xn are independently distributed.

• Proof: To prove this result, we first derive the marginal distribu-

tion of Xi. Given X = x, Xi ∼ BN (x, pi). Hence, the marginal pf of
Xi is pf of PN (λpi). Then we show that the joint pf of X1, · · · , Xm
is the product of their marginal pf, so that X1, · · · , Xm are indepen-
dent.
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Table A.1: Some discrete distributions

Distribution, parameters,
notation and support pf fX(x) mgf MX(t) Mean Variance

Binomial
BN (n, θ)
x ∈ {0, 1, · · · , n}

¡n
x

¢
θx(1− θ)n−x (θet + 1− θ)n nθ nθ(1− θ)

Poisson
PN (λ)
x ∈ {0, 1, · · ·}

λxe−λ

x!
exp
£
λ(et − 1)

¤
λ λ

Geometric
GM(θ)
x ∈ {0, 1, · · ·}

θ(1− θ)x
θ

1− (1− θ)et
1− θ

θ

1− θ

θ2

Negative binomial
NB(r, θ)
x ∈ {0, 1, · · ·}

¡x+ r − 1
r − 1

¢
θr(1− θ)x

h
θ

1− (1− θ)et

ir r(1− θ)

θ

r(1− θ)

θ2
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1.4 The (a, b, 0) Class of Distributions

• Definition 1.1: A nonnegative discrete random variable X is in

the (a, b, 0) class if its pf fX(x) satisfies the following recursion

fX(x) =

Ã
a+

b

x

!
fX(x− 1), for x = 1, 2, · · · , (1.48)

where a and b are constants, with given fX(0).

• As an example, we consider the binomial distribution. Its pf can be
written as follows

fX(x) =

"
− θ

1− θ
+

θ(n+ 1)

(1− θ)x

#
fX(x− 1). (1.49)

Thus, we let

a = − θ

1− θ
and b =

θ(n+ 1)

(1− θ)
. (1.50)
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• Binomial, geometric, negative binomial and Poisson belong to the
(a, b, 0) class of distributions.

Table 1.2: The (a, b, 0) class of distributions

Distribution a b fX(0)

Binomial: BN (n, θ) − θ

1− θ

θ(n+ 1)

1− θ
(1− θ)n

Geometric: GM(θ) 1− θ 0 θ

Negative binomial: NB(r, θ) 1− θ (r − 1)(1− θ) θr

Poisson: PN (λ) 0 λ e−λ
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• It may be desirable to obtain a good fit of the distribution at zero
claim based on empirical experience and yet preserve the shape to

coincide with some simple parametric distributions.

• This can be achieved by specifying the zero probability while adopt-
ing the recursion to mimic a selected (a, b, 0) distribution.

• Let fX(x) be the pf of a (a, b, 0) distribution called the base distri-
bution. We denote fMX (x) as the pf that is a modification of fX(x).

• The probability at point zero, fMX (0), is specified and fMX (x) is re-
lated to fX(x) as follows

fMX (x) = cfX(x), for x = 1, 2, · · · , (1.52)

where c is an appropriate constant.
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• For fMX (·) to be a well defined pf, we must have

1 = fMX (0) +
∞X
x=1

fMX (x)

= fMX (0) + c
∞X
x=1

fX(x)

= fMX (0) + c[1− fX(0)]. (1.53)

Thus, we conclude that

c =
1− fMX (0)
1− fX(0) . (1.54)

Substituting c into equation (1.52) we obtain fMX (x), for x = 1, 2, · · ·.

• Together with the given fMX (0), we have a distribution with the
desired zero-claim probability and the same recursion as the base

(a, b, 0) distribution.
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• This is called the zero-modified distribution of the base (a, b, 0)
distribution.

• In particular, if fMX (0) = 0, the modified distribution cannot take

value zero and is called the zero-truncated distribution.

• The zero-truncated distribution is a particular case of the zero-
modified distribution.
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1.5 Some Methods for Creating New Distributions

1.5.1 Compound distribution

• Let X1, · · · , XN be iid nonnegative integer-valued random variables,
each distributed like X. We denote the sum of these random vari-

ables by S, so that

S = X1 + · · ·+XN . (1.60)

• If N is itself a nonnegative integer-valued random variable distrib-

uted independently of X1, · · · , XN , then S is said to have a com-
pound distribution.

• The distribution of N is called the primary distribution, and the

distribution of X is called the secondary distribution.
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• We shall use the primary-secondary convention to name a compound
distribution.

• Thus, if N is Poisson and X is geometric, S has a Poisson-geometric

distribution.

• A compound Poisson distribution is a compound distribution

where N is Poisson, for any secondary distribution.

• Consider the simple case where N has a degenerate distribution

taking value n with probability 1. S is then the sum of n terms of

Xi, where n is fixed. Suppose n = 2, so that S = X1 +X2.

• As the pf of X1 and X2 are fX(·), the pf of S is given by
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fS(s) = Pr(X1 +X2 = s)

=
sX
x=0

Pr(X1 = x and X2 = s− x)

=
sX
x=0

fX(s)fX(s− x), (1.62)

where the last line above is due to the independence of X1 and X2.

• The pf of S, fS(·), is the convolution of fX(·), denoted by (fX ∗
fX)(·), i.e.,

fX1+X2(s) = (fX ∗ fX)(s) =
sX
x=0

fX(x)fX(s− x). (1.63)

• Convolutions can be evaluated recursively. When n = 3, the 3-fold
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convolution is

fX1+X2+X3(s) = (fX1+X2 ∗ fX3)(s) =
(fX1 ∗ fX2 ∗ fX3)(s) = (fX ∗ fX ∗ fX)(s). (1.64)

• Example 1.7: Let the pf of X be fX(0) = 0.1, fX(1) = 0,

fX(2) = 0.4 and fX(3) = 0.5. Find the 2-fold and 3-fold convolutions

of X.

• Solution: We first compute the 2-fold convolution. For s = 0 and

1, the probabilities are

(fX ∗ fX)(0) = fX(0)fX(0) = (0.1)(0.1) = 0.01,

and

(fX ∗ fX)(1) = fX(0)fX(1) + fX(1)fX(0) = (0.1)(0) + (0)(0.1) = 0.
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Other values are similarly computed as follows

(fX ∗ fX)(2) = (0.1)(0.4) + (0.4)(0.1) = 0.08,

(fX ∗ fX)(3) = (0.1)(0.5) + (0.5)(0.1) = 0.10,
(fX ∗ fX)(4) = (0.4)(0.4) = 0.16,

(fX ∗ fX)(5) = (0.4)(0.5) + (0.5)(0.4) = 0.40,
and

(fX ∗ fX)(6) = (0.5)(0.5) = 0.25.
For the 3-fold convolution, we show some sample workings as follows

f∗3X (0) = [fX(0)]
h
f∗2X (0)

i
= (0.1)(0.01) = 0.001,

f∗3X (1) = [fX(0)]
h
f∗2X (1)

i
+ [fX(1)]

h
f∗2X (0)

i
= 0,
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and

f∗3X (2) = [fX(0)]
h
f∗2X (2)

i
+ [fX(1)]

h
f∗2X (1)

i
+ [fX(2)]

h
f∗2X (0)

i
= 0.012.

• The results are summarized in Table 1.4
• We now return to the compound distribution in which the primary
distribution N has a pf fN(·). Using the total law of probability, we
obtain the pf of the compound distribution S as

fS(s) =
∞X
n=0

Pr(X1 + · · ·+XN = s |N = n) fN(n)

=
∞X
n=0

Pr(X1 + · · ·+Xn = s) fN(n),

in which the term Pr(X1 + · · · +Xn = s) can be calculated as the
n-fold convolution of fX(·).
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• The evaluation of convolution is usually quite complex when n is
large.

• Theorem 1.4: Let S be a compound distribution. If the primary

distribution N has mgfMN(t) and the secondary distribution X has

mgf MX(t), then the mgf of S is

MS(t) =MN [logMX(t)]. (1.66)

If N has pgf PN(t) and X is nonnegative integer valued with pgf

PX(t), then the pgf of S is

PS(t) = PN [PX(t)]. (1.67)

• Proof: The proof makes use of results in conditional expectation.

We note that
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MS(t) = E
³
etS
´

= E
³
etX1+ ···+ tXN

´
= E

h
E
³
etX1+ ···+ tXN |N

´i
= E

½h
E
³
etX

´iN¾
= E

n
[MX(t)]

N
o

= E
½h
elogMX(t)

iN¾
= MN [logMX(t)]. (1.68)

• Similarly we get PS(t) = PN [PX(t)].
• To compute the pf of S. We note that

fS(0) = PS(0) = PN [PX(0)], (1.70)
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• Also, we have
fS(1) = P

0
S(0). (1.71)

The derivative P 0S(t) may be computed by differentiating PS(t) di-
rectly, or by the chain rule using the derivatives of PN(t) and PX(t),

i.e.,

P 0S(t) = {P 0N [PX(t)]}P 0X(t). (1.72)

• Example 1.8: Let N ∼ PN (λ) and X ∼ GM(θ). Calculate

fS(0) and fS(1).

• Solution: The pgf of N is

PN(t) = exp[λ(t− 1)],
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and the pgf of X is

PX(t) =
θ

1− (1− θ)t
.

The pgf of S is

PS(t) = PN [PX(t)] = exp

"
λ

Ã
θ

1− (1− θ)t
− 1

!#
,

from which we obtain

fS(0) = PS(0) = exp [λ (θ − 1)] .
To calculate fS(1), we differentiate PS(t) directly to obtain

P 0S(t) = exp

"
λ

Ã
θ

1− (1− θ)t
− 1

!#
λθ(1− θ)

[1− (1− θ)t]2
,

so that

fS(1) = P
0
S(0) = exp [λ (θ − 1)]λθ(1− θ).
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• The Panjer (1981) recursion is a recursive method for computing the
pf of S, which applies to the case where the primary distribution N

belongs to the (a, b, 0) class.

• Theorem 1.5: If N belongs to the (a, b, 0) class of distributions

and X is a nonnegative integer-valued random variable, then the pf

of S is given by the following recursion

fS(s) =
1

1− afX(0)
sX
x=1

Ã
a+

bx

s

!
fX(x)fS(s−x), for s = 1, 2, · · · ,

(1.74)

with initial value fS(0) given by equation (1.70).

• Proof: See Dickson (2005), Section 4.5.2.

• The mean and variance of a compound distribution can be obtained
from the means and variances of the primary and secondary distri-
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butions. Thus, the first two moments of the compound distribution

can be obtained without computing its pf.

• Theorem 1.6: Consider the compound distribution. We de-

note E(N) = μN and Var(N) = σ2N , and likewise E(X) = μX and

Var(X) = σ2X . The mean and variance of S are then given by

E(S) = μNμX , (1.75)

and

Var(S) = μNσ
2
X + σ2Nμ

2
X . (1.76)

• Proof: We use the results in Appendix A.11 on conditional ex-

pectations to obtain

E(S) = E[E(S |N)] = E[E(X1 + · · ·+XN |N)] = E(NμX) = μNμX .

(1.77)

32



From (A.115), we have

Var(S) = E[Var(S |N)] + Var[E(S |N)]
= E[Nσ2X ] + Var(NμX)

= μNσ
2
X + σ2Nμ

2
X , (1.78)

which completes the proof.

• If S is a compound Poisson distribution with N ∼ PN (λ), so that
μN = σ2N = λ, then

Var(S) = λ(σ2X + μ2X) = λE(X2). (1.79)

Proof of equation (1.78)

Given two random variables X and Y , the conditional variance Var(X |Y )
is defined as v(Y ), where

v(y) = Var(X | y) = E{[X − E(X | y)]2 | y} = E(X2 | y)− [E(X | y)]2.
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Thus, we have

Var(X |Y ) = E(X2 |Y )− [E(X |Y )]2,

which implies

E(X2 |Y ) = Var(X |Y ) + [E(X |Y )]2.

Now we have

Var(X) = E(X2)− [E(X)]2
= E[E(X2 |Y )]− [E(X)]2
= E{Var(X |Y ) + [E(X |Y )]2}− [E(X)]2
= E[Var(X |Y )] + E{[E(X |Y )]2}− [E(X)]2
= E[Var(X |Y )] + E{[E(X |Y )]2}− {E[E(X |Y )]}2
= E[Var(X |Y )] + Var[E(X |Y )].

34



• Example 1.10: Let N ∼ PN (2) and X ∼ GM(0.2). Calculate

E(S) and Var(S). Repeat the calculation for N ∼ GM(0.2) and

X ∼ PN (2).

• Solution: As X ∼ GM(0.2), we have

μX =
1− θ

θ
=
0.8

0.2
= 4,

and

σ2X =
1− θ

θ2
=

0.8

(0.2)2
= 20.

If N ∼ PN (2), we have E(S) = (4)(2) = 8. Since N is Poisson, we

have

Var(S) = 2(20 + 42) = 72.

For N ∼ GM(0.2) and X ∼ PN (2), μN = 4, σ2N = 20, and μX =
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σ2X = 2. Thus, E(S) = (4)(2) = 8, and we have

Var(S) = (4)(2) + (20)(4) = 88.

• We have seen that the sum of independently distributed Poisson

distributions is also Poisson.

• It turns out that the sum of independently distributed compound

Poisson distributions has also a compound Poisson distribution.

• Theorem 1.7: Suppose S1, · · · , Sn have independently distributed
compound Poisson distributions, where the Poisson parameter of Si

is λi and the pgf of the secondary distribution of Si is Pi(·). Then
S = S1+ · · ·+Sn has a compound Poisson distribution with Poisson
parameter λ = λ1 + · · ·+ λn. The pgf of the secondary distribution

of S is P (t) =
Pn
i=1wiPi(t), where wi = λi/λ.
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• Proof: The pgf of S is (see Example 1.11 for an application)

PS(t) = E
³
tS1+ ···+Sn

´
=

nY
i=1

PSi(t)

=
nY
i=1

exp {λi[Pi(t)− 1]}

= exp

(
nX
i=1

λiPi(t)−
nX
i=1

λi

)

= exp

(
nX
i=1

λiPi(t)− λ

)

= exp

(
λ

"
nX
i=1

λi
λ
[Pi(t)]− 1

#)
= exp {λ[P (t)− 1]} . (1.80)
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1.5.2 Mixture distribution

• Let X1, · · · , Xn be random variables with corresponding pf or pdf

fX1(·), · · · , fXn(·) in the common support Ω. A new random variable
X may be created with pf or pdf fX(·) given by

fX(x) = p1fX1(x) + · · ·+ pnfXn(x), x ∈ Ω, (1.82)

where pi ≥ 0 for i = 1, · · · , n and Pn
i=1 pi = 1.

• Theorem 1.8: The mean of X is

E(X) = μ =
nX
i=1

piμi, (1.83)

and its variance is

Var(X) =
nX
i=1

pi
h
(μi − μ)2 + σ2i

i
. (1.84)
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• Example 1.12: The claim frequency of a bad driver is distributed

as PN (4), and the claim frequency of a good driver is distributed as
PN (1). A town consists of 20% bad drivers and 80% good drivers.

What is the mean and variance of the claim frequency of a randomly

selected driver from the town?

• Solution: The mean of the claim frequency is

(0.2)(4) + (0.8)(1) = 1.6,

and its variance is

(0.2)
h
(4− 1.6)2 + 4

i
+ (0.8)

h
(1− 1.6)2 + 1

i
= 3.04.

• The above can be generalized to continuous mixing.
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1.5 Excel Computation Notes

Table 1.5: Some Excel functions

Example
X Excel function input output

BN (n, θ) BINOMDIST(x1,x2,x3,ind) BINOMDIST(4,10,0.3,FALSE) 0.2001
x1 = x BINOMDIST(4,10,0.3,TRUE) 0.8497
x2 = n
x3 = θ

PN (λ) POISSON(x1,x2,ind) POISSON(4,3.6,FALSE) 0.1912
x1 = x POISSON(4,3.6,TRUE) 0.7064
x2 = λ

NB(r, θ) NEGBINOMDIST(x1,x2,x3) NEGBINOMDIST(3,1,0.4) 0.0864
x1 = x NEGBINOMDIST(3,3,0.4) 0.1382
x2 = r
x3 = θ
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