Nonlife Actuarial Models

Chapter 1

Claim-Frequency Distribution



Learning Objectives

Discrete distributions for modeling claim frequency

Binomial, geometric, negative binomial and Poisson distributions
The (a,b,0) and (a,b, 1) classes of distributions

Compound distribution

Convolution

Mixture distribution



1.2 Review of Statistics

e Distribution function (df) of random variable X

Fx(x) = Pr(X < x). (1.1)

e Probability density function (pdf) of continuous random vari-

able

fX(x) — e (1.2)

e Probability function (pf) of discrete random variable

Pr(X = x), if © € Qx,

0, otherwise. (L.3)

frta) = {

where ()x is the support of X



e Moment generating function (mgf), defined as

Mx(t) = E(e™). (1.6)

e Moments of X are obtainable from mgf by

drMX(t) d" tX tX
so that
M (0) = B(X") = 4. (1.8)



o If X1, X5, ---,X, are independently and identically distrib-
uted (iid) random variables with mgf M (¢), and X = X1+ - -+ X,
then the mgf of X is

Mx(t) = E(e¥) = E (ﬁl 6tXi> - f[l E(eX) = [M@®)]".  (1.9)

e Probability generating function (pgf), defined as Px(t) = E(t*),

Px(t) = i)tfo(x), (1.13)
so that for X taking nonnegative integer values.
e We have
P (t) = ix(m— - (z—r+1t" " fx(x) (1.14)



so that

e Raw moments can be obtained by differentiating mgf,
e pf can be obtained by differentiating pgf.

e The mgf and pgt are related through the following equations
Mx(t) = Px(e"), (1.11)

and

Px(t) = Mx(logt). (1.12)



1.3 Some Discrete Distributions

(1) Binomial Distribution: X ~ BN (n,0) if

n
X

fx(x) = ( >(9“"(1 —0)" ", for x=0,1,---,n, (1.17)

e The mean and variance of X are
E(X) =nd and  Var(X) =nf(1—0), (1.19)
so that the variance of X is always smaller than its mean.

e How do you prove these results?

e The mgf of X is
Mx(t) = (6" +1—0)", (1.20)



and its pgf is
Px(t)=(60t+1—0)". (1.21)

e A recursive relationship for fx(z) is

fta) = |0 e ) (1.23)

(2) Geometric Distribution: X ~ GM(0) if

fx(x)=0(1-6), for z=0,1,--. (1.24)

e The mean and variance of X are

1—-06 1—-46
E(X) = —5 and Var(X) = TR

(1.25)



e How do you prove these results?

e The mgt of X is

0
M = 1.2
x (1) 1—(1—6)et’ (1.26)
and its pgf is X
6
Px(t) = e (1.27)

e The pf satisfies the following recursive relationship

fx(@) = (1 =0) fx(z - 1), (1.28)

for x = 1,2, -, with starting value fx(0) = 6.



(3) Negative Binomial Distribution: X ~ NB(r,0) if

fx(z) = (‘” :i; 1) 07 (1—6)*,  for £ =0,1,--- (1.29)
e The mean and variance are
1 — —
B(x) = : O and  varx) =Y - O (130
e The mgf of N'B(r,0) is
Mx(t) = / T (1.31)
AT (1= 0)et| |
and its pgf is
9 T
P — : :



e May extend the parameter r to any positive number (not necessarily

integer).

e The recursive formula of the pf is

felw) = |EEr DA ey (1)

X

with starting value
fx(0)=46". (1.38)
(4) Poisson Distribution: X ~ PN ()), if the pf of X is given by

Ao

] for +=0,1,--- , (1.39)

fx ()

)

e The mean and variance of X are
E(X) = Var(X) = A (1.40)

11



The mgt of X is
Mx(t) = exp [A(e — 1)], (1.41)

and its pgf is
Px(t) =exp[A(t —1)]. (1.42)

e Two important theorems of Poisson distribution

e Theorem 1.1: If Xy, ---, X, are independently distributed with
X; ~PN(N), fori=1,--- n, then X = X;+---+X,, is distributed

as a Poisson with parameter A = Ay + -+ + A,.
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e Proof: To prove this result, we make use of the mgt. Note that
the mgf of X is

Mx(t) = E(e)
E(etXl + - +tXn)

(i)

1=1

= exp (et — 1) Z)\@]
= exp (e = 1)), (1.43)
which is the mgf of PA()N).
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e Theorem 1.2: Suppose an event A can be partitioned into m
mutually exclusive and exhaustive events A;, for ¢ = 1,--- ,m. Let
X be the number of occurrences of A, and X, be the number of
occurrences of A;, so that X = X; +--- + X,,,. Let the probability
of occurrence of A; given A has occurred be p;, i.e., Pr(4; | A) = p;,
with > p; = 1. If X ~ PN(A), then X; ~ PN()\;), where \; =
Ap;. Furthermore, X, - -, X,, are independently distributed.

e Proof: To prove this result, we first derive the marginal distribu-
tion of X;. Given X =z, X; ~ BN (x, p;). Hence, the marginal pf of
X; is pf of PN (Ap;). Then we show that the joint pf of X1, -, X,
is the product of their marginal pf, so that X3, ---, X, are indepen-
dent.
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Table A.1: Some discrete distributions

Distribution, parameters,

notation and support pf fx(x) mgf Mx (t) Mean Variance
Binomial n
BN (n, ) (()e=(1 —o)n—e (Get +1 — )™ né nd(1 — 6)
x
x e {0,1,---,n}
Poisson ATe—A
PN(N) ' exp [A(e! — 1) A A
xe{0,1,---} o
Geometric
0 1—6 1—6
GM () (1 —6)* - — 5
Negative binomial r
—1 0 1—6 1—6
NB(r,0) (¥ tr )om(1 - 6) [ t] rd—9) | . )
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1.4 The (a,b,0) Class of Distributions

e Definition 1.1: A nonnegative discrete random variable X is in

the (a,b,0) class if its pf fx(x) satisfies the following recursion

fx(x) = <a+i> fx(x —1), forx =1,2,---, (1.48)

where a and b are constants, with given fx(0).

e As an example, we consider the binomial distribution. Its pf can be

written as follows

) = [0+ A -0, (a9
Thus, we let
B 0 ~ O(n+1)
a=-—7—7 and b= 1-0) (1.50)



e Binomial, geometric, negative binomial and Poisson belong to the

(a,b,0) class of distributions.

Table 1.2:  The (a,b,0) class of distributions

Distribution a b fx(0)

. - 0 O(n+1) -
Binomial: BN (n,0) T T3 (1—20)
Geometric: GM(0) 1—146 0 0
Negative binomial: N B(r,6) 1—0 (r—1)(1—80) "
Poisson: PN () 0 A e
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It may be desirable to obtain a good fit of the distribution at zero
claim based on empirical experience and yet preserve the shape to

coincide with some simple parametric distributions.

This can be achieved by specifying the zero probability while adopt-

ing the recursion to mimic a selected (a, b, 0) distribution.

Let fx(x) be the pf of a (a,b,0) distribution called the base distri-
bution. We denote f¥(x) as the pf that is a modification of fx(z).

The probability at point zero, f¥(0), is specified and f#(x) is re-
lated to fx(z) as follows

f(z) =cfx(z), forz=1,2---, (1.52)

where ¢ is an appropriate constant.
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e For f#(-) to be a well defined pf, we must have

L= 0+ )

= JHO)+ e fx(@
= Y(0) + c[1 = fx(0)] (1.53)
Thus, we conclude that
_ 1 f%(0)
c=7_ Fe(0) (1.54)

Substituting c into equation (1.52) we obtain f¥ (z), forz = 1,2, - -.

e Together with the given f3(0), we have a distribution with the
desired zero-claim probability and the same recursion as the base
(a,b,0) distribution.

19



e This is called the zero-modified distribution of the base (a,b,0)

distribution.

e In particular, if f¥(0) = 0, the modified distribution cannot take

value zero and is called the zero-truncated distribution.

e The zero-truncated distribution is a particular case of the zero-
modified distribution.
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1.5 Some Methods for Creating New Distributions

1.5.1 Compound distribution

e Let Xy, -, Xy be iid nonnegative integer-valued random variables,
each distributed like X. We denote the sum of these random vari-
ables by .S, so that

S=X1+--+ Xn. (1.60)

e If IV is itself a nonnegative integer-valued random variable distrib-
uted independently of X, ---, Xy, then S is said to have a com-

pound distribution.

e The distribution of N is called the primary distribution, and the

distribution of X is called the secondary distribution.
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We shall use the primary-secondary convention to name a compound

distribution.

Thus, if IV is Poisson and X is geometric, S has a Poisson-geometric

distribution.

A compound Poisson distribution is a compound distribution

where N is Poisson, for any secondary distribution.

Consider the simple case where N has a degenerate distribution
taking value n with probability 1. S is then the sum of n terms of
X;, where n is fixed. Suppose n = 2, so that S = X; + Xo.

As the pf of X; and X5 are fx(+), the pf of S is given by
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fs(s) = Pr(X;+ Xs=05)
= iPr(Xl =z and Xy = s — 1)

=0

— Z fX fX S — Qj) (1.62)

where the last line above is due to the independence of X; and Xs.

e The pf of S, fs(-), is the convolution of fx(-), denoted by (fx *

fX)(')7 le

fxiix.(8) = (fx * fx)(s ZfX )fx(s —x). (1.63)

e Convolutions can be evaluated recursively. When n = 3, the 3-fold
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convolution is

fX1+X2+X3<S> — (fXH—Xz * fX3)<8> —

(fxr * [xo * [x3)(8) (fx * fx * fx)(s). (1.64)

e Example 1.7: Let the pf of X be fx(0) = 0.1, fx(1) = 0,
fx(2) = 0.4 and fx(3) = 0.5. Find the 2-fold and 3-fold convolutions
of X.

e Solution: We first compute the 2-fold convolution. For s = 0 and

1, the probabilities are

(fx * fx)(0) = fx(0)fx(0) = (0.1)(0.1) = 0.01,

and

(Fx * Fx)(1) = Fx(0)fx(1) + fx(1)fx(0) = (0.1)(0) + (0)(0.1) = 0.
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Other values are similarly computed as follows

(Fx * fx)(2) = (0.1)(0.4) + (0.4)(0.1) = 0.08,

(fx * fx)(3)
(fx * fx)(4) = (0.4)(0.4) = 0.16,
(fx * fx)(5) = (0.4)(0.5) + (0.5)(0.4) = 0.40,

(0.1)(0.5) + (0.5)(0.1) = 0.10,

and
(fx * fx)(6) = (0.5)(0.5) = 0.25.

For the 3-fold convolution, we show some sample workings as follows
1320) = [£x(0)] [ £32(0)] = (0.1)(0.01) = 0.001,

2 = O] [£20)] + @) [20)] =0
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and

22) = [xO)] [fL2@] + W] [2O] + [£x @) | £2(0)]
= 0.012.

e The results are summarized in Table 1.4

e We now return to the compound distribution in which the primary
distribution N has a pf fx(:). Using the total law of probability, we
obtain the pf of the compound distribution S as

fs(s) = iPr(X1+---+XN=S\N=n)fzv(n)

— SPHX o+ X, = 8) f(n),
n=0

in which the term Pr(X; + --- + X,, = s) can be calculated as the

n-fold convolution of fx(-).
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e The evaluation of convolution is usually quite complex when n is

large.

e Theorem 1.4: Let S be a compound distribution. If the primary
distribution N has mgf My (t) and the secondary distribution X has
mgf Mx(t), then the mgf of S is

Ms(t) = Mn|log Mx(t)]. (1.66)

If N has pgf Py(t) and X is nonnegative integer valued with pgf
Px (t), then the pgf of S is

Ps(t) = Pn|Px(t)]. (1.67)

e Proof: The proof makes use of results in conditional expectation.
We note that
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)

(etXl—I— +tXN)

E( tX1 + - —f-tXN‘N)]

B
(1o’
e

log Mx (t) }

I
=2 O .

I
=

I
=

= E
= Myllog Mx(t)]. (1.68)
e Similarly we get Ps(t) = Pn[Px()].
e To compute the pf of S. We note that

fs(0) = Ps(0) = Py[Px(0)], (1.70)
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e Also, we have
fs(1) = Ps(0). (1.71)

The derivative P.(t) may be computed by differentiating Ps(t) di-
rectly, or by the chain rule using the derivatives of Py(t) and Px(t),
le.,

Pg(t) = {Py[Px (8)]} Px(t). (1.72)

e Example 1.8: Let N ~ PN ()A) and X ~ GM(#). Calculate
fs(O) and fS(l)

e Solution: The pgf of N is

Py (t) = exp[A(t — 1)],
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and the pgf of X is

The pgt of S is

Patt) = PxlPs(0] = e ) (== =1
from which we obtain
fs(0) = Ps(0) = exp [A (0 — 1)].

To calculate fs(1), we differentiate Pg(t) directly to obtain

0= )

so that
fs(1) = P(0) = exp [ (0 — 1)] A0(1 — 6).
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e The Panjer (1981) recursion is a recursive method for computing the
pf of S, which applies to the case where the primary distribution N
belongs to the (a,b,0) class.

e Theorem 1.5: If N belongs to the (a,b,0) class of distributions
and X is a nonnegative integer-valued random variable, then the pf

of S is given by the following recursion

fS(S) — 1 G}fx(()) i (CL—|— bg) fX<x)fS<S_x)7 for s = 1727 T

= (1.74)

with initial value fs(0) given by equation (1.70).
e Proof: See Dickson (2005), Section 4.5.2.

e The mean and variance of a compound distribution can be obtained

from the means and variances of the primary and secondary distri-
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butions. Thus, the first two moments of the compound distribution

can be obtained without computing its pf.

Theorem 1.6: Consider the compound distribution. We de-
note E(N) = uy and Var(N) = 0%, and likewise E(X) = ux and

Var(X) = 0%. The mean and variance of S are then given by

E(S) = unpx, (1.75)

and
Var(S) = uyos + oty (1.76)

Proof:  We use the results in Appendix A.11 on conditional ex-

pectations to obtain

E(S) = E[E(S|N)] = E[E(X1 + -+ Xn | N)] = E(Nux) = pnpx.
(1.77)
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From (A.115), we have
Var(S) = E|[Var(S|N)]+ Var[E(S|N)]
= E[No%] + Var(Nux)
= pNox +OoRlk, (1.78)

which completes the proof.

e If S is a compound Poisson distribution with N ~ PN (), so that

uy = 0% = A, then
Var(S) = Mo% + %) = AE(X?). (1.79)
Proof of equation (1.78)

Given two random variables X and Y, the conditional variance Var(X |Y)
is defined as v(Y'), where

v(y) = Var(X |y) = E{[X —E(X |y)]* |y} = E(X?|y) — [E(X |y)]>.
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Thus, we have

which implies

Now we have

Var(X)

Var(X |Y)

E(X*]Y)

E(X?) —

D)
E
E

=E(X*]Y) - [E(X V)],

— Var(X |Y)

E(X)
EEX®Y)] -
E{Var(X |Y)
Var(X
Var(X
Var(X

B

+ [E(X Y} -
|+ E{[EX|Y)
|+ E{[EX[Y)F
| + Var[E(X | Y)].
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B(X

E
{E

+ [E(X V).

)’
(X))
[E(X|Y)]}



e Example 1.10: Let N ~ PN(2) and X ~ GM(0.2). Calculate
E(S) and Var(S). Repeat the calculation for N ~ GM(0.2) and
X ~ PN(2).

e Solution: As X ~ GM(0.2), we have

_1-0_ 08 _ 4
X7 o2
and 1-0 08
2= = =90
XT TR T (0.2)
If N ~PN(2), we have E(S) = (4)(2) = 8. Since N is Poisson, we
have

Var(S) = 2(20 + 4°) = 72.
For N ~ GM(0.2) and X ~ PN (2), uxy = 4, ox = 20, and py =

35



0% = 2. Thus, E(S) = (4)(2) = 8, and we have

Var(S) = (4)(2) + (20)(4) = 88.

We have seen that the sum of independently distributed Poisson

distributions is also Poisson.

It turns out that the sum of independently distributed compound

Poisson distributions has also a compound Poisson distribution.

Theorem 1.7: Suppose S, -, S, have independently distributed
compound Poisson distributions, where the Poisson parameter of S;
is A\; and the pgf of the secondary distribution of S; is P;(-). Then
S =51+-45, has a compound Poisson distribution with Poisson
parameter A = Ay +--- 4+ \,. The pgt of the secondary distribution
of S'is P(t) = Y vy w; Py(t), where w; = \;/ .
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e Proof: The pgf of S is (see Example 1.11 for an application)

_ ﬁlp& (1)
— f[lexp { il P5(t) — 1]}

n

= exp <(i WAGEDS )\i}

\1=1 1=1

\1=1

— el li %[Pi(t)] ~ 1] }

\ 1=1

— exp {\[P(t) —1]}. (1.80)
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1.5.2 Mixture distribution

o Let Xy, ---, X, be random variables with corresponding pf or pdf
fx,(+), -, fx,(+) in the common support 2. A new random variable

X may be created with pf or pdf fx(:) given by

fx(x)=pifx,(x) + -+ pufx,(x), z€Q, (1.82)

where p; > 0fort=1,---,nand > ;p; = 1.

e Theorem 1.8: The mean of X is
E(X) =p= sz-m, (1.83)
i=1

and its variance is

Var(X) = > i (1 — ) + 7] (1.84)
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e Example 1.12: The claim frequency of a bad driver is distributed
as PN (4), and the claim frequency of a good driver is distributed as
PN (1). A town consists of 20% bad drivers and 80% good drivers.
What is the mean and variance of the claim frequency of a randomly

selected driver from the town?

e Solution: The mean of the claim frequency is
(0.2)(4) + (0.8)(1) = 1.6,
and its variance is

(0.2) [(4 = 1.6)* + 4| + (0.8) |(1 — 1.6)* + 1| = 3.04.

e The above can be generalized to continuous mixing.
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1.5 Excel Computation Notes

Table 1.5: Some Excel functions

Example

X Excel function input output

BN(n, 9) BINOMDIST (x1,x2,x3,ind) BINOMDIST(4,10,0.3,FALSE) 0.2001
xl==x BINOMDIST(4,10,0.3,TRUE) 0.8497
X2 =n
x3 =10

PN (M) POISSON(x1,x2,ind) POISSON(4,3.6,FALSE) 0.1912
xl==x POISSON(4,3.6,TRUE) 0.7064
X2 = A

NB(r,0)  NEGBINOMDIST(x1,x2,x3) NEGBINOMDIST(3,1,0.4) 0.0864
xl==x NEGBINOMDIST(3,3,0.4) 0.1382

X2 =17r
x3 =0
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