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Stochastic Interest Rates
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Learning Objectives

• Deterministic scenarios of interest rates

• Random-scenario model

• Independent lognormal model

• Autoregressive lognormal model

• Dynamic term structure model

• Illustration of stochastic interest rate approach via an application
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9.1 Deterministic Scenarios of Interest Rates

• We denote it, for t = 2, 3, · · ·, as the 1-period future spot rate ap-
plicable from time t − 1 to time t. For completeness we denote

i1 = i
S
1 , which is known at time 0.

• Unlike the forward rates iFt , which are determined by the current
term structure, it for t > 1 is unknown at time 0. However, scenarios

may be constructed to model the possible values of it.

• A deterministic interest rate scenario is a sequence of pre-specified
1-period rates it applicable in the future.

• The US 1990 Standard Valuation Law requires cash-flow testing un-
der seven prescribed interest rate scenarios. These scenarios are
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similar to those used in the New York Regulation 126 and they are

now commonly known as the NY7 scenarios. See Table 9.1.

Table 9.1: The NY7 interest rate scenarios

Scenario Interest rate movement
1 Base scenario Level
2 Gradual increase Uniformly increasing over 10 years at 0.5% per year, and then level
3 Up-down Uniformly increasing over 5 years at 1% per year, then

uniformly decreasing over 5 years at 1% per year to the original level
at the end of 10 years, and then level

4 Pop-up An immediate increase of 3%, and then level
5 Gradual decrease Uniformly decreasing over 10 years at 0.5% per year, and then level
6 Down-up Uniformly decreasing over 5 years at 1% per year, then

uniformly increasing over 5 years at 1% per year to the original level
at the end of 10 years, and then level

7 Pop-down An immediate decrease of 3%, and then level
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Example 9.1: Given that the current 1-year spot rate is 6%, (a) find it
for t = 1, · · · , 12 under the “up-down” scenario of NY7, and (b) compute
a12e under this interest rate scenario.

Solution: (a) The interest rates under the “up-down” scenario are given
in the following table:

t 1 2 3 4 5 6 7 8 9 10 11 12
it 6% 7% 8% 9% 10% 11% 10% 9% 8% 7% 6% 6%

(b) Using equation (3.12) (with iFt replaced by it) and the above interest

rate scenario, we obtain a12e = 7.48. 2
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9.2 Random-Scenario Model

• A random-scenario model is a collection of specified plausible interest
rate scenarios.

• The modeler, however, needs to state the probability distribution of
these scenarios. Both the choice of scenarios and the corresponding

probability assignment require personal judgement, which should

reflect the modeler’s view on the future interest-rate environment of

the economy.

Example 9.2: Consider the following random interest rate scenario

model.
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Scenario Probability i1 i2 i3 i4 i5
1 0.1 3.0% 2.0% 2.0% 1.5% 1.0%
2 0.6 3.0% 3.0% 3.0% 3.5% 4.0%
3 0.3 3.0% 4.0% 5.0% 5.0% 5.0%

Find the mean, the variance and the standard deviation of a(5), 1/a(5),

a5e, ä5e, s5e and s̈5e under this model.

Solution: Note that

äne =
n−1X
t=0

1

a(t)

= 1 +
n−1X
t=1

1

a(t)

= 1 +
n−1X
t=1

1Qt
j=1(1 + ij)

. (9.1)

Using (3.10) through (3.12), (9.1), (3.14) and (3.15) (with iFt replaced by
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it), we can compute the values of a(5), 1/a(5), a5e, ä5e, s5e and s̈5e under
each scenario. For example, under the first scenario, we have

a(5) = (1.03)(1.02)(1.02)(1.015)(1.01) = 1.0986,

1

a(5)
=

1

1.0986
= 0.9103,

a5e =
1

(1.03)
+

1

(1.03)(1.02)
+· · ·+ 1

(1.03)(1.02)(1.02)(1.015)(1.01)
= 4.6855,

ä5e = 1 +
1

(1.03)
+ · · ·+ 1

(1.03)(1.02)(1.02)(1.015)
= 4.7753,

s5e = 1 + (1.01) + · · ·+ (1.01)(1.015)(1.02)(1.02) = 5.1474,
and

s̈5e = (1.01)+(1.01)(1.015)+· · ·+(1.01)(1.015)(1.02)(1.02)(1.03) = 5.2459.
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We repeat the calculations for the other two scenarios and summarize the

results in the following table.

Scenario Probability a(5) 1/a(5) a5e ä5e s5e s̈5e
1 0.1 1.0986 0.9103 4.6855 4.7753 5.1474 5.2459
2 0.6 1.1762 0.8502 4.5630 4.7128 5.3670 5.5433
3 0.3 1.2400 0.8064 4.4466 4.6402 5.5141 5.7541

Therefore,

E

"
1

a(5)

#
= (0.1× 0.9103) + (0.6× 0.8502) + (0.3× 0.8064) = 0.8431,

and

Var

"
1

a(5)

#
= 0.1× (0.9103− 0.8431)2 + 0.6× (0.8502− 0.8431)

+ 0.3× (0.8064− 0.8431)2
= 0.00089.
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The mean, the variance and the standard deviation of other variables can

be computed similarly. The results are given in the following table.

a(5) 1/a(5) a5e ä5e s5e s̈5e
Mean 1.1876 0.8431 4.5403 4.6973 5.3892 5.5768
Variance 0.00170 0.00089 0.00505 0.00173 0.01082 0.02105
Std Dev 0.0412 0.0298 0.0711 0.0416 0.1040 0.1451

2

10



9.3 Independent Lognormal Model

• The Independent Lognormal Model assumes that 1 + it are in-
dependently lognormally distributed with parameters μ and σ2. In

other words, ln(1 + it) follows a normal distribution with mean μ

and variance σ2 (see Appendix A.14).

• Thus,
ln(1 + it) ∼ N(μ,σ2). (9.2)

• The mean and variance of the lognormal random variable (1 + it)

are, respectively,

E (1 + it) = e
μ+ 1

2
σ2, (9.3)

and

Var(1 + it) =
³
e2μ+σ

2
´ ³
eσ

2 − 1
´
. (9.4)
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• We now consider the mean and variance of a(n), 1/a(n), s̈ne, ane,
sne and äne under the independent lognormal interest rate model.

• We shall assume all 1-period spot rates to be random, including the
rate for the first period i1.

• From (3.10), we have

a(n) =
nY
t=1

(1 + it).

• Thus,
ln [a(n)] =

nX
t=1

ln(1 + it). (9.5)

• Therefore, ln [a(n)] is normal with mean nμ and variance nσ2, im-
plying a(n) is lognormal with parameters nμ and nσ2.
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• Using (9.3) and (9.4), we have

E [a(n)] = enμ+
n
2
σ2, (9.6)

and

Var [a(n)] =
³
e2nμ+nσ

2
´ ³
enσ

2 − 1
´
. (9.7)

• For the distribution of (1+it)−1, under the lognormal model we have

ln
h
(1 + it)

−1i = − ln(1 + it),
so that

ln
h
(1 + it)

−1i ∼ N(−μ,σ2), (9.8)

and (1 + it)−1 follows a lognormal distribution with parameters −μ
and σ2.
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• From (3.11), we have

1

a(n)
=

nY
t=1

(1 + it)
−1,

so that

E

"
1

a(n)

#
= e−nμ+

n
2
σ2, (9.9)

and

Var

"
1

a(n)

#
=
³
e−2nμ+nσ

2
´ ³
enσ

2 − 1
´
. (9.10)

• The statistical properties of annuities (say, s̈ne, ane, sne and äne)
under the lognormal interest rate assumption are fairly complex.

• We present and discuss some applications of their mean and variance
formulas without going through the proof.
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• We first define rs such that 1 + rs = E(1 + it) = eμ+ 1
2
σ2, implying

rs = e
μ+ 1

2
σ2 − 1. (9.11)

• Furthermore, we let
js = 2rs + r

2
s + v

2
s , (9.12)

where

v2s = Var(1 + it) =
³
e2μ+σ

2
´ ³
eσ

2 − 1
´
. (9.13)

• The mean of s̈ne is

E
³
s̈ne
´
= E

⎡⎣ nX
t=1

tY
j=1

(1 + in−j+1)

⎤⎦
=

nX
t=1

tY
j=1

E(1 + in−j+1)
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=
nX
t=1

(1 + rs)
t

= s̈ners, (9.14)

where s̈ners is s̈ne evaluated at the rate rs.

• Similarly, the variance of s̈ne is

Var
³
s̈ne
´
=

Ã
js + rs + 2

js − rs

!
s̈nejs−

Ã
2js + 2

js − rs

!
s̈ners−

³
s̈ners

´2
. (9.15)

• Next, we consider ane. We define ra such that (1 + ra)−1 =
E(1 + it)

−1 = e−μ+
1
2
σ2, implying

ra = e
μ− 1

2
σ2 − 1. (9.16)

• Furthermore, we let
ja = e

2(μ−σ2) − 1. (9.17)
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• Similar to (9.14) and (9.15), we can show that the mean of ane is
E
³
ane

´
= anera and

Var
³
ane

´
=

Ã
ja + ra + 2

ra − ja

!
aneja −

Ã
2ra + 2

ra − ja

!
anera −

³
anera

´2
.

(9.19)

• Furthermore, we have

E
³
äne

´
= 1 + E

³
an−1e

´
, (9.20)

E
³
sne
´
= 1 + E

³
s̈n−1e

´
. (9.21)

Var
³
äne

´
= Var

³
an−1e

´
, (9.22)

and

Var
³
sne
´
= Var

³
s̈n−1e

´
. (9.23)
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Example 9.3: Consider a lognormal interest rate model with parameters
μ = 0.04 and σ2 = 0.016. Find the mean and variance of a(5), 1/a(5), s̈5e,
a5e, s5e and ä5e under this model.

Solution: We apply equations (9.6) through (9.10) to obtain

E [a(5)] = 1.27125,

Var [a(5)] = 0.13460,

E

"
1

a(5)

#
= 0.85214,

Var

"
1

a(5)

#
= 0.06058.

For s̈5e, using expressions (9.11) through (9.13), we have

rs = e0.04+
1
2
(0.016) − 1 = 0.04917,

v2s =
³
e2(0.04)+0.016

´ ³
e0.016 − 1

´
= 0.01775,
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js = 2rs + r
2
s + v

2
s = 0.11851,

s̈5ers = 5.78773,

s̈5ejs = 7.08477.

Applying equations (9.14) and (9.15), we obtain

E
³
s̈5e
´
= 5.78773,

Var
³
s̈5e
´
= 1.26076.

For a5e, using expressions (9.16) and (9.17), we have

ra = e0.04−
1
2
(0.016) − 1 = 0.03252,

ja = e2(0.04−0.016) − 1 = 0.04917,
a5era = 4.54697,

a5eja = 4.33942.
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Applying equations (9.18) and (9.19), we obtain

E
³
a5e
´
= 4.54697,

Var
³
a5e
´
= 0.72268.

Finally, employing formulas (9.20) through (9.23), we obtain

E
³
ä5e
´
= 1 + E

³
a4e
´
= 1 + 3.69483 = 4.69483,

Var
³
ä5e
´
= Var

³
a4e
´
= 0.40836,

E
³
s5e
´
= 1 + E

³
s̈4e
´
= 1 + 4.51648 = 5.51648,

Var
³
s5e
´
= Var

³
s̈4e
´
= 0.64414.

2
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9.4 Autoregressive Model

• Let Yt = ln(1 + it). Under the independent lognormal model, we

have

Yt = ln(1 + it) ∼ N(μ,σ2), (9.24)

where there are no correlations between Yt and Yt−k for all k ≥ 1.

• We now consider interest rate models that allow some dependence
among Yt’s, say,

Corr(Yt, Yt−k) 6= 0, for some k ≥ 1, (9.25)

while maintaining the lognormal assumption.

• We consider the class of first-order autoregressive models, denoted
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by AR(1). The AR(1) model has the form

Yt = c+ φYt−1 + et, (9.26)

where c is the constant intercept and φ is the autoregressive para-

meter and et are independently and identically distributed normal

random variates each with mean zero and variance σ2.

• For |φ| < 1, the correlation structure of the interest-rate process

{Yt} is
Corr(Yt, Yt−k) = φk, for k = 1, 2, · · · , (9.27)

which does not vary with t.

• The mean and variance expressions of a(n), 1/a(n), ane, äne, sne and
s̈ne under an AR(1) interest rate model are very complex.
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• Thus, we consider a stochastic simulation approach to obtain the
empirical distributions illustrated in Table 9.2.

Table 9.2: A simulation procedure of a
ne for the AR(1) process

Step Procedure
1 Using historical interest rate data, estimate the parameters (c,φ,σ2) in the

AR(1) model.
2 Draw random normal numbers e1, e2, · · · , en (with mean zero and variance σ2)

from a random number generator.
3 Compute Y1, Y2, · · · , Yn using the AR(1) equation (9.26) and setting the initial value

Y0 = Y , where Y is the sample average of the observed data.
4 Convert Yt’s to an interest rate path (i1, i2, · · · , in) using the relationship it = eYt − 1.
5 Compute the a

ne function under the simulated interest rate path in Step 4.
6 Repeat Steps 2 to 4 m times. Note that the random normal variates in Step 2 are

redrawn each time and we have a different simulated interest rate path in each
replication.
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Example 9.4: Consider an AR(1) interest-rate model with parameters

c = 0.03, φ = 0.6 and σ2 = 0.001. Using the stochastic simulation method

described in Table 9.2 (with m = 1, 000 and Y0 = 0.06), find the mean

and variance of a(10), 1/a(10), a10e, ä10e, s10e and s̈10e under this model.

Solution: We follow the simulation steps in Table 9.2 and obtain the

empirical distributions (histograms) of the six functions, which are plotted

in Figure 9.1. The empirical means and variances are as follows:

a(10) 1/a(10) a10e ä10e s10e s̈10e
Mean 2.1656 0.4836 6.8382 7.3546 14.5018 15.6674
Variance 0.2224 0.0110 0.5678 0.4383 3.5101 5.3524

2

24



Figure 9.1: Histograms of simulated results in Example 9.4



9.5 Dynamic Term Structure Model

• There are two popular approaches to model the dynamic term struc-
ture: no-arbitrage approach and equilibrium modeling ap-
proach.

• The no-arbitrage approach focuses on perfectly fitting the term
structure at a point in time to ensure that no arbitrage opportunities

exist in the financial markets. This approach is important for pricing

derivatives.

• The equilibrium modeling approach focuses on modeling the
instantaneous spot rate of interest, called the short rate, and use
affine models to derive the yields at other maturities under various
assumptions of the risk premium.
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9.6 An Application: Guaranteed Investment Income

• We consider a hypothetical guaranteed income fund offered by a
bank with the following features:

• It is a closed-end fund. The bank sells only a fixed number
of units (say, 10,000 units with $1,000 face amount per unit) in

the initial public offering (IPO). No more units will be issued

by the bank after the IPO. Redemption prior to the maturity

date is not allowed.

• Investment period is 9 years.
• At maturity, the bank will return 100% of the face amount to

the investors.
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• At the end of each of the nine years, earnings from the fund

will be distributed to investors. In addition, the bank provides

a guarantee on the minimum rate of return each year according

to a fixed schedule:

Guaranteed rate
At the end of (as % of initial investment)
Year 1 3%
Year 2 4%
Year 3 4%
Year 4 5%
Year 5 5%
Year 6 5%
Year 7 5%
Year 8 5%
Year 9 5%

Thus, if the fund earns less than the guaranteed rate in any
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year, the bank has to top up the difference.

Example 9.5: Consider the above guaranteed income fund. Assume

that the rates of return for the fund in the next nine years are: 2%, 3%,

4%, 5%, 6%, 5%, 4%, 3%, 2%, respectively. Compute the cost of the

guarantee to the bank (i.e., the present value of the top-up amounts).

Solution: Let Gt be the guaranteed rate for year t offered by the bank,
it be the rate of return earned by the fund for year t, and Ut be the top-

up amount (per $1,000 face amount) by the bank to honor the guarantee

payable at the end of year t. Note that

Ut =

(
0, if it ≥ Gt,
1,000(Gt − it), if it < Gt.

(9.28)

Using equation (9.28), we compute Ut for each year. The results are given

as follows.
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t 1 2 3 4 5 6 7 8 9
it 2% 3% 4% 5% 6% 5% 4% 3% 2%
Gt 3% 4% 4% 5% 5% 5% 5% 5% 5%
Ut 10 10 0 0 0 0 10 20 30

The cost of the guarantee C is the present value of the Ut’s. Thus,

C =
9X
t=1

UtQt
j=1(1 + ij)

=
10

1.02
+

10

(1.02)(1.03)
+

0

(1.02)(1.03)(1.04)
+ · · ·

= 62.98. (9.30)

2

• The bank needs to charge an up-front premium to cover the cost of

the guarantee. We now apply the stochastic interest rate approach
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to examine the distribution of C. This information is useful to the

bank’s management for setting the premium.

• For illustration, we assume that the fund invests only in government
bonds and the returns of the fund follow an independent lognormal

interest rate model with parameters μ = 0.06 and σ2 = 0.0009, i.e.,

ln(1 + it) ∼ N(0.06, 0.0009). (9.30)

• We use stochastic simulation to produce a series of future interest
rate movements. For each of the simulated path, using equations

(9.28) and (9.29), a realization of C can be computed. We repeat the

simulation experiment m times (say, m = 5,000) and the empirical

distribution (histogram) of C can be obtained.

• The time lag between the bank’s filing of the required fund doc-
uments to the regulator for approval and the actual IPO is often
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lengthy. The bank has to determine the premium rate well before

the IPO date. Therefore, in the simulation, the first-period rate of

return i1 is not known at time 0.

• The simulation study is carried out and the empirical distribution
(histogram) of C is plotted in Figure 9.2.
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Figure 9.2: Empirical distribution (histogram) of the cost of the guarantee (C)


