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Learning Objectives

1. Macaulay duration and modified duration

2. Duration and interest-rate sensitivity

3. Convexity

4. Some rules for duration calculation

5. Asset-liability matching and immunization strategies

6. Target-date immunization and duration matching

7. Redington immunization and full immunization

8. Cases of nonflat term structure
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8.1 Macaulay Duration and Modified Duration

• Suppose an investor purchases a n-year semiannual coupon bond for
P0 at time 0 and holds it until maturity.

• As the amounts of the payments she receives are different at different
times, one way to summarize the horizon is to consider the weighted

average of the time of the cash flows.

• We use the present values of the cash flows (not their nominal values)
to compute the weights.

• Consider an investment that generates cash flows of amount Ct at
time t = 1, · · · , n, measured in payment periods. Suppose the rate
of interest is i per payment period and the initial investment is P .
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• We denote the present value of Ct by PV(Ct), which is given by

PV(Ct) =
Ct

(1 + i)t
. (8.1)

and we have

P =
nX
t=1

PV(Ct). (8.2)

• Using PV(Ct) as the factor of proportion, we define the weighted
average of the time of the cash flows, denoted by D, as

D =
nX
t=1

t

"
PV(Ct)
P

#

=
nX
t=1

twt, (8.3)

where

wt =
PV(Ct)
P

. (8.4)
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• As wt ≥ 0 for all t and Pn
t=1wt = 1, wt are properly defined weights

and D is the weighted average of t = 1, · · · , n.

• We call D the Macaulay duration, which measures the average
period of the investment.

• The value computed from (8.3) gives the Macaulay duration in terms
of the number of payment periods.

• If there are k payments per year and we desire to express the duration
in years, we replace t in (8.3) by t/k. The resulting value of D is

then the Macaulay duration in years.

Example 8.1: Calculate the Macaulay duration of a 4-year annual

coupon bond with 6% coupon and a yield to maturity of 5.5%.
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Solution: The present values of the cash flows can be calculated us-

ing (8.1) with i = 5.5%. The computation of the Macaulay duration is

presented in Table 8.1.

Table 8.1: Computation for Example 8.1

t Ct PV(Ct) wt twt
1 6 5.6872 0.0559 0.0559
2 6 5.3907 0.0530 0.1060
3 6 5.1097 0.0502 0.1506
4 106 85.5650 0.8409 3.3636

Total 101.7526 1.0000 3.6761

The price of the bond P is equal to the sum of the third column, namely

101.7526. Note that the entries in the fourth column are all positive and

sum up to 1. The Macaulay duration is the sum of the last column, which
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is 3.6761 years. Thus, the Macaulay duration of the bond is less than its

time to maturity of 4 years. 2

Example 8.2: Calculate the Macaulay duration of a 2-year semiannual

coupon bond with 4% coupon per annum and a yield to maturity of 4.8%

compounded semiannually.

Solution: The cash flows of the bond occur at time 1, 2, 3 and 4 half-

years. The present values of the cash flows can be calculated using (8.1)

with i = 2.4% per payment period (i.e., half-year). The computation of

the Macaulay duration is presented in Table 8.2.
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Table 8.2: Computation for Example 8.2

t Ct PV(Ct) wt twt
1 2 1.953 0.0198 0.0198
2 2 1.907 0.0194 0.0388
3 2 1.863 0.0189 0.0568
4 102 92.768 0.9419 3.7676

Total 98.491 1.0000 3.8830

The price of the bond is equal to the sum of the third column, namely

98.491. The Macaulay duration is the sum of the last column, namely

3.8830 half-years, which again is less than the time to maturity of the

bond of 4 half-years. The Macaulay duration of the bond can also be

stated as 3.8830/2 = 1.9415 years. 2
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• The formula of the Macaulay duration can be extended to the case
when the cash flows occur at irregular intervals. In such case, i

will be the rate of interest per base period, e.g., per year, and the

discount factor (1 + i)t may be applied to any non-integral value of

t (years).

• The Macaulay duration computed will then be expressed in terms
of the number of base periods (years).

• Consider a bond with face value (also the redemption value) F ,
coupon rate r per payment, and time to maturity of n payment

periods. The rate of interest i applicable to (8.3) is the yield to

maturity per coupon-payment period.
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• Now Ct is equal to Fr for t = 1, · · · , n− 1 and Cn = Fr+F . Thus,
from (8.3) we have

D =
1

P

"
nX
t=1

tFr

(1 + i)t
+

nF

(1 + i)n

#

=
1

P

"
Fr

nX
t=1

PV(t)+ Fnvn
#
. (8.5)

• From (6.1) we have P = (Fr)ane + Fv
n. Hence, the Macaulay

duration of the bond is (in terms of the number of payment periods)

D =
Fr

Pn
t=1PV(t)+ Fnv

n

(Fr)ane + Fvn

=
r(Ia)ne + n v

n

r ane + vn
. (8.6)
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Example 8.3: Calculate the Macaulay duration of the bonds in Exam-

ples 8.1 and 8.2 using equation (8.6).

Solution: For Example 8.1, r = 6%, i = 5.5% and n = 4. Thus,

a4e = 3.5052 and we use (2.36) to obtain (Ia)4e = 8.5285. Now using (8.6)
we have

D =
0.06× 8.5294 + 4(1.055)−4
0.06× 3.5052 + (1.055)−4 = 3.6761 years,

which is the answer in Example 8.1. For Example 8.2, we have r = 2%,

i = 2.4% and n = 4. Thus, a4e = 3.7711 and (Ia)4e = 9.3159. Hence, we
have

D =
0.02× 9.3159 + 4(1.024)−4
0.02× 3.7711 + (1.024)−4 = 3.8830 half-years.

2
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• While the Macaulay duration was originally proposed to measure
the average horizon of an investment, it turns out that it can be

used to measure the price sensitivity of the investment with respect

to interest-rate changes.

• To measure this sensitivity we consider the derivative dP/di. As
the price of the investment P drops when interest rate i increases,

dP/di < 0.

• We consider (the negative of) the percentage change in the price of
the investment per unit change in the rate of interest, i.e.,−(dP/di)/P .

• Using (8.1) and (8.2), this quantity is given by
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− 1
P

dP

di
= − 1

P

nX
t=1

(−t)Ct
(1 + i)t+1

=
1

P (1 + i)

nX
t=1

tCt
(1 + i)t

=
1

1 + i

nX
t=1

t

"
PV(Ct)
P

#

=
D

1 + i
. (8.7)

• We define
D∗ =

D

1 + i
, (8.8)

and call it the modified duration, which is always positive and
measures the percentage decrease of the value of the investment per

unit increase in the rate of interest.
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• Note that in (8.8) i is the rate of interest per payment period, while
the Macaulay duration D can be stated in terms of years or the

number of payment periods.

Example 8.4: Calculate the modified duration of the bonds in Exam-

ples 8.1 and 8.2.

Solution: For Example 8.1, we have

D∗ =
3.6761

1.055
= 3.4845 years.

Thus, the bond drops in value by 3.4845% per 1 percentage point increase

(not percentage increase) in interest rate per year. However, as the bond

price and interest rate relationship is nonlinear, this statement is only

correct approximately and applies to the current rate of interest of 5.5%.
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For Example 8.2, we have

D∗ =
3.8830

1.024
= 3.7920 half-years.

Thus, the bond drops in value by 3.7920% per 1 percentage point increase

in the rate of interest per half-year. 2
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• In (8.3), we may replace t by kt∗, in which t∗ denotes the time of the
occurrence of the cash flow in years and k is the number of payments

per year.

• Then we have

− 1
P

dP

di
=

k

1 + i

X
t∗
t∗
"
PV(Ct∗)
P

#
= kD∗, (8.9)

where D∗ is the modified duration in years (as t∗ are in years) and
the summation is over all occurrences of cash flows.

• Excel provides the function DURATION to compute the Macaulay du-
ration and the function MDURATION to compute the modified dura-

tion. The bond is assumed to be redeemable at par. The specifica-

tions of these functions are given as follows:
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Excel functions: DURATION/MDURATION(smt,mty,crt,yld,frq,basis)

smt = settlement date
mty = maturity date
crt = coupon rate of interest per annum
yld = annualized bond yield
frq = number of coupon payments per year
basis = day count, 30/360 if omitted (or set to 0) and actual/actual if set to 1

Output = Macaulay/modified duration of the bond in years

• Exhibit 8.1 illustrates Examples 8.1 through 8.4. We have arbitrarily
fixed the settlement date to be January 1, 2001, and the maturity

date is then entered based on the given time to maturity of the bond.
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8.2 Duration for Price Correction

• We now consider the use of the modified duration to approximate
the price change of a bond when the rate of interest changes.

• We denote P (i) as the price of a bond when the yield to maturity is
i per coupon-payment period.

• When the rate of interest changes to i+∆i, the bond price is revised

to P (i+∆i).

• While the bond price can be re-calculated at the rate of interest i+∆i
using one of the pricing formulas in Chapter 6, an approximation is

available using the modified duration.

• For a continuous function f(x) with first- and second-order deriv-
atives, the function evaluated at x + ∆x, i.e., f(x + ∆x), can be
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approximated by Taylor’s expansion as follows (see Appendix A.8):

f(x+∆x) ≈ f(x) + df(x)
dx

∆x+
1

2

d2f(x)

dx2
(∆x)2.

• Thus, if we expand the bond price P (i+∆i) using Taylor’s expansion
up to the first-order derivative, we obtain

P (i+∆i) ≈ P (i) +
dP (i)

di
∆i

= P (i)

"
1−

Ã
− 1

P (i)

dP (i)

di

!
∆i

#
= P (i) (1−D∗∆i) . (8.10)

• Hence, we can use the modified duration to obtain a linear approx-
imation to the revised bond price with respect to a change in the

rate of interest.
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• Note that in (8.10), as i is per coupon-payment period, D∗ and ∆i

should also be measured in coupon-payment period.

• However, we may also express D∗ in years, in which case ∆i is the
change in the rate of interest per annum.

Example 8.5: A 10-year semiannual coupon bond with coupon rate of

7% is selling to yield 6.5% per year compounded semiannually. What is

the bond price if the yield changes to (a) 6%, and (b) 6.7%, compounded

semiannually?

Solution: We use the basic formula (6.1) with r = 3.5%, i = 3.25%

and n = 20, to obtain

P (0.0325) = 103.6348.
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Similarly, we compute the bond price at the new rates of interest i = 3%

and 3.35%, to obtain

P (0.03) = 107.4387

and

P (0.0335) = 102.1611.

Thus, the bond price increases by 3.8039 when the yield per half-year

drops by 0.25 percentage point, and it decreases by 1.4737 when the yield

per half-year increases by 0.1 percentage point.

We may also approximate the price change using the modified duration.

At the rate of interest of 3.25% we have (Ia)20e = 137.306, so that from
(8.6) the Macaulay duration is

D =
0.035× 137.306 + 20(1.0325)−20

1.036348
= 14.8166 half-years,
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and hence the modified duration is

D∗ =
14.8166

1.0325
= 14.3502 half-years.

The annual yield rate decreases from 6.5% to 6% when ∆i = −0.0025 (per
half-year). Thus, from (8.10), we have

P (0.03) ≈ 103.6348[1− 14.3502(−0.0025)] = 107.3528 < 107.4387.

Similarly, if the annual yield rate increases from 6.5% to 6.7%, we have

∆i = 0.001 (per half-year), so that

P (0.0335) ≈ 103.6348[1− 14.3502(0.001)] = 102.1476 < 102.1611.

These results are quite close to the exact results obtained above, although

it can be seen that the approximate values are less than the exact values

in both cases. Thus, using (8.10), approximate values of the price of the
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bond can be computed with small changes in the interest rate without

using the bond price formulas. 2

• Figure 8.2 illustrates the application of (8.10). The relationship

between the bond price and the rate of interest is given by the curve,

which is convex to the origin.

• Equation (8.10) approximates the bond price using the straight line
which is tangent to the point (i, P (i)) with a negative slope of

−P (i)D∗.
• Note that due to the convexity of the relationship between the in-
terest rate and the bond price, the correction based on the modified

duration always under-approximates the exact price.

• This point is illustrated by Example 8.5. To improve the approxi-
mation, we may take into account the convexity of the relationship.
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8.3 Convexity

• To obtain a better approximation for the bond price, we apply Tay-
lor’s expansion in (8.10) to the second order, giving

P (i+∆i) ≈ P (i) +
dP (i)

di
∆i+

1

2

d2P (i)

di2
(∆i)2

= P (i)

"
1−

Ã
− 1

P (i)

dP (i)

di

!
∆i+

1

2P (i)

Ã
d2P (i)

di2

!
(∆i)2

#
.

(8.11)

• Now we define the convexity of the bond as

C =
1

P (i)
× d

2P (i)

di2
, (8.12)

so that (8.11) becomes

P (i+∆i) ≈ P (i)
∙
1−D∗∆i+ 1

2
C(∆i)2

¸
. (8.13)
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• For the investment with price given in (8.1) and (8.2), we have
d2P (i)

di2
=

nX
t=1

(t+ 1)tCt
(1 + i)t+2

, (8.14)

so that the convexity is

C =
1

P (i)
× d

2P (i)

di2

=
1

P (i)

nX
t=1

(t+ 1)tCt
(1 + i)t+2

=
1

P (i)(1 + i)2

nX
t=1

(t+ 1)tCt
(1 + i)t

=
1

P (i)(1 + i)2

nX
t=1

(t+ 1)t PV(Ct). (8.15)

• For a bond investment, Ct ≥ 0 for all t, so that C > 0, verifying the
convexity relationship.
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• Thus, the correction term C(∆i)2/2 in (8.13) is always positive,

which compensates for the under-approximation in (8.10).

Example 8.6: Revisit Example 8.5 and approximate the bond prices

with convexity correction.

Solution: We calculate the convexity using (8.15) to obtain

C =
1

(103.6348)(1.0325)2

∙
2× 1× 3.5
1.0325

+
3× 2× 3.5
(1.0325)2

+ · · ·+ 21× 20× 103.5
(1.0325)20

¸
= 260.9566.

Thus, the approximate bond prices are

P (0.03) ≈ 107.3528 + (103.6348)(0.5)(260.9566)(−0.0025)2 = 107.4373,
and

P (0.0335) ≈ 102.1476 + (103.6348)(0.5)(260.9566)(0.001)2 = 102.1612.
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8.4 Some Rules for Duration

• We summarize some useful rules for duration.

Rule 1: The Macaulay duration D of a bond is always less than or equal

to its time to maturity n. Equality holds only for a zero-coupon bond.

Rule 2: Holding the time to maturity n of a bond constant, when the
coupon rate of interest r decreases, the Macaulay duration D increases.

Rule 3: Other things being equal, when the yield to maturity i decreases,
the Macaulay duration D increases.

Rule 4: For a level perpetuity, the modified duration D∗ is equal to 1/i.

Rule 5: For a level annuity of n payments, the modified duration is

D∗ =
1

i
− n

(1 + i) [(1 + i)n − 1] . (8.16)
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This rule can be proved by direct differentiation of the price of the annuity,

which is

P (i) = ane =
1− vn
i

.

Rule 6: The modified duration D∗ of a coupon bond with coupon rate of
r per payment, n payments to maturity and yield to maturity of i is

D∗ =
1

i
− (1 + i) + n(r − i)
(1 + i) [((1 + i)n − 1) r + i] . (8.17)

Rule 7: For a coupon bond selling at par, the modified duration is

D∗ =
1

i

"
1− 1

(1 + i)n

#
. (8.18)

Rule 8: Holding other things constant, a bond’s duration D usually in-

creases with its time to maturity n.
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• For premium and par bonds, the relationship is monotonic so that

D always increases with n.

• For deep-discount bonds, however, D may increase with n for bonds
with short maturity and then decreases with increases in maturity.

Figure 8.3 illustrates this phenomenon, where the prevailing yield

curve is flat at 8%.

• Suppose a portfolio of bonds is constructed from M bonds, with

durations D1, · · · , DM .

• Let the bond values be P1, · · · , PM , so that their total is P =PM
j=1 Pj.

• Define wj = Pj/P as the weight of Bond j in the portfolio, then

the duration DP of the portfolio is the weighted average of the bond

29



0 10 20 30 40 50
0

2

4

6

8

10

12

14

16

18

Time to maturity (years)

M
ac

au
la

y 
du

ra
tio

n 
(y

ea
rs

)

 

 

Coupon rate = 2%
Coupon rate = 8%
Coupon rate = 10%



durations, i.e.,

DP =
MX
j=1

wjDj. (8.19)

• This result is very useful for bond portfolio management when a
portfolio with a certain duration is required.

Example 8.7: A bond manager has a choice of two bonds, A and B.

Bond A is a 4-year annual coupon bond with coupon rate of 6%. Bond B

is a 2-year annual coupon bond with coupon rate of 4%. The current yield

to maturity in the market is 5.5% per annum for all maturities. How does

the manager construct a portfolio of $100 million, consisting of bonds A

and B, with a Macaulay duration of 2.5 years?

Solution: From Example 8.1, we know that Bond A has a duration of

3.6761 years. We compute the duration of Bond B as 1.9610 years. Let w
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be the proportion of investment in Bond A. Thus, from (8.19) we have

3.6761w + 1.9610(1− w) = 2.5,

so that

w =
2.5− 1.9610
3.6761− 1.9610 = 31.43%.

Hence the portfolio should consist of $31.43 million of Bond A and $68.57

million of Bond B. 2
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8.5 Immunization Strategies

• Financial institutions are often faced with the problem of meeting a
liability of a given amount some time in the future.

• We consider a liability of amount V to be paid T periods later.

• A simple strategy to meet this obligation is to purchase a zero-

coupon bond with face value V , which matures at time T .

• This strategy is called cash-flow matching.

• When cash-flow matching is adopted, the obligation is always met,
even if there is fluctuation in the rate of interest.

• However, zero-coupon bonds of the required maturity may not be
available in the market.
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• Immunization is a strategy of managing a portfolio of assets such
that the business is immune to interest-rate fluctuations.

• For the simple situation above, the target-date immunization
strategy may be adopted.

• This involves holding a portfolio of bonds that will accumulate in
value to V at time T at the current market rate of interest.

• The portfolio, however, should be constructed in such a way that its
Macaulay duration D is equal to the targeted date of the liability T .

• Suppose the current yield rate is i, the current value of the portfolio
of bonds, denoted by P (i), must be

P (i) =
V

(1 + i)T
. (8.20)
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• If the interest rate remains unchanged until time T , this bond portfo-
lio will accumulate in value to V at the maturity date of the liability.

• If interest rate increases, the bond portfolio will drop in value. How-
ever, the coupon payments will generate higher interest and com-

pensate for this.

• On the other hand, if interest rate drops, the bond portfolio value
goes up, with subsequent slow-down in accumulation of interest.

• Under either situation, as we shall see, the bond portfolio value will
finally accumulate to V at time T , provided the portfolio’s Macaulay

duration D is equal to T .

• We consider the bond value for a one-time small change in the rate
of interest.
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• If interest rate changes to i + ∆i immediately after the purchase

of the bond, the bond price becomes P (i + ∆i) which, at time T ,

accumulates to P (i+∆i)(1+ i+∆i)T if the rate of interest remains

at i+∆i.

• We approximate (1 + i + ∆i)T to the first order in ∆i to obtain

(apply Taylor’s expansion to f(i) = (1 + i)T )

(1 + i+∆i)T ≈ (1 + i)T + T (1 + i)T−1∆i. (8.21)

• Using (8.10) and (8.21) we have

P (i+∆i)(1+i+∆i)T ≈ P (i)(1−D∗∆i)
h
(1 + i)T + T (1 + i)T−1∆i

i
.

• However, asD∗ = D/(1+i) and T = D, the above equation becomes
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P (i+∆i)(1 + i+∆i)T ≈ P (i)
h
(1 + i)D −D∗∆i(1 + i)D +D(1 + i)D−1∆i

i
= P (i)(1 + i)D

= V. (8.22)

Example 8.8: A company has to pay $100 million 3.6761 years from

now. The current market rate of interest is 5.5%. Demonstrate the funding

strategy the company should adopt with the 6% annual coupon bond in

Example 8.1. Consider the scenarios when there is an immediate one-time

change in interest rate to (a) 5%, and (b) 6%.

Solution: From equation (8.20), the current value of the bond should be

100

(1.055)3.6761
= $82.1338 million.
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From Example 8.1, the bond price is 101.7526% of the face value and

the Macaulay duration is 3.6761 years, which is the target date for the

payment. Hence, the bond purchased should have a face value of

82.13375

1.017526
= $80.7191 million.

At the end of year 3, the accumulated value of the coupon payments is

80.7191× 0.06s3e0.055 = $15.3432 million,
and the bond price is (the bond will mature in 1 year with a 6% coupon

payment and redemption payment of 80.7191)

80.7191× 0.06 + 80.7191
1.055

= $81.1017 million.

Thus, the bond price plus the accumulated coupon values at time 3.6761

years is

(81.1017 + 15.3432)(1.055)0.6761 = $100 million.
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Suppose interest rate drops to 5% immediately after the purchase of the

bond, the accumulated coupon value 3 years later is

80.7191× 0.06s3e0.05 = $15.2680 million,

and the bond price at year 3 is

80.7191(1.06)

1.05
= $81.4879 million.

The total of the bond value and the accumulated coupon payments at

time 3.6761 years is

(81.4879 + 15.2680)(1.05)0.6761 = $100 million.

On the other hand, if the interest rate increases to 6% immediately after

the purchase of the bond, the accumulated coupon value 3 years later is

80.7191× 0.06s3e0.06 = $15.4186 million,
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and the bond price at year 3 is 80.7191 (this is a par bond with yield

rate equal to coupon rate). Thus, the total of the bond value and the

accumulated coupon payments at time 3.6761 years is

(80.7191 + 15.4186)(1.06)0.6761 = $100 million.

Thus, for an immediate one-time small change in interest rate, the bond

accumulates to the targeted value of $100 million at 3.6761 years, and the

business is immunized. 2

Example 8.9: A company has to pay $100 million 4 years from now.

The current market rate of interest is 5.5%. The company uses the 6%

annual coupon bond in Example 8.1 to fund this liability. Is the bond

sufficient to meet the liability when there is an immediate one-time change

in interest rate to (a) 5%, and (b) 6%?
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Solution: As the target date of the liability is 4 years and the Macaulay

duration of the bond is 3.6761 years, there is a mismatch in the durations

and the business is not immunized. To fund the liability in 4 years, the

value of the bond purchased at time 0 is

100

(1.055)4
= $80.7217 million ,

and the face value of the bond is
80.7217

1.017526
= $79.3313 million.

If interest rate drops to 5%, the asset value at year 4 is

79.3313× 0.06s4e0.05 + 79.3313 = $99.8470 million,
so that the liability is under-funded. On the other hand, if the interest

rate increases to 6%, the asset value at year 4 is

79.3313× 0.06s4e0.06 + 79.3313 = $100.1539 million,
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so that the liability is over-funded. 2

• Figure 8.4 describes the working of the target-date immunization
strategy.

• If a financial institution has multiple liability obligations to meet,
the manager may adopt cash-flow matching to each obligation.

• This is a dedication strategy in which the manager selects a port-
folio of bonds (zero-coupon or coupon bonds) to provide total cash

flows in each period to match the required obligations.

• The manager may also consider the liability obligations as a whole
and construct a portfolio to fund these obligations with the objec-

tive of controlling for the interest-rate risk. A commonly adopted

strategy is duration matching.
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• We assume a financial institution has a stream of liabilities L1, L2, · · · , LN
to be paid out at various times in the future.

• It will fund these liabilities with assets generating cash flowsA1, A2, · · · , AM
at various times in the future.

• We assume that the rate of interest i is flat for cash flows of all
maturities and applies to both assets and liabilities.

• We denote
PV(assets) =

MX
j=1

PV(Aj) = VA, (8.23)

and

PV(liabilities) =
NX
j=1

PV(Lj) = VL. (8.24)
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• We denote the Macaulay durations of the assets and liabilities by
DA and DL, respectively.

• The duration matching strategy involves constructing a portfolio of
assets such that the following conditions hold:

1. VA ≥ VL
2. DA = DL.

• Condition 2 ensures that, to the first-order approximation, the asset-
liability ratio will not drop when interest rate changes. This result

can be deduced as follows:

43



d

di

µ
VA
VL

¶
=

VL
dVA
di
− VAdVL

di
V 2L

=
VA
VL

Ã
1

VA

dVA
di
− 1

VL

dVL
di

!

=
VA

VL(1 + i)
(DL −DA)

= 0. (8.25)

Example 8.10: A financial institution has to pay $1,000 after 2 years

and $2,000 after 4 years. The current market interest rate is 10%, and the

yield curve is assumed to be flat at any time. The institution wishes to

immunize the interest rate risk by purchasing zero-coupon bonds which

mature after 1, 3 and 5 years. One member in the risk management team

of the institution, Alan, devised the following strategy:
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• Purchase a 1-year zero-coupon bond with a face value of $44.74,

• Purchase a 3-year zero-coupon bond with a face value of $2,450.83,

• Purchase a 5-year zero-coupon bond with a face value of $500.00.

(a) Find the present value of the liability. (b) Show that Alan’s portfo-

lio satisfies the conditions of the duration matching strategy. (c) Define

surplus S = VA − VL, calculate S when there is an immediate one-time
change of interest rate from 10% to (i) 9%, (ii) 11%, (iii) 15%, (iv) 30%

and (v) 80%. (d) Find the convexity of the portfolio of assets and the

portfolio of liabilities at i = 10%.

Solution: (a) The present value of the liabilities is

VL = 1,000 (1.1)
−2 + 2,000 (1.1)−4 = $2,192.47.
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For (b), the present value of Alan’s asset portfolio is

VA = 44.74 (1.1)
−1 + 2,450.83 (1.1)−3 + 500.00 (1.1)−5 = $2,192.47.

The Macaulay duration of the assets and liabilities can be calculated using

equation (8.3) to give

DA =
h
1× 44.74 (1.1)−1 + 3× 2,450.83 (1.1)−3 + 5× 500.00 (1.1)−5

i
/2,192.47

= 3.2461 years,

DL =
h
2× 1,000 (1.1)−2 + 4× 2,000 (1.1)−4

i
/2,192.47

= 3.2461 years.

Since VA = VL and DA = DL, the conditions of the duration matching

strategy are met for Alan’s portfolio.
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For (c), when there is an immediate one-time shift in interest rate from
10% to 9%, using equation (8.2), we have

VA = 44.74 (1.09)−1 + 2,450.83 (1.09)−3 + 500.00 (1.09)−5 = $2,258.50,

VL = 1,000 (1.09)−2 + 2,000 (1.09)−4 = $2,258.53,

S = 2,258.50− 2,258.53 = −$0.03.

We repeat the above calculations for interest rate of 11%, 15%, 30% and

80%. The results are summarized as follows:

i VA VL S
0.09 2,258.50 2,258.53 −0.03
0.10 2,192.47 2,192.47 0.00
0.11 2,129.05 2,129.08 −0.03
0.15 1,898.95 1,899.65 −0.70
0.30 1,284.61 1,291.97 −7.36
0.80 471.55 499.16 −27.61
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For (d), using equation (8.15), the convexity of the assets is

CA =
2× 1× 44.74 (1.1)−1 + 4× 3× 2,450.83 (1.1)−3 + 6× 5× 500.00 (1.1)−5

(1.1)2 × 2,192.47
= 11.87,

and the convexity of the liabilities is

CL =
h
3× 2× 1,000 (1.1)−2 + 5× 4× 2,000 (1.1)−4

i
/[(1.1)2 × 2,192.47]

= 12.17.

2

• It should be noted that the duration matching strategy is based on
the first-order approximation. To improve the strategy, we may take

into account the convexity of the asset and liability portfolios.
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• To protect the asset-liability ratio from dropping when interest rate
changes, the Redington immunization strategy, named after the
British actuary Frank Redington, imposes the following three con-

ditions for constructing a portfolio of assets:

1. VA ≥ VL
2. DA = DL

3. CA > CL.

Example 8.11: For the financial institution in Example 8.10, a risk

consultant, Alfred, recommended the following strategy:

• Purchase a 1-year zero-coupon bond with a face value of $154.16,

• Purchase a 3-year zero-coupon bond with a face value of $2,186.04,
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• Purchase a 5-year zero-coupon bond with a face value of $660.18.

(a) Show that Alfred’s portfolio satisfies the three conditions of the Red-

ington immunization strategy. (b) Define surplus S = VA − VL, calculate
S when there is an immediate one-time change of interest rate from 10%

to (i) 9%, (ii) 11%, (iii) 15%, (iv) 30% and (v) 80%.

Solution: (a) The present value of Alfred’s asset portfolio is

VA = 154.16 (1.1)
−1 + 2,186.04 (1.1)−3 + 660.18 (1.1)−5 = $2,192.47.

The Macaulay duration of the assets and liabilities can be calculated using
equation (8.3) to give

DA =
h
1× 154.16 (1.1)−1 + 3× 2,186.04 (1.1)−3 + 5× 660.18 (1.1)−5

i
/2,192.47

= 3.2461 years,
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DL =
h
2× 1,000 (1.1)−2 + 4× 2,000 (1.1)−4

i
/2,192.47

= 3.2461 years.

Furthermore, using equation (8.15), we get

CA =
2× 1× 154.16 (1.1)−1 + 4× 3× 2,186.04 (1.1)−3 + 6× 5× 660.18 (1.1)−5

(1.1)2 × 2,192.47
= 12.1704,

CL =
h
3× 2× 1,000 (1.1)−2 + 5× 4× 2,000 (1.1)−4

i
/[(1.1)2 × 2,192.47]

= 12.1676.

Since VA = VL, DA = DL and CA > CL, the conditions of the Redington

immunization strategy are met for Alfred’s strategy.

For (b), when there is an immediate one-time shift in interest rate from
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10% to 9%, using equation (8.2), we have

VA = 154.16 (1.09)−1 + 2,186.04 (1.09)−3 + 660.18 (1.09)−5 = $2,258.53,

VL = 1,000 (1.09)−2 + 2,000 (1.09)−4 = $2,258.53,

S = 2,258.53− 2,258.53 = 0.

We repeat the above calculations for interest rate of 11%, 15%, 30% and

80%. The results are summarized as follows:

i VA VL S
0.09 2,258.53 2,258.53 0.00
0.10 2,192.47 2,192.47 0.00
0.11 2,129.08 2,129.08 0.00
0.15 1,899.64 1,899.65 −0.02
0.30 1,291.40 1,291.97 −0.57
0.80 495.42 499.16 −3.74

2
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• Under certain conditions, it is possible to construct a portfolio of
assets such that the net-worth position of the financial institution is

guaranteed to be non-negative in any positive interest rate environ-

ment.

• A full immunization strategy is said to be achieved if under any
one-time shift of interest rate from i0 to i,

S(i) = VA(i)− VL(i) ≥ 0, for i > 0.

• We consider the example of a single liability of amount L to be paid
TL periods later.
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• Full immunization strategy involves funding the liability by a portfo-
lio of assets which will produce two cash inflows. The first inflow of

amount A1 is located at time T1, which is ∆1 periods before time TL.

The second inflow of amount A2 is at time T2, which is ∆2 periods

after time TL.

• Figure 8.5 illustrates these three cashflows. It should be noted that
all the values of i0, i, A1, A2, L,∆1,∆2, TL, T1 and T2 are positive,

and ∆1 is not necessarily equal to ∆2.

• In this particular example, the conditions for constructing a portfolio
of assets under the full immunization strategy are:

1. VA = VL

2. DA = DL.
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Figure 8.5



• The above conditions can be rewritten as

1. A1(1 + i0)−T1 +A2(1 + i0)−T2 = L(1 + i0)−TL

2. T1A1(1 + i0)−T1 + T2A2(1 + i0)−T2 = TLL(1 + i0)−TL.

Example 8.12: For the financial institution in Examples 8.10 and 8.11,
an actuary, Albert, constructed the following strategy:

• Purchase a 1-year zero-coupon bond with a face value of $454.55,

• Purchase a 3-year zero-coupon bond with a face value of $1,459.09,

• Purchase a 5-year zero-coupon bond with a face value of $1,100.00.

(a) Show that Albert’s portfolio satisfies the conditions of the full immu-

nization strategy. (b) Define surplus S = VA−VL, calculate S when there
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is an immediate one-time change of interest rate from 10% to (i) 9%, (ii)

11%, (iii) 15%, (iv) 30% and (v) 80%.

Solution: (a) The present value of Albert’s asset portfolio is

VA = 454.55 (1.1)
−1 + 1,459.09 (1.1)−3 + 1,100.00 (1.1)−5 = $2,192.47.

Let A1 and A2 be the amount of 1-year and 3-year zero-coupon bonds that

are needed to fully immunize the first liability of L = 1,000. Note that

T1 = 1, TL = 2 and T2 = 3. The two conditions for the full immunization

strategy require

A1(1.1)
−1 +A2(1.1)−3 = 1,000(1.1)−2

(1)A1(1.1)
−1 + (3)A2(1.1)−3 = (2)1,000(1.1)−2.

Solving the above system of equations, we get A1 = 454.55 and A2 =

550.00. Next, let A∗1 and A
∗
2 be the amounts of 3-year and 5-year zero-

coupon bonds that would be needed to fully immunize the second liability
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L = 2,000. Note that now T1 = 3, TL = 4 and T2 = 5. The two conditions

for the full immunization strategy require

A∗1(1.1)
−3 +A∗2(1.1)

−5 = 2,000(1.1)−4

(3)A∗1(1.1)
−3 + (5)A∗2(1.1)

−5 = (4)1,000(1.1)−4.

Solving the above system of equations, we get A∗1 = 909.09 and A∗2 =
1, 100.00. The combined asset portfolio consists of a 1-year zero-coupon

bond with a face value of $454.55, a 3-year zero-coupon bond with a face

value of ($550.00 + $909.09) = $1,459.09 and a 5-year zero-coupon bond

with a face value of $1,100.00. This is indeed Albert’s asset portfolio,

which satisfies the full immunization conditions.

For (b), when there is an immediate one-time shift in interest rate from

10% to 9%, using equation (8.2), we have

VA = 454.55 (1.09)−1 + 1,459.09 (1.09)−3 + 1,100.00 (1.09)−5 = $2,258.62,

57



VL = 1,000 (1.09)−2 + 2,000 (1.09)−4 = $2,258.53,

S = 2,258.62− 2,258.53 = 0.09.

We repeat the above calculations for interest rate of 11%, 15%, 30% and

80%. The results are summarized as follows:

i VA VL S
0.09 2,258.62 2,258.53 0.09
0.10 2,192.47 2,192.47 0.00
0.11 2,129.17 2,129.08 0.09
0.15 1,901.53 1,899.65 1.88
0.30 1,310.04 1,291.97 18.07
0.80 560.93 499.16 61.76

2
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• To compare the duration matching, Redington and full immuniza-
tion strategies, the results of Examples 8.10, 8.11 and 8.12 are plot-

ted in Figure 8.6.
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8.6 Some Shortcomings of Duration Matching

• In classical duration matching, the term structure is assumed to be

flat.

• This limitation can be relaxed to allow for a term structure that is

not flat, resulting in a more general definition of duration.

• Furthermore, we may consider different changes in the interest rate
depending on the maturity of the cash flow. In other words, we may

allow the shift in the term structure to be non-parallel.

• The characteristics of the assets and liabilities change through time.
Even if the prevailing rate of interest remains unchanged, the du-

rations of the assets and liabilities change over time due to time

decay.
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• Thus, the portfolio has to be re-balanced periodically to keep the
durations matched.

• We have assumed that the cash flows of the assets and liabilities
are fixed, and there is no uncertainty in their timing and value. For

some cases, however, cash flows may be contingent on some events.

• For cash flows that are contingent on some uncertain events, the tra-
ditional duration measure will not be applicable. Improved methods

such as the option-adjusted duration (also called effective du-
ration or stochastic duration) should be considered.

• Conceptually, the effective duration is defined as the percentage drop
in the price of the asset per unit increase in the rate of interest, i.e.,

−(dP/di)/P .
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• When the cash flows are contingent on some random events, how-

ever, equation (8.7) cannot be used. The effective duration can be

numerically estimated using the formula

−
"
P (i+∆i)− P (i−∆i)

2(∆i)P (i)

#
, (8.27)

where the prices at perturbed interest rates i + ∆i and i − ∆i are

calculated numerically taking account of the embedded options of

the asset.
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8.7 Duration under a Nonflat Term Structure

• We consider a nonflat term structure defined by the sequence of spot
rates iSt , for t = 1, · · · , n.

• Denoting i = (iS1 , · · · , iSn)0 as the vector of the spot rates and P (i)
as the price of the asset under the current term structure, we have

P (i) =
nX
t=1

Ct

(1 + iSt )
t . (8.28)

• Let ∆ = (∆1, · · · ,∆n)
0 denote the vector of shifts in the spot rates

so that the new term structure is

i+∆ = (iS1 +∆1, · · · , iSn +∆n)
0, (8.29)
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and the price of the asset under the new term structure is

P (i+∆) =
nX
t=1

Ct

(1 + iSt +∆t)
t . (8.30)

• If, however, ∆t = ∆ for t = 1, · · · , n, then the term structure has a

parallel shift, and (8.28) becomes

P (i+∆) =
nX
t=1

Ct

(1 + iSt +∆)
t . (8.31)

• Using the first-order approximation in Taylor’s expansion
1

(1 + iSt +∆)
t ≈

1

(1 + iSt )
t −

t∆

(1 + iSt )
t+1 ,

we re-write (8.31) as

P (i+∆) ≈
nX
t=1

Ct

(1 + iSt )
t −∆

nX
t=1

tCt

(1 + iSt )
t+1 ,
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which implies

P (i+∆)− P (i) ≈ −∆
nX
t=1

tCt

(1 + iSt )
t+1

= −∆
nX
t=1

"
t

1 + iSt

#
PV(Ct), (8.32)

where

PV(Ct) =
Ct

(1 + iSt )
t . (8.33)

• Thus, we conclude

− 1

P (i)
lim
∆→0

"
P (i+∆)− P (i)

∆

#
=

nX
t=1

t

1 + iSt

"
PV(Ct)
P (i)

#

=
nX
t=1

Wt, (8.34)
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where

Wt =
t

1 + iSt

"
PV(Ct)
P (i)

#
.

• The Fisher-Weil duration, denoted by DF , is defined as

DF =
nX
t=1

t

"
PV(Ct)
P (i)

#
=

nX
t=1

twt, (8.35)

where

wt =
PV(Ct)
P (i)

.

• The Fisher-Weil duration is a generalization of the Macaulay dura-
tion, with the present values of cash flows computed using a nonflat

term structure.

• Equation (8.34) is a generalization of the modified duration of equa-
tion (8.7).
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Example 8.13: Bond A is a 2-year annual coupon bond with coupon

rate of 3%. Bond B is a 5-year annual coupon bond with coupon rate

of 5.5%. You are given that iSt = 4.2%, 4.2%, 4.5%, 4.7% and 4.8%, for

t = 1, · · · , 5, respectively. Compute the Fisher-Weil duration of the two
bonds, as well as the price sensitivity measure in (8.34). Also, calculate the

Fisher-Weil duration of a portfolio with equal weights in the two bonds.

Solution: For Bond A, we have cash flows C1 = 3 and C2 = 103. Using

the given term structure, we obtain PV(C1) = 2.879 and PV(C2) = 94.864,

so that the price of Bond A is 2.879 + 94.864 = 97.743. Consequently, we

obtain W1 = 0.028 and W2 = 1.863, so that the price sensitivity measure

of Bond A as given in equation (8.34) is 1.891 (i.e., Bond A drops in value

by 1.891% per 1 percentage point parallel increase in the term structure).

Similarly, the Fisher-Weil duration of the bond is computed as 1.971 years.

Similar calculations can be performed for Bond B, and the results are
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shown in Table 8.3, with a Fisher-Weil duration of 4.510 years and a price

sensitivity of 4.305 (i.e., Bond B drops in value by 4.305% per 1 percentage

point parallel increase in the term structure). To compute the Fisher-Weil

duration of the portfolio, we take the weighted average of the Fisher-Weil

durations of the bonds to obtain 0.5(1.971 + 4.510) = 3.241 years.

A B
t PV(Ct) Wt twt PV(Ct) Wt twt
1 2.879 0.028 0.029 5.278 0.049 0.051
2 94.864 1.863 1.941 5.066 0.094 0.098
3 4.820 0.134 0.140
4 4.577 0.169 0.177
5 83.454 3.858 4.044
Sum 97.743 1.891 1.971 103.194 4.305 4.510

2
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Example 8.14: Compute the prices of the bonds in Example 8.13

under the following term structures (with the years to maturity of the

bonds remaining unchanged):

t 1 2 3 4 5
iSt of Case 1 4.6% 4.8% 5.5% 6.1% 6.4%
iSt of Case 2 3.7% 3.7% 4.0% 4.2% 4.3%

Comment on the use of equation (8.34) for the price changes of these

bonds.

Solution: We note that the spot rate of interest iSt in Case 1 increases

by the amount of 0.004, 0.006, 0.01, 0.014 and 0.016, for t = 1, 2, · · · , 5,
respectively. Thus, the shift in the term structure is not parallel, but the

average increase is 1 percentage point. Using equation (6.10), the com-

puted prices of Bonds A and B are, respectively, 96.649 and 96.655. Thus,

the price of Bond A drops 1.119% and that of Bond B drops 6.337%. These
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figures contrast the values of 1.891% and 4.305%, respectively, predicted

by equation (8.34). The discrepancy exists due to the fact that the shift

in the term structure is not parallel.

Case 2 represents a parallel shift in the spot rates of −0.5 percentage point
for all time to maturity. Using equation (6.10), the prices of Bonds A and

B are found to be 98.674 and 105.447, respectively. Thus, Bonds A and

B increase in value by 0.952% and 2.183%, respectively. These values are

quite close to the changes predicted by equation (8.34) (i.e., half of the

tabulated values, namely, 0.946% and 2.153%, respectively). 2
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8.8 Passive versus Active Bond Management

• A bond fund may adopt a passive or active strategy.
• A passive strategy adopts a nonexpectational approach, without an-
alyzing the likely movements of the market. Immunization, indexing

and buy-and-hold are passive bond management strategies.

• An active bond management strategy may involve some form of

interest-rate forecasting. Example 7.6 illustrates the use of horizon

analysis to enhance the performance of a fund.

• A broader active management framework would take a quantitative
approach in assessing the value of a bond, taking into account all em-

bedded options and structures of the bond, and includes assessment

of the sector of the bond issuer and its credit profile.
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