
Financial Mathematics
for Actuaries

Chapter 7

Bond Yields and the Term Structure
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Learning Objectives

1. Yield to maturity, yield to call and par yield

2. Realized compound yield and horizon analysis

3. Estimation of the yield curve: bootstrap method and least squares

method

4. Estimation of the instantaneous forward rate and the term structure

5. Models of the determination of the term structure
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7.1 Some Simple Measures of Bond Yield

• Current yield is the annual dollar amount of coupon payment(s)
divided by the quoted (clean) price of the bond.

• It is the annual coupon rate of interest divided by the price of the
bond per unit face value.

• The current yield does not adequately reflect the potential gain of
the bond investment.

• The nominal yield is the annual amount of coupon payment(s)
divided by the face value, or simply the coupon rate of interest per

annum. Like the current yield, the nominal yield is not a good

measure of the potential return of the bond.
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7.2 Yield to Maturity

• Given the yield rate applicable under the prevailing market con-
ditions, we can compute the bond price using one of the pricing

formulas in Chapter 6.

• In practice, however, the yield rate or the term structure are not

observable, while the transaction price of the bond can be observed

from the market.

• Given the transaction price, we can solve for the rate of interest
that equates the discounted future cash flows (coupon payments and

redemption value) to the transaction price.

• This rate of interest is called the yield to maturity (or the yield
to redemption), which is the return on the bond investment if the
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investor holds the bond until it matures, assuming all the entitled

payments are realized.

• The yield to maturity is indeed the internal rate of return of the
bond investment.

• For a n-year annual coupon bond with transaction price P , the yield
to maturity, denote by iY , is the solution of the following equation:

P = Fr
nX
j=1

1

(1 + iY )j
+

C

(1 + iY )n
. (7.1)

• In the case of a n-year semiannual coupon bond, we solve iY from
the equation (the coupon rate r is now per half-year)

P = Fr
2nX
j=1

1µ
1 +

iY
2

¶j + Cµ
1 +

iY
2

¶2n . (7.2)
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• To calculate the solutions of equations (7.1) and (7.2) numerical
methods are required. The Excel Solver may be used for the com-

putation.

Example 7.1: A $1,000 par value 10-year bond with redemption value

of $1,080 and coupon rate of 8% payable semiannually is purchased by an

investor at the price of $980. Find the yield to maturity of the bond.

Solution: The cash flows of the bond in this example are plotted in

Figure 7.1. We solve for i from the following equation:

980 = 40a20ei + 1,080(1 + i)
−20

to obtain i = 4.41%, so that the yield to maturity iY is 8.82% per annum

convertible semiannually. 2
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Example 7.2: The following shows the information of a bond traded

in the secondary market:

Type of Bond Non-callable government bond
Issue Date March 10, 2002
Maturity Date March 10, 2012
Face Value $100
Redemption Value $100
Coupon Rate 4% payable semiannually

Assume that the coupon dates of the bond are March 10 and September

10 of each year. Investor A bought the bond on the issue date at a price

of $105.25. On January 5, 2010, Investor B purchased the bond from A

at a purchase (dirty) price of $104.75. Find (a) the yield to maturity of

Investor A’s purchase on March 10, 2002, (b) the realized yield to Investor

A on the sale of the bond, and (c) the yield to maturity of Investor B’s

purchase on January 5, 2010.
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Solution: (a) We need to solve for i in the basic price formula

P = (Fr)anei + Cv
n,

which, on the issue date, is

105.25 = 2a20ei + 100(1 + i)
−20.

The numerical solution of i is 1.69% (per half-year). Thus, the yield to

maturity is 3.38% per annum convertible semiannually.

(b) Investor A received the 15th coupon payment on September 10, 2009

and there are 117 days between September 10, 2009 and the sale date of

January 5, 2010. The number of days between the two coupon payments,

namely, September 10, 2009 and March 10, 2010 is 181. Thus, we need to

compute i in the following equation:

105.25 = 2a15ei + 104.75(1 + i)
−15 117

181 ,
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the solution of which is 1.805% (per half-year). Thus, the realized yield is

3.61% per annum convertible semiannually.

(c) Investor B will receive the next 5 coupon payments starting on March

10, 2010. There are 64 days between the purchase date and the next

coupon date. Investor B’s return i per half-year is the solution of the

following equation:

104.75 =
h
2ä5ei + 100(1 + i)

−4i (1 + i)− 64
181

=
h
2a5ei + 100(1 + i)

−5i (1 + i) 117181 ,

which is 1.18%. Thus, the yield to maturity is 2.36% per annum convert-

ible semiannually. 2

• If a bond is callable prior to its maturity, a commonly quoted mea-
sure is the yield to call, which is computed in the same way as the
yield to maturity, with the following modifications:
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— the redemption value in equations (7.1) and (7.2) is replaced
by the call price,

— the maturity date is replaced by the call date.

• An investor will be able to compute a schedule of the yield to call
as a function of the call date (which also determines the call price),

and assess her investment over the range of possible yields.

• Although the Excel Solver can be used to calculate the solution of
equations (7.1) and (7.2), the computation can be more easily done

using the Excel function YIELD, the specification of which is given

as follows:
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Excel function: YIELD(smt,mty,crt,prc,rdv,frq,basis)

smt = settlement date
mty = maturity date
crt = coupon rate of interest per annum
prc = quoted (clean) price of the bond per 100 face value
rdv = redemption value per 100 face value
frq = number of coupon payments per year
basis = day count, 30/360 if omitted and actual/actual if set to 1

Output = yield to maturity of the bond

• Exhibit 7.1 illustrates the use of the function YIELD to solve Example
7.2.

• We first enter the dates March 10, 2002, January 5, 2010 and March
10, 2012 into Cells A1 through A3, respectively.
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• In Cell A4, the YIELD function is entered, with settlement date A1,
maturity date A3 and price of bond 105.25.

• The output is the yield to maturity of Investor A’s purchase on
March 10, 2002, i.e., 3.38%, which is the answer to Part (a).

• Part (b) cannot be solved by the YIELD function, as the bond was
not sold on a coupon-payment date.

• For Part (c), note that the input price of the bond required in the
YIELD function is the quoted price.

• To use the YIELD function, we first compute the quoted price of the
bond on January 5, 2010, which is 104.75− 2× 117

181
= 103.4572.

• The answer to Part (c) is shown in Cell A5 to be 2.36%.
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7.3 Par Yield

• Given the prevailing spot-rate curve and that bonds are priced ac-
cording to the existing term structure, the yield to maturity iY is

solved from the following equation (for an annual coupon bond):

Fr
nX
j=1

1

(1 + iY )j
+

C

(1 + iY )n
= Fr

nX
j=1

1³
1 + iSj

´j + C

(1 + iSn)
n , (7.3)

which is obtained from equations (6.10) and (7.1).

• Hence, iY is a nonlinear function averaging the spot rates iSj , j =
1, · · · , n.

• As an averaging measure of the spot rates, however, iY has some
disadvantages.
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— First, no analytic solution of iY exists.

— Second, iY varies with the coupon rate of interest, even for

bonds with the same maturity.

• To overcome these difficulties, the par yield may be used, which is
defined as the coupon rate of interest such that the bond is traded

at par based on the prevailing term structure.

• Denoting the par yield by iP and setting F = C = 100, we have

100 = 100 iP
nX
j=1

1³
1 + iSj

´j + 100

(1 + iSn)
n , (7.4)

from which we obtain

iP =
1−

³
1 + iSn

´−n
Pn
j=1

³
1 + iSj

´−j . (7.5)
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• More generally, if the bond makes level coupon payments at time
t1, · · · , tn, and the term structure is defined by the accumulation

function a(·), the par yield is given by

iP =
1− [a(tn)]−1Pn
j=1[a(tj)]

−1

=
1− v(tn)Pn
j=1 v(tj)

. (7.6)

• Table 7.2 illustrates the par yields computed from two different spot-
rate curves: an upward sloping curve and a downward sloping curve.
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Table 7.2: Par yields of two term structures

Case 1 Case 2
n iSn iP iSn iP
1 3.50 3.50 6.00 6.00
2 3.80 3.79 5.70 5.71
3 4.10 4.08 5.40 5.42
4 4.40 4.37 5.10 5.14
5 4.70 4.64 4.80 4.86
6 5.00 4.91 4.50 4.58
7 5.30 5.18 4.20 4.30
8 5.60 5.43 3.90 4.02
9 5.90 5.67 3.60 3.74
10 6.20 5.91 3.30 3.46
11 6.50 6.13 3.00 3.18
12 6.80 6.34 2.70 2.89
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• The par yield is more a summary measure of the existing term struc-
ture than a measure of the potential return of a bond investment.

• On the other hand, the yield to maturity is an ex ante measure of
the return of a bond.

• If the bond is sold before it matures, or if the interest-on-interest
is different from the current yield rate, the ex post return of the bond

will be different.

• We now consider the evaluation of the return of a bond investment
taking account of the possibility of varying interest rates prior to

redemption as well as sale of the bond before maturity.
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7.4 Holding-Period Yield

• For various reasons, investors often sell their bonds before maturity.

• The holding-period yield, also called the realized compound
yield or the total return, is often computed on an ex post basis
to evaluate the average return of the investment over the holding

period of the bond.

• This methodology can also be applied to assess the possible return of
the bond investment over a targeted horizon under different interest-

rate scenarios.

• This application, called horizon analysis, is a useful tool for active
bond management.

18



• We denote the holding-period yield of a bond by iH .

• We first discuss the simple case of a one-period holding yield.

• Suppose a bond is purchased at time t − 1 for Pt−1. At the end of
the period the bondholder receives a coupon of Fr and then sells

the bond for Pt.

• The holding yield over the period t− 1 to t, denoted by iH , is then
given by

iH =
(Pt + Fr)− Pt−1

Pt−1
. (7.7)

Example 7.4: A $1,000 face value 3-year bond with semiannual coupons
at 5% per annum is traded at a yield of 4% per annum convertible semi-

annually. If interest rate remains unchanged in the next 3 years, find the

holding-period yield at the third half-year period.
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Solution: Using the basic price formula, the prices of the bond after the
second and third coupon payments are, respectively, P2 = 1,019.04 and

P3 = 1,014.42. Therefore, the holding-period yield for the third half-year

period is

iH =
(1,014.42 + 25.00)− 1,019.04

1,019.04
= 2%.

2

• Example 7.4 illustrates that when the yield rate is unchanged after a
bond investment until it is sold prior to maturity, the holding-period

yield in that period is equal to the yield to maturity.

• However, when the prevailing yield rate fluctuates, so will the bond’s
holding-period yield.

• The computation of the one-period holding yield can be extended to
multiple periods.
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• To calculate the n-period holding yield over n coupon-payment peri-
ods, we need to know the interest earned by the coupons when they

are paid.

• Let P0 be the beginning price of the bond, Pn be the ending price of
the bond and V be the accumulated value of the n coupons at time

n.

• The n-period holding yield iH is then the solution of the equation

P0(1 + iH)
n = Pn + V, (7.8)

so that the annualized n-period holding yield is

iH =
∙
Pn + V

P0

¸ 1
n − 1. (7.9)
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Example 7.5: Consider a $1,000 face value 5-year non-callable bond

with annual coupons of 5%. An investor bought the bond at its issue date

at a price of $980. After receiving the third coupon payment, the investor

immediately sold the bond for $1,050. The investor deposited all coupon

income in a savings account earning an effective rate of 2% per annum.

Find the annualized holding-period yield iH of the investor.

Solution: We have P0 = 980 and P3 = 1,050. The accumulated

interest-on-interest of the coupons, V , is given by

V = (1,000× 0.05)s3e0.02 = 50× 3.0604 = 153.02.

Thus, the annualized 3-period holding yield iH is the solution of

980(1 + iH)
3 = 1,050 + 153.02 = 1,203.02,
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which implies

iH =
∙
1,203.02

980

¸ 1
3 − 1 = 7.0736%.

2

Example 7.6: Consider two bonds, A and B. Bond A is a 10-year 2%

annual-coupon bond, and Bond B is a 3-year 4% annual-coupon bond.

The current spot-rate curve is flat at 3%, and is expected to remain flat

for the next 3 years. A fund manager assumes two scenarios of interest-

rate movements. In Scenario 1, the spot rate increases by 0.25 percentage

point each year for 3 years. In Scenario 2, the spot rate drops to 2% next

year and remains unchanged for 2 years. If the manager has an investment

horizon of 3 years, what is her recommended strategy under each scenario?

You may assume that all coupons and their interests are reinvested to earn

the prevailing one-year spot rate.
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Solution: We first compute the current bond prices. For Bond A, the

current price is

2a10e0.03 + 100(1.03)
−10 = 91.4698,

and for Bond B, its current price is

4a3e0.03 + 100(1.03)
−3 = 102.8286.

Under Scenario 1, the price of Bond A after 3 years is

2a7e0.0375 + 100(1.0375)
−7 = 89.3987,

and the accumulated value of the coupons is 2× (1.0325× 1.035+1.035+
1) = 6.2073. Thus, the holding-period yield of Bond A over the 3 years is

∙
89.3987 + 6.2073

91.4698

¸ 1
3 − 1 = 1.4851%.
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Under Scenario 2, Bond A is traded at par in year 3 with the accumulated

value of the coupons being 2 × (1.02 × 1.02 + 1.02 + 1) = 6.1208. Thus,
the holding-period yield is∙

100 + 6.1208

91.4698

¸ 1
3 − 1 = 5.0770%.

On the other hand, Bond B matures in 3 years so that its holding-period

yield under Scenario 1 is"
100 + 4× (1.0325× 1.035 + 1.035 + 1)

102.8286

# 1
3

− 1 = 3.0156%,

while under Scenario 2 its holding-period yield is"
100 + 4× (1.02× 1.02 + 1.02 + 1)

102.8286

# 1
3

− 1 = 2.9627%.

Thus, Bond B is the preferred investment under Scenario 1, while Bond

A is preferred under Scenario 2. 2
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7.5 Discretely Compounded Yield Curve

• We have so far used the prevailing term structure to price a bond or
compute the net present value of a project, assuming the spot-rate

curve is given.

• In practice, spot rates of interest are not directly observable in the
market, although they can be estimated from the observed bond

prices.

• We now discuss the estimation of the spot rates of interest, which
are assumed to be compounded over discrete time intervals.

• We consider the estimation of the spot rates of interest convertible
semiannually using a series of semiannual coupon bonds.
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• The simplest way to estimate the spot-rate curve is by the boot-
strap method. This method requires the bond-price data to follow
a certain format.

• In particular, we assume that the coupon-payment dates of the bonds
are synchronized and spaced out 6 months apart. The following

example illustrates the use of the bootstrap method.

Example 7.7: Table 7.3 summarizes a series of semiannual coupon

bonds with different time to maturity, coupon rate of interest r (in percent

per annum) and price per 100 face value. Using the given bond data,

estimate the spot rate of interest iSt over t years, for t = 0.5, 1, · · · , 6.
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Table 7.3: Bond price data

Price per
Maturity (yrs) Coupon rate r (%) 100 face value

0.5 0.0 98.41
1.0 4.0 100.79
1.5 3.8 100.95
2.0 4.5 102.66
2.5 2.5 98.53
3.0 5.0 105.30
3.5 3.6 101.38
4.0 3.2 99.83
4.5 4.0 102.83
5.0 3.0 98.17
5.5 3.5 100.11
6.0 3.6 100.24
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Solution: We first compute the spot rate of interest for payments due in

half-year, which can be obtained from the first bond. Equating the bond

price to the present value of the redemption value (there is no coupon),

we have

98.41 =
100

1 +
iS0.5
2

,

which implies

iS0.5 = 2×
∙
100

98.41
− 1

¸
= 2× 0.016157 = 3.231%.

For the second bond, there are two cash flows. As a coupon is paid at

time 0.5 year and the spot rate of interest of which has been computed,

we obtain the following equation of value for the bond:

100.79 =
2

1.016157
+

102Ã
1 +

iS1
2

!2 ,
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from which we obtain iS1 = 3.191%. Similarly, for the third bond the

equation of value involves iS0.5, i
S
1 and i

S
1.5, of which only i

S
1.5 is unknown

and can be solved from the equation. Thus, for the bond with k semiannual

coupons, price Pk and coupon rate rk per half-year, the equation of value

is

Pk = 100 rk
kX
j=1

1⎛⎝1 + iSj2
2

⎞⎠j
+

100⎛⎝1 + iSk2
2

⎞⎠k
.

These equations can be used to solve sequentially for the spot rates. Figure

7.2 plots the spot-rate curve for maturity of up to 6 years for the data given

in Table 7.3. 2

• Although the bootstrap method is simple to use, there are some data
requirements that seriously limit its applicability:
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— the data set of bonds must have synchronized coupon-payment
dates

— there should not be any gap in the series of bonds in the time
to maturity

• We now consider the least squares method, which is less demand-
ing in the data requirement.

• We assume a set of m bonds for which the coupon-payment dates

are synchronized, and denote the prices of these bonds per 100 face

value by Pj, their coupon rate by rj per half-year and their time to

maturity by nj half-years, for j = 1, · · · ,m.
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• We denote
vh =

1⎛⎝1 + iSh2
2

⎞⎠h
,

which is the discount factor for payments due in h half-years. Thus,

the equation of value for the jth bond is

Pj = 100 rj

njX
h=1

vh + 100vnj .

• If the last payment (redemption plus coupon) of the bonds occur in
M periods (i.e., M is the maximum of all nj for j = 1, · · · ,m), the
pricing equations of the bonds can be written as

Pj = Cj1v1 + Cj2v2 + · · ·+ CjMvM , j = 1, · · · ,m, (7.10)
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in which Cjh are known cash-flow amounts and vh are the unknown

discount factors.

• Thus, in equation (7.10) we have a multiple linear regression
model withM unknown coefficients v1, · · · , vM and m observations

(Pj is the dependent variable and Cj1, · · · , CjM are the indepen-
dent variables, for j = 1, · · · ,m).

• We can solve for the values of vh using the least squares method,
and subsequently obtain the values of iSh . 2
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7.6 Continuously Compounded Yield Curve

• We now introduce the estimation of the term structure assuming

that interest is credited based on continuous compounding.

• We denote the current time by 0, and use iSt to denote the contin-
uously compounded spot rate of interest for payments due at time

t.

• As shown in equation (3.27), if we consider the limiting value of the
forward rate of interest iFt,τ for τ approaching zero, we obtain the

instantaneous forward rate, which is equal to the force of interest,

i.e.,

lim
τ→0 i

F
t,τ = δ(t).
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• An important method to construct the yield curve based on the
instantaneous forward rate is due to Fama and Bliss (1987).

• If we denote the current price of a zero-coupon bond with unit face
value maturing at time t by P (t), we have

P (t) = v(t) =
1

a(t)
= exp

h
−t iSt

i
, (7.11)

and

δ(t) =
a0(t)
a(t)

= −v
0(t)
v(t)

= −P
0(t)
P (t)

. (7.12)

• If we had a continuously observable sequence of zero-coupon bond
prices P (t) maturing at time t > 0, the problem of recovering the

spot rates of interest is straightforward using equation (7.11).

• In practice, this sequence is not available.
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• The Fama-Bliss method focuses on the estimation of the instanta-
neous forward rates, from which the spot-rate curve can be com-

puted.

• Recall that
a(t) = exp

∙Z t

0
δ(u) du

¸
. (7.13)

• From (7.11) and (7.13), we conclude that

exp
h
t iSt

i
= exp

∙Z t

0
δ(u) du

¸
,

so that

iSt =
1

t

Z t

0
δ(u) du, (7.14)

which says that the continuously compounded spot rate of interest

is an equally-weighted average of the force of interest.
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• Thus, if we have a sequence of estimates of the instantaneous forward
rates, we can compute the spot-rate curve using (7.14).

• To apply the Fama-Bliss method, we assume that we have a sequence
of bonds with possibly irregularly spaced maturity dates. We assume

that the force of interest between two successive maturity dates is

constant.

• Making use of the equations of value for the bonds sequentially in
increasing order of the maturity, we are able to compute the force of

interest over the period of the data. The spot rates of interest can

then be calculated using equation (7.14).

• Although this yield curve may not be smooth, it can be fine tuned
using some spline smoothing method.
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Example 7.8: You are given the bond data in Table 7.4. The jth bond

matures at time tj with current price Pj per unit face value, which equals the

redemption value, for j = 1, · · · , 4 and 0 < t1 < t2 < t3 < t4. Bonds 1 and 2
have no coupons, while Bond 3 has two coupons, at time t∗31 with t1 < t∗31 < t2
and at maturity t3. Bond 4 has three coupons, with coupon dates t∗41, t∗42 and
t4, where t2 < t∗41 < t3 and t3 < t∗42 < t4.

Table 7.4: Bond data for Example 7.8

Coupon per Bond
Bond face value Coupon date Maturity price
1 0 — t1 P1
2 0 — t2 P2
3 C3 t∗31, t1 < t∗31 < t2 t3 P3

C3 t3
4 C4 t∗41, t2 < t∗41 < t3 t4 P4

C4 t∗42, t3 < t∗42 < t4
C4 t4
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It is assumed that the force of interest δ(t) follows a step function taking

constant values between successive maturities, i.e., δ(t) = δi for ti−1 ≤
t < ti, i = 1, · · · , 4 with t0 = 0. Estimate δ(t) and compute the spot-rate
curve for maturity up to time t4.

Solution: As Bond 1 is a zero-coupon bond, its equation of value is

P1 = exp
h
−t1 iSt1

i
= exp

∙
−
Z t1

0
δ(u) du

¸
= exp [−δ1t1] ,

so that

δ1 = − 1
t1
lnP1,

which applies to the interval (0, t1). Now we turn to Bond 2 (which is

again a zero-coupon bond) and write down its equation of value as

P2 = exp
∙
−
Z t2

0
δ(u) du

¸
= exp [−δ1t1 − δ2(t2 − t1)] .
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Solving the above equation for δ2, we obtain

δ2 = − 1

t2 − t1 [lnP2 + δ1t1]

= − 1

t2 − t1 ln
∙
P2
P1

¸
.

For Bond 3, there is a coupon payment of amount C3 at time t∗31, with
t1 < t

∗
31 < t2. Thus, the equation of value for Bond 3 is

P3 = (1 +C3) exp

∙
−
Z t3

0
δ(u) du

¸
+ C3 exp

"
−
Z t∗31

0
δ(u) du

#
= (1 +C3) exp [−δ1t1 − δ2(t2 − t1)− δ3(t3 − t2)] +C3 exp [−δ1t1 − δ2(t

∗
31 − t1)] ,

from which we obtain

δ3 = − 1

t3 − t2 ln
"
P3 − C3 exp[−δ1t1 − δ2(t

∗
31 − t1)]

(1 + C3)P2

#

= − 1

t3 − t2 ln
"
P3 − P1C3 exp[−δ2(t∗31 − t1)]

(1 + C3)P2

#
.
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Going through a similar argument, we can write down the equation of
value for Bond 4 as

P4 = (1+C4)P
∗
3 exp [−δ4(t4 − t3)]+P2C4 exp [−δ3(t∗41 − t2)]+P ∗3C4 exp [−δ4(t∗42 − t3)] ,

where

P ∗3 = exp [−δ1t1 − δ2(t2 − t1)− δ3(t3 − t2)] ,
so that

(1+C4) exp [−δ4(t4 − t3)]+C4 exp [−δ4(t∗42 − t3)] =
P4 − P2C4 exp [−δ3(t∗41 − t2)]

P ∗3
.

Thus, the right-hand side of the above equation can be computed, while

the left-hand side contains the unknown quantity δ4. The equation can be

solved numerically for the force of interest δ4 in the period (t3, t4). Finally,
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using (7.14), we obtain the continuously compounded spot interest rate as

iSt =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ1, for 0 < t < t1,

δ1t1 + δ2(t− t1)
t

, for t1 ≤ t < t2,

δ1t1 + δ2(t2 − t1) + δ3(t− t2)
t

, for t2 ≤ t < t3,

δ1t1 + δ2(t2 − t1) + δ3(t3 − t2) + δ4(t− t3)
t

, for t3 ≤ t < t4.

2

• Thus, the instantaneous forward rate of interest can be computed us-
ing the bond data, from which the spot-rate curve can be computed

by equation (7.14).
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7.7 Term Structure Models

• Empirically the yield curve can take various shapes.

• It will be interesting to examine the factors determining the shapes
of the yield curve, how the yield curve evolves over time, and whether

the shape of the yield curve has any implications for the real economy

such as the business cycle.

• There are several approaches in defining the term-structure models.
We shall examine the theories of the term structure in terms of the

1-period holding-period yield introduced in Section 7.4.

• For simplicity of exposition, we assume investments in zero-coupon
bonds and relate different measures of returns to the bond prices.
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• We denote i(n)H as the 1-period holding-period (from time 0 to 1)

yield of a bond maturing at time n. The current time is 0 and the

price of a bond at time t with remaining n periods to mature is

denoted by Pt(n).

• We introduce the new notation tiSτ to denote the spot rate of interest
at time t for payments due τ periods from t (i.e., due at time t+ τ).

• Thus, for t > 0, tiSτ is a random variable (at time 0).

• Suppose an investor purchased a n-period bond at time 0 and held
it for 1 period, the bond price at time 1 is P1(n − 1), so that the
1-period holding-period yield from time 0 to 1 is

i
(n)
H =

P1(n− 1)− P0(n)
P0(n)

. (7.15)
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• Note that P1(n − 1) is a random variable at time 0, and so is i(n)H .

Furthermore, tiSτ is given by

ti
S
τ =

"
1

Pt(τ)

# 1
τ

− 1. (7.16)

• If we assume that all market participants are risk neutral (they
neither avoid nor love risks) and that they have no preference for

the maturities of the investments, then their only criterion for the

selection of an investment is its expected return.

• This assumption leads to the pure expectations hypothesis, which
states that the expected 1-period holding-period yields for bonds of

all maturities are equal, and thus equal to the 1-period spot rate of

interest (which is the 1-period holding-period yield of a bond ma-

turing at time 1).
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• If we denote E[i(n)H ] as the expected value of i(n)H at time 0, the pure

expectations hypothesis states that

E[i(n)H ] = i
S
1 , for n = 1, · · · . (7.17)

• However, while the 1-period holding-period yield for a 1-year zero-
coupon bond is known at time 0 (i.e., iS1 ), it is unknown for bonds

with longer maturities. Thus, the bonds with longer maturities in-

volve uncertainty and may have higher risks.

• Investors may demand higher expected return for bonds with matu-
rities longer than a year, which is called the risk premium.

• If the risk premium is constant for bonds of all maturities, we have

the expectations (or constant premium) hypothesis, which
states that

E[i(n)H ] = i
S
1 + �, for n = 2, · · · , (7.18)
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where � is a positive constant independent of n.

• However, if investors prefer short-maturity to long-maturity assets
due to their better liquidity, then the expected return for bonds with

longer maturities must be higher to compensate the investors.

• This leads to the liquidity premium hypothesis, which states
that

E[i(n)H ] = i
S
1 + �(n), for n = 2, · · · , (7.19)

where the risk premium for a n-period bond �(n) increases with n,

so that �(2) ≤ �(3) ≤ · · ·.

• Some theorists argue that investors do not necessarily prefer short-
maturity assets to long-maturity assets. Thus, the risk premiums of

bonds with different maturities �(n) may not be a monotonic function
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of n, but may depend on other covariates w(n), which are possibly

time varying.

• This is called the market segmentation hypothesis, for which
we have

E[i(n)H ] = i
S
1 + �(w(n)), for n = 2, · · · , (7.20)

so that the risk premium �(·) is a function of the specific asset mar-
ket.

• Finally, the preferred habitat hypothesis states that institutions
do not have a rigid targeted maturity class of assets to invest, but

will be influenced by the returns expected of assets with different

maturities. Thus, bonds with similar maturities will be close substi-

tutes of each other.

• We now examine the implications of the prevailing term structure
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for the future movements of interest rates under the aforementioned

term-structure models.

• Consider the 1-period holding-period yield of a 2-period bond, i(2)H ,
which is given by

i
(2)
H =

P1(1)− P0(2)
P0(2)

=
P1(1)

P0(2)
− 1. (7.21)

• If we consider the spot rate of interest over the 2-period horizon, iS2 ,
we have³
1 + iS2

´2
=

1

P0(2)
=
P1(1)

P0(2)
× 1

P1(1)
=
³
1 + i

(2)
H

´ ³
1 + 1i

S
1

´
. (7.22)

• Using equation (3.4) to rewrite the left-hand side of the above equa-
tion, we have ³

1 + i
(2)
H

´ ³
1 + 1i

S
1

´
=
³
1 + iS1

´ ³
1 + iF2

´
. (7.23)
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• As rates of interest are small, to the first-order approximation the
above equation can be written as

i
(2)
H + 1i

S
1 = i

S
1 + i

F
2 . (7.24)

• Now we take expectations on both sides of the equation. If we

adopt the pure expectations hypothesis, we have E[i(n)H ] = iS1 , so

that equation (7.24) implies

E[1iS1 ] = i
F
2 , (7.25)

which says that the expected value of the future 1-period spot rate

is equal to the prevailing 1-period forward rate for that period.

• This statement is called the unbiased expectations hypothesis,
which is itself implied by the pure expectations hypothesis. Note
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that equation (7.25) can be generalized to

E[tiSτ ] = i
F
t,τ , for 0 < t, τ , (7.26)

so that the prevailing forward rates have important implications for

the expected future values of the spot rates at any time t over any

horizon τ .

• We have seen that if the term structure is upward sloping, the for-

ward rate of interest is higher than the spot rate of interest.

• Thus, under the pure expectations hypothesis, an upward sloping
yield curve implies that the future spot rate is expected to be higher

than the current spot rate. However, if long-term bonds command

a risk premium, an upward sloping yield curve may not imply that

the spot rate is expected to rise.
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