
Financial Mathematics
for Actuaries

Chapter 4

Rates of Return
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Learning Objectives

• Internal rate of return (yield rate)

• One-period rate of return of a fund: time-weighted rate of return
and dollar-weighted (money-weighted) rate of return

• Rate of return over longer periods: geometric mean rate of return
and arithmetic mean rate of return

• Portfolio return and return of a short-selling strategy

• Crediting interest: investment-year method and portfolio method

• Inflation: real rate of return

• Capital budgeting and project appraisal

2



4.1 Internal Rate of Return

• Consider a project with initial investment C0. We assume the cash
flows occur at regular intervals.

• The project lasts for n years and the future cash flows are denoted
by C1, · · · , Cn.

• We adopt the convention that cash inflows to the project (invest-
ments) are positive and cash outflows from the project (withdrawals)

are negative.

• We define the internal rate of return (IRR) (also called the yield
rate) as the rate of interest such that the sum of the present values
of the cash flows is equated to zero.

3



• Denoting the internal rate of return by y, we have
nX
j=0

Cj
(1 + y)j

= 0, (4.1)

where j is the time at which the cash flow Cj occurs.

• This equation can also be written as

C0 = −
nX
j=1

Cj
(1 + y)j

. (4.2)

• Thus, the net present value of all future withdrawals (injections are
negative withdrawals) evaluated at the IRR is equal to the initial

investment.

Example 4.1: A project requires an initial cash outlay of $2,000 and

is expected to generate $800 at the end of year 1 and $1,600 at the end
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of year 2, at which time the project will terminate. Calculate the IRR of

the project.

Solution: If we denote v = 1/(1 + y), we have, from (4.2)

2,000 = 800v + 1,600v2,

or

5 = 2v + 4v2.

Dropping the negative answer from the quadratic equation, we have

v =
−2 +√4 + 4× 4× 5

2× 4 = 0.8956.

Thus, y = (1/v)− 1 = 11.66%. Note that v < 0 implies y < −1, i.e., the
loss is larger than 100%, which is precluded from consideration. 2
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• There is generally no analytic solution for y in (4.1) when n > 2,

and numerical methods have to be used. The Excel function IRR

enables us to compute the answer easily. Its usage is described as

follows:

Excel function: IRR(values,guess)

values = an array of values containing the cash flows
guess = starting value, set to 0.1 if omitted

Output = IRR of cash flows

Example 4.2: An investor pays $5 million for a 5-year lease of a

shopping mall. He will receive $1.2 million rental income at the end of

each year. Calculate the IRR of his investment.

Solution: See Exhibit 4.1. 2
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E hibit 4 1 IRR t ti i E l 4 2Exhibit 4.1: IRR computation in Example 4.2



• If the cash flows occur more frequently than once a year, such as
monthly or quarterly, y computed from (4.1) is the IRR for the

payment interval.

• Suppose cash flows occur m times a year, the nominal IRR in an-

nualized term is m · y, while the annual effective rate of return is
(1 + y)m − 1.

Example 4.3: A cash outlay of $100 generates incomes of $20 after 4

months and 8 months, and $80 after 2 years. Calculate the IRR of the

investment.

Solution: If we treat one month as the interest conversion period, the

equation of value can be written as

100 =
20

(1 + y1)4
+

20

(1 + y1)8
+

80

(1 + y1)24
,
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where y1 is the IRR on monthly interval. The nominal rate of return

on monthly compounding is 12y1. Alternatively, we can use the 4-month

interest conversion interval, and the equation of value is

100 =
20

1 + y4
+

20

(1 + y4)2
+

80

(1 + y4)6
,

where y4 is the IRR on 4-month interval. The nominal rate of return

on 4-monthly compounding is 3y4. The effective annual rate of return is

y = (1 + y1)
12 − 1 = (1 + y4)3 − 1.

The above equations of value have to be solved numerically for y1 or y4.

We obtain 1.0406% as the IRR per month, namely, y1. The effective

annualized rate of return is then (1.010406)12 − 1 = 13.23%. Solving

for y4 with Excel, we obtain the answer 4.2277%. Hence, the annualized

effective rate is (1.042277)3 − 1 = 13.23%, which is equal to the effective
rate computed using y1. 2
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• When cash flows occur irregularly, we can define y as the annualized
rate and express all time of occurrence of cash flows in years.

• Suppose there are n + 1 cash flows occurring at time 0, t1, · · ·, tn,
with cash amounts C0, C1, · · ·, Cn. Equation (4.2) is rewritten as

C0 = −
nX
j=1

Cj
(1 + y)tj

, (4.3)

which requires numerical methods for the solution of y.

• We may also use the Excel function XIRR to solve for y. Unlike IRR,
XIRR allows the cash flows to occur at irregular time intervals. The

specification of XIRR is as follows:
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Excel function: XIRR(values,dates,guess)

values = Cj, an array of values containing the cash flows in (4.3)
dates = tj, an array of values containing the timing of the cash flows in (4.3)
guess = guess starting value, set to 0.1 if omitted

Output = IRR, value of annualized y satisfying (4.3)

Example 4.4: A project requires an outlay of $2.35 million in return

for $0.8 million after 9 months, $1 million after 15 months and $1 million

after 2 years. What is the IRR of the project?

Solution: Returns of the project occur at time (in years) 0.75, 1.25

and 2. We solve for v numerically from the following equation using Excel

Solver (see Exhibit 4.2)

235 = 80v0.75 + 100v1.25 + 100v2
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Figure 4.2: Solution of Example 4.4 using Solver

Exhibit 4.1: IRR computation in Example 4.2



Figure 4.3: Solution of Example 4.4 using XIRR



to obtain v = 0.879, so that

y =
1

0.879
− 1 = 13.77%,

which is the effective annualized rate of return of the project. Alterna-

tively, we may use the Excel function XIRR as shown in Exhibit 4.3. 2

• A project with no subsequent investment apart from the initial cap-
ital is called a simple project.

• For simple projects, (4.1) has a unique solution with y > −1, so that
IRR is well defined.

Example 4.5: A project requires an initial outlay of $8 million, gen-

erates returns of $50 million 1 year later, and requires $50 million to

terminate at the end of year 2. Solve for y in (4.1).
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Solution: We are required to solve

8 = 50v − 50v2,

which has v = 0.8 and 0.2 as solutions. This implies y has multiple solu-

tions of 25% and 400%. 2
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4.2 One-Period Rate of Return

• We consider methods of calculating the return of a fund over a 1-
period interval. The methodology adopted depends on the data

available.

• We start with the situation where the exact amounts of fund with-
drawals and injections are known, as well as the time of their occur-

rence.

• Consider a 1-year period with initial fund amount B0 (equal to C0).
Cash flow of amount Cj occurs at time tj (in fraction of a year) for

j = 1, · · · , n, where 0 < t1 < · · · < tn < 1.

• Note that Cj are usually fund redemptions and new investments, and
do not include investment incomes such as dividends and coupon
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payments.

• Denoting the fund value before and after the transaction at time tj
by BBj and B

A
j , respectively, we have B

A
j = B

B
j +Cj for j = 1, · · · , n.

• The difference between BBj and BAj−1, i.e., the balance before the
transaction at time tj and after the transaction at time tj−1, is due
to investment incomes, as well as capital gains and losses.

• Let the fund balance at time 1 be B1, and define BBn+1 = B1 and

BA0 = B0 (this notation will allow us to express the gross return as

(4.4) below). Figure 4.1 illustrates the time diagram.

• We now introduce two methods to calculate the 1-year rate of re-
turn: the time-weighted rate of return (TWRR) and the dollar-
weighted rate of return (DWRR).
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• To compute the TWRR we first calculate the return over each subin-
terval between the occurrences of transactions by comparing the fund

balances just before the new transaction to the fund balance just af-

ter the last transaction.

• If we denote Rj as the rate of return over the subinterval tj−1 to tj,
we have

1 +Rj =
BBj
BAj−1

, for j = 1, · · · , n+ 1. (4.4)

• Then TWRR over the year, denoted by RT , is

RT =

⎡⎣n+1Y
j=1

(1 +Rj)

⎤⎦− 1. (4.5)

• The TWRR requires data of the fund balance prior to each with-
drawal or injection. In contrast, the DWRR does not require this
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information. It only uses the information of the amounts of the

withdrawals and injections, as well as their time of occurrence.

• In principle, when cash of amount Cj is injected (withdrawn) at
time tj, there is a gain (loss) of capital of amount Cj(1− tj) for the
remaining period of the year.

• Thus, the effective capital of the fund over the 1-year period, denoted
by B, is given by

B = B0 +
nX
j=1

Cj(1− tj).

• Denoting C =
Pn
j=1Cj as the net injection of cash (withdrawal if

negative) over the year and I as the interest income earned over the

year, we have B1 = B0 + I + C, so that

I = B1 −B0 − C. (4.6)
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Hence the DWRR over the 1-year period, denoted by RD, is

RD =
I

B
=

B1 −B0 − C
B0 +

Pn
j=1Cj(1− tj)

. (4.7)

Example 4.6: On January 1, a fund was valued at 100k (1k = 1,000).

OnMay 1, the fund increased in value to 112k and 30k of new principal was

injected. On November 1, the fund value dropped to 125k, and 42k was

withdrawn. At the end of the year, the fund was worth 100k. Calculate

the DWRR and the TWRR.

Solution: As C = 30 − 42 = −12, there is a net withdrawal. From
(4.6), the interest income earned over the year is

I = 100− 100− (−12) = 12.

17



1/1 5/1 11/1 1/1

Cash flow 30 42

Time t, mm/dd

Value before t

Value after t

Subperiod

112 125

142 83

1 2 3

Figure 4.2: Illustration for Example 4.6



Hence, from (4.7), the DWRR is

RD =
12

100 +
2

3
× 30− 1

6
× 42

= 10.62%.

The fund balance just after the injection on May 1 is 112 + 30 = 142k,

and its value just after the withdrawal on November 1 is 125− 42 = 83k.
From (4.4), the fund-value relatives over the three subperiods are

1 +R1 =
112

100
= 1.120,

1 +R2 =
125

142
= 0.880,

1 +R3 =
100

83
= 1.205.

Hence, from (4.5), the TWRR is

RT = 1.120× 0.880× 1.205− 1 = 18.76%.
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2

• TWRR compounds the returns of the fund over subperiods after

purging the effects of the timing and amount of cash injections and

withdrawals.

• As fund managers have no control over the timing of fund injection
and withdrawal, the TWRR appropriately measures the performance

of the fund manager.

• DWRR is sensitive to the timing and amount of the cash flows.

• If the purpose is to measure the performance of the fund, the DWRR
is appropriate.

• It allows superior market timing to impact the return of the fund.
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• For funds with frequent cash injections and withdrawals, the com-
putation of the TWRR may not be feasible. The difficulty lies in

the evaluation of the fund value BBj , which requires the fund to be

constantly marked to market.

• In some situations the exact timing of the cash flows may be difficult
to identify.

• In this situation, we may approximate (4.7) by assuming the cash
flows to be evenly distributed throughout the 1-year evaluation pe-

riod.

• Hence, we replace 1− tj by its mean value of 0.5 so thatPn
j=1Cj(1−

tj) = 0.5C, and (4.7) can be written as

RD ' I

B0 + 0.5C
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=
I

B0 + 0.5(B1 −B0 − I))
=

I

0.5(B1 +B0 − I) . (4.8)

Example 4.7: For the data in Example 4.6, calculate the approximate

value of the DWRR using (4.8).

Solution: With B0 = B1 = 100, and I = 12, the approximate RD is

RD =
12

0.5(100 + 100− 12) = 12.76%.

2
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4.3 Rate of Return over Multiple Periods

• We now consider the rate of return of a fund over a m-year period.
• We first consider the case where only annual data of returns are
available. Suppose the annual rates of return of the fund have been

computed as R1, · · · , Rm. Note that −1 ≤ Rj <∞ for all j.

• The average return of the fund over the m-year period can be cal-
culated as the mean of the sample values. We call this measure the

arithmetic mean rate of return, denoted by RA, which is given
by

RA =
1

m

mX
j=1

Rj. (4.9)

• An alternative is to use the geometric mean to calculate the average,
called the geometric mean rate of return, denoted by RG, which
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is given by

RG =

⎡⎣ mY
j=1

(1 +Rj)

⎤⎦ 1
m

− 1

= [(1 +R1)(1 +R2) · · · (1 +Rm)]
1
m − 1. (4.10)

Example 4.8: The annual rates of return of a bond fund over the last

5 years are (in %) as follows:

6.4 8.9 2.5 −2.1 7.2

Calculate the arithmetic mean rate of return and the geometric mean rate

of return of the fund.

Solution: The arithmetic mean rate of return is

RA = (6.4 + 8.9 + 2.5− 2.1 + 7.2)/5
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= 22.9/5

= 4.58%,

and the geometric mean rate of return is

RG = (1.064× 1.089× 1.025× 0.979× 1.072) 15 − 1
= (1.246)

1
5 − 1

= 4.50%.

2

Example 4.9: The annual rates of return of a stock fund over the last

8 years are (in %) as follows:

15.2 18.7 −6.9 −8.2 23.2 −3.9 16.9 1.8

Calculate the arithmetic mean rate of return and the geometric mean rate

of return of the fund.
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Solution: The arithmetic mean rate of return is

RA = (15.2 + 18.7 + · · ·+ 1.8)/8 = 7.10%

and the geometric mean rate of return is

RG = (1.152× 1.187× · · · × 1.018) 18 − 1 = 6.43%.

2

• Given any sample of data, the arithmetic mean is always larger than
the geometric mean.

• If the purpose is to measure the return of the fund over the holding
period of m years, the geometric mean rate of return is the appro-

priate measure.

25



• The arithmetic mean rate of return describes the average perfor-
mance of the fund for one year taken randomly from the sample

period.

• If there are more data about the history of the fund, alternative mea-
sures of the performance of the fund can be used. The methodology

of the time-weighted rate of return in Section 4.2 can be extended

to beyond 1 period (year).

• Suppose there are n subperiods, with returns denoted by R1, · · · ,
Rn, over a period of m years. Then we can measure the m-year

return by compounding the returns over each subperiod to form the

TWRR using the formula

RT =

⎡⎣ nY
j=1

(1 +Rj)

⎤⎦ 1
m

− 1. (4.11)
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• We can also compute the return over am-year period using the IRR.
We extend the notations for cash flows in Section 4.2 to the m-year

period.

• Suppose cash flows of amount Cj occur at time tj for j = 1, · · · , n,
where 0 < t1 < · · · < tn < m. Let the fund value at time 0 and time
m be B0 and B1, respectively. We treat −B1 as the last transaction,
i.e., fund withdrawal of amount B1.

• The rate of return of the fund is calculated as the IRR which equates
the discounted values of B0, C1, · · · , Cn, and −B1 to zero.

• This is referred to as the DWRR over the m-year period. We denote
it as RD, which solves the following equation

B0 +
nX
j=1

Cj
(1 +RD)tj

− B1
(1 +RD)m

= 0. (4.12)
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• The example below concerns the returns of a bond fund. When a
bond makes the periodic coupon payments, the bond values drop

and the coupons are cash amounts to be withdrawn from the fund.

Example 4.10: A bond fund has an initial value of $20 million. The

fund records coupon payments in six-month periods. Coupons received

from January 1 through June 30 are regarded as paid on April 1. Likewise,

coupons received from July 1 through December 31 are regarded as paid

on October 1. For the 2-year period 2008 and 2009, the fund values and

coupon payments were recorded in Table 4.1.
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Table 4.1: Cash flows of fund

Time Coupon received Fund value before
mm/dd/yy ($ millions) date ($ millions)
01/01/08 20.0
04/01/08 0.80 22.0
10/01/08 1.02 22.8
04/01/09 0.97 21.9
10/01/09 0.85 23.5
12/31/09 25.0

Calculate the TWRR and the DWRR of the fund.

Solution: As the coupon payments are withdrawals from the fund (the

portfolio of bonds), the fund drops in value after the coupon payments.

For example, the bond value drops to 22.0− 0.80 = 21.2 million on April
1, 2008 after the coupon payments. Thus, the TWRR is calculated as
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RT =

∙
22

20
× 22.80

22.0− 0.8 ×
21.90

22.80− 1.02 ×
23.50

21.90− 0.97 ×
25.0

23.50− 0.85
¸0.5
−1 = 21.42%.

To calculate the DWRR we solve RD from the following equation

20 =
0.8

(1 +RD)0.25
+

1.02

(1 +RD)0.75
+

0.97

(1 +RD)1.25
+

0.85

(1 +RD)1.75
+

25

(1 +RD)2

= 0.8v + 1.02v3 + 0.97v5 + 0.85v7 + 25v8,

where v = (1+RD)−0.25.We let (1+y)−1 = v and use Excel to obtain y =
4.949%, so that the annual effective rate of return is RD = (1.04949)4−1 =
21.31%. 2
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Figure 4.4: DWRR computation in Example 4.10



4.4 Portfolio Return

• We now consider the return of a portfolio of assets.

• Suppose a portfolio consists of N assets denoted by A1, · · · , AN . Let
the value of asset Aj in the portfolio at time 0 be A0j, for j =

1, · · · , N .

• We allow A0j to be negative for some j, so that asset Aj is sold short
in the portfolio.

• The portfolio value at time 0 is B0 = PN
j=1A0j. Let the asset values

at time 1 be A1j, so that the portfolio value is B1 =
PN
j=1A1j.

• Denote RP as the return of the portfolio in the period from time 0
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to time 1. Thus,

RP =
B1 −B0
B0

=
B1
B0
− 1.

• We define
wj =

A0j
B0
,

which is the proportion of the value of asset Aj in the initial portfolio,

so that
NX
j=1

wj = 1,

and wj < 0 if asset j is short sold in the portfolio.

• We also denote
Rj =

A1j −A0j
A0j

=
A1j
A0j
− 1,
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which is the rate of return of asset j. Thus,

1 +RP =
B1
B0

=
1

B0

NX
j=1

A1j

=
NX
j=1

A0j
B0

× A1j
A0j

=
NX
j=1

wj(1 +Rj),

which implies

RP =
NX
j=1

wjRj, (4.13)

so that the return of the portfolio is the weighted average of the

returns of the individual assets.
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• Eq (4.13) is an identity, and applies to realized returns as well as
returns as random variables. If we take the expectations of (4.13),

we obtain

E(RP ) =
NX
j=1

wjE(Rj), (4.14)

so that the expected return of the portfolio is equal to the weighted

average of the expected returns of the component assets.

• The variance of the portfolio return is given by

Var(RP ) =
NX
j=1

w2jVar(Rj) +
NX
h=1

NX
j=1| {z }

h6=j

whwjCov(Rh, Rj). (4.15)

• For example, consider a portfolio consisting of two funds, a stock
fund and a bond fund, with returns denoted by RS and RB, respec-
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tively. Likewise, we use wS and wB to denote their weights in the

portfolio.

• Then, we have

E(RP ) = wSE(RS) + wBE(RB), (4.16)

and

Var(RP ) = w2SVar(RS)+w
2
BVar(RB)+2wSwBCov(RS, RB), (4.17)

where wS + wB = 1.

Example 4.11: A stock fund has an expected return of 0.15 and

variance of 0.0625. A bond fund has an expected return of 0.05 and

variance of 0.0016. The correlation coefficient between the two funds is

−0.2.
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(a) What is the expected return and variance of the portfolio with 80%

in the stock fund and 20% in the bond fund?

(b) What is the expected return and variance of the portfolio with 20%

in the stock fund and 80% in the bond fund?

(c) How would you weight the two funds in your portfolio so that your

portfolio has the lowest possible variance?

Solution: For (a), we use (4.16) and (4.17), with wS = 0.8 and wB =
0.2, to obtain

E(RP ) = (0.8)(0.15) + (0.2)(0.05) = 13%

Var(RP ) = (0.8)2(0.0625) + (0.2)2(0.0016) + 2(0.8)(0.2)(−0.2)
q
(0.0016)(0.0625)

= 0.03942.
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Thus, the portfolio has a standard deviation of
√
0.03942 = 19.86%.

For (b), we do similar calculations, with wS = 0.2 and wB = 0.8, to

obtain E(RP ) = 7%, Var(RP ) = 0.002884 and a standard deviation of√
0.002884 = 5.37%.

Hence, we observe that the portfolio with a higher weightage in stock has

a higher expected return but also a higher standard deviation, i.e., higher

risk.

For (c) we rewrite (4.17) as

Var(RP ) = w2SVar(RS) + (1− wS)2Var(RB) + 2wS(1− wS)Cov(RS, RB).

To minimize the variance, we differentiate Var(RP ) with respect to wS to

obtain

2wSVar(RS)− 2(1− wS)Var(RB) + 2(1− 2wS)Cov(RS, RB).
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Equating the above to zero, we solve for wS to obtain

wS =
Var(RB)− Cov(RS, RB)

Var(RB) +Var(RS)− 2Cov(RS, RB)
= 5.29%.

The expected return of this portfolio is 5.53%, its variance is 0.001410,

and its standard deviation is 3.75%, which is lower than the standard

deviation of the bond fund of 4%. Hence, this portfolio dominates the

bond fund, in the sense that it has a higher expected return and a lower

standard deviation.

Note that the fact that the above portfolio indeed minimizes the variance

can be verified by examining the second-order condition. 2

38



4.5 Short sales

• A short sale is the sale of a security that the seller does not own. It
can be executed through amargin account with a brokerage firm.

• The seller borrows the security from the brokerage firm to deliver to
the buyer.

• The sale is based on the belief that the security price will go down
in the future so that the seller will be able to buy back the security

at a lower price, thus keeping the difference in price as profit.

• Proceeds from the short sale are kept in the margin account, and

cannot be invested to earn income.

• The seller is required to place cash or securities into the margin
account. The initial percentage margin m is the percentage of
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the proceeds of the short sold security that the seller must place into

the margin account.

• If P0 is the price of the security when it is sold short, the initial
deposit D is P0m. The seller will earn interest from the deposit.

• At any point in time, there is a maintenance margin m∗, which
is the minimum percentage of the seller’s equity in relation to the

current value of the security sold short.

• If the current security price is P1, the equity E is P0 +D − P1 and
E/P1 must be larger than m∗.

• If E/P1 falls below m∗, the seller will get a margin call from the

broker instructing him to top up his margin account.
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Example 4.12: A person sold 1,000 shares of a stock short at $20.

If the initial margin is 50%, how much should he deposit in his margin

account? If the maintenance margin is 30%, how high can the price go up

before there is a margin call?

Solution: The initial deposit is

1,000× 20× 0.5 = $10,000.
At price P1, the percent of equity is

10,000 + 1,000(20− P1)
1,000P1

,

which must be more than 0.3. Thus, the maximum P1 is

30

1.3
= $23.08.

2

41



• To calculate the rate of return of a short sale strategy we note that
the capital is the deposit D in the margin account. The return

includes the interest earned in the deposit. The seller, however,

pays the dividend to the buyer if there is any dividend payout. The

net rate of return will thus take account of the interest earned and

the dividend paid.

Example 4.13: A person sells a stock short at $30. The stock pays a

dividend of $1 at the end of the year, after which the man covers his short

position by buying the stock back at $27. The initial margin is 50% and

interest rate is 4%. What is his rate of return over the year?

Solution: The capital investment per share is $15. The gross return

after one year is (30− 27)− 1 + 15× 0.04 = $2.6. Hence, the return over
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the 1-year period is
2.6

15
= 17.33%.

Note that in the above calculation we have assumed that there was no

margin call throughout the year. 2
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4.6 Crediting Interest: Investment-Year Method and
Portfolio Method

• A fund pools the investments of individual investors. The investors
may invest new money into the fund at any time.

• While the fund invests the aggregate of the investments, there is an
issue of how to credit interest to the individual investors’ accounts.

• A simple method is to credit the average return of the fund to all
investors. This is called the portfolio method.

• The portfolio method may not be equitable when the individual
investments are made at different times.

• For example, at a time when returns to securities are going up, new
investments are likely to achieve higher returns compared to old
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investments. In this case, crediting the average return will not be

attractive to new investments.

• When security returns are declining, the portfolio method may be
crediting higher returns to new investors at the expense of the old

ones.

• Another method is to credit the accounts according to their year of
investment. This method is called the investment-year method.

• Under this method, new investments are credited the investment-
year rates of interest over a period of time, after which the investors

are credited the portfolio rate of interest.

• Table 4.2 gives an example. For simplicity of exposition, we assume
that investments are made at the beginning of the calendar year and

interests are credited at the end of the year.
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Table 4.2: An example of investment-year rates and portfolio rates

Calendar year Investment-year rates (%) Portfolio rates (%)
of investment (Y ) iY1 iY2 iY3 iY+3

2004 5.6 5.6 5.7 5.9
2005 5.6 5.7 5.8 6.2
2006 5.8 5.9 6.0 6.3
2007 6.2 6.3 6.6
2008 6.7 6.4
2009 7.1

• In Table 4.2, investments are credited the investment-year rates in
the first 3 years. The calendar year of the investment is denoted by

Y , the rate of interest credited for the tth year of the investment

made in calendar year Y is iYt for t = 1, 2, 3, and i
Y is the portfolio

rate credited for calendar year Y .
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• Using these notations, iYt = iY+t−1 for t > 3.

Example 4.14: A fund credits interest according to Table 4.2. Find

the total interest credited in the period 2007 through 2009 for (a) an

investment in 2002, (b) an investment in 2006, (c) an investment in 2007,

(d) an investment in 2007, withdrawn every year and reinvested in the

fund as new money. All investments, including reinvestments, are made

on January 1.

Solution: The last column of the table gives the portfolio rate of

interest in 2007 through 2009. For (a), the investment made in 2002 earns

the portfolio rate of interest in 2007 through 2009. Thus, the total return

over the 3-year period is

1.059× 1.062× 1.063− 1 = 19.55%.
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For (b), the investment made in 2006 earns the investment-year rates in

2007 and 2008 of 5.9% and 6.0%, respectively, and the portfolio rate in

2009 of 6.3%. The total return is

1.059× 1.06× 1.063− 1 = 19.33%.

For (c), the investment made in 2007 earns the investment-year rates in

2007 through 2009 to obtain the total return

1.062× 1.063× 1.066− 1 = 20.34%.

Finally, for (d) if an investment made in 2007 is withdrawn every year and

reinvested at the new money rate, the total return is

1.062× 1.067× 1.071− 1 = 21.36%.

2
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4.7 Inflation and Real Rate of Interest

• Inflation refers to the increase in the general price level of goods and
services.

• The rate of inflation is usually measured by the rate of increase of
a general price index such as the consumer price index, whole-sale

price index or gross domestic product deflator.

• We define the real rate of interest as the interest earned by an
investment after taking account of the erosion of purchasing power

due to inflation.

• We denote rI as the inflation rate, and rN as the nominal rate of

interest.

• The real rate of interest rR is then defined by the equation
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1 + rR =
1 + rN
1 + rI

, (4.18)

from which we obtain

rR =
1 + rN
1 + rI

− 1 = rN − rI
1 + rI

. (4.19)

• If the rate of inflation rI is low, we conclude from (4.19) that

rR ' rN − rI , (4.20)

which says that the real rate of interest is approximately equal to

the nominal rate of interest minus the rate of inflation.

• Note that (4.18) and (4.19) are ex post relationships. They hold
empirically and do not refer to any theoretical relationship between

the three quantities.
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• The economist Irving Fisher argued that the nominal rate of interest
ought to increase one for one with the expected rate of inflation.

• The so-called Fisher equation states that
rN = rR + E(rI), (4.21)

where E(rI) is the expected rate of inflation.

Example 4.15: A stock will pay a dividend of $0.50 two months from

now and the annual dividend is expected to grow at a rate of 4% per

annum indefinitely. If the stock is traded at $7.5 and inflation is expected

to be 2% per annum, what is the expected effective annual real rate of

return for an investor who purchases the stock?

Solution: Let v = 1/(1 + rN), where rN is the nominal rate of return

prior to adjustment for inflation. The dividends are 0.5, 1.04(0.5), 1.042(0.5), · · ·
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at time of 2 months, 14 months, 26 months, · · ·, respectively from now.

Thus, the equation of value is

7.5 = 0.5v
1
6 + 1.04(0.5)v

14
12 + 1.042(0.5)v

26
12 + · · ·

= 0.5v
1
6

h
1 + 1.04v + (1.04v)2 + · · ·

i
=

0.5v
1
6

1− 1.04v .

The above equation has no analytic solution, and we solve it using Excel

to obtain v = 0.898568 and rN = (1/0.898568)− 1 = 0.112882. Thus, the
real rate of return is

rR =
1 + rN
1 + rI

− 1 = 1.112882

1.02
− 1 = 9.1061%.

2
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4.8 Capital Budgeting and Project Appraisal

• Capital budgeting and project appraisal refer to the managerial deci-
sion of investing in a project. We consider some methods of making

such decisions.

• One approach is called the IRR rule, which requires the manager to
calculate the IRR of the project. The IRR is then compared against

the required rate of return of the project, which is the minimum
rate of return on an investment needed to make it acceptable to a

business.

• We denote the required rate of return by RR. The IRR rule accepts
the project if IRR ≥ RR, .

• However, RR is often a difficult quantity to identify. It depends
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on factors such as the market rate of interest, the horizon of the

investment and the risk of the project. In what follows, we shall

assume RR to be given and focus on the application of the budgeting

rules.

• An alternative approach is the net present value (NPV) rule.

• Consider a project with annual cash flows and adopt the notations
in Section 4.1. Discounting the future cash flows by RR, we rewrite

(4.2) and define the NPV of the project as

NPV = −
nX
j=1

Cj
(1 +RR)j

− C0. (4.22)

• A positive NPV implies that the sum of the present values of cash

outflows created by the project exceeds the sum of the present values
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of all investments. Thus, managers should invest in projects with

positive NPV.

• As we have seen in Section 4.1, the IRR may not be unique. When
there are multiple IRRs, the decision is ambiguous.

Example 4.16: Consider a 2-year project with an initial investment

of $1,000. A cash amount of $2,230 will be generated after 1 year, and

the project will be terminated with fund injection of $1,242 at the end of

year 2. What conclusion can be drawn regarding the acceptance of this

project?

Solution: The cash flow diagram is given in Figure 4.3. To calculate

the IRR we solve for the equation

1,000− 2,230v + 1,242v2 = 0,
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where v = 1/(1+y) and y is the IRR. Note that we have adopted the con-

vention of cash inflow being positive and outflow being negative. Solving

for the above equation we obtain y = 8% or 15%. For RR lying between

the two roots of y, the IRR rule cannot be applied. However, if RR is

below the minimum of the two solutions of y, say 6%, can we conclude

the project be accepted?

Evaluating the NPV at RR = 6%, we obtain

NPV = −1,000 + 2,230
1.06

− 1,242

(1.06)2

= −$1.60.

Thus, the project has a negative NPV and should be rejected. Figure 4.4

plots the NPV of the project as a function of the interest rate. It shows

that the NPV is positive for 0.08 < RR < 0.15, which is the region of RR
for which the project should be accepted. Outside this region, the project
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has a negative NPV and should be rejected. 2

• The NPV rule can be applied with varying interest rates that reflects
a term structure which is not flat.

• We can modify (4.22) to calculate the NPV, where the cash flow at
time j is discounted by the rate of interest Rj, such as

NPV = −
nX
j=1

Cj
(1 +Rj)j

− C0. (4.23)

• If the IRR method is adopted, the term structure must be assumed

to be flat.

• While (4.22) computes the NPV of the project upon its completion,
it can be modified to compute the NPV of the project at a time prior

to its completion.
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• Thus, for t ≤ n, we define the NPV of the project up to time t as

NPV(t) = −
tX
j=1

Cj
(1 +RR)j

− C0. (4.25)

• If NPV(t) changes sign only once in the duration of the project, we
can calculate the value of t at which NPV(t) first becomes positive.

• This value of t is called the discounted payback period (DPP).
Formally, DPP is defined as

DPP = min {t : NPV(t) > 0}. (4.26)

• A capital budgeting criterion is to choose the project with the lowest
DPP.
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Example 4.19: Consider the two projects in Example 4.17. Discuss

the choice of the two projects based on the DPP criterion.

Solution: For Project B, as the most substantial cash flow generated

is at the end of the project duration, the DPP of the project is 15 years.

For Project A, Table 4.3 summarizes the results for several required rates

of interest RR.
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Table 4.3: NPV of Project A

RR t NPV(t) DPP
0.03 12 —4.5996 13

13 63.4955
0.04 13 —1.4352 14

14 56.3123
0.05 14 —10.1359 15

15 37.9658
0.06 15 —28.7751 16

16 10.5895

For required rates of interest of 3%, 4%, 5% and 6%, the DPP of Project

A are, respectively, 13, 14, 15 and 16 years. When the required rate

of interest is 6%, Project B has a negative NPV and the DPP is not

defined. When the required interest rate is 5%, Project B has the same
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DPP as Project A, namely, 15 years. For other required rates of interest

considered, the DPP of Project A is shorter. 2

• If RR in (4.25) is set equal to zero, the resulting value of t at which
NPV(t) first becomes positive is called the payback period. Al-
though a project appraisal method may be based on the minimum

payback period, this method lacks theoretical rigor as the time value

of money is not taken into account.
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