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Spot Rates, Forward Rates and
the Term Structure

1



Learning Objectives

1. Spot rate of interest

2. Forward rate of interest

3. Yield curve

4. Term structure of interest rates
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3.1 Spot and Forward Rates of Interest

• We now allow the rate of interest to vary with the duration of the
investment.

• We consider the case where investments over different horizons earn
different rates of interest, although the principle of compounding

still applies.

• We consider two notions of interest rates, namely, the spot rate of
interest and the forward rate of interest.

• Consider an investment at time 0 earning interest over t periods. We
assume that the period of investment is fixed at the time of invest-

ment, but the rate of interest earned per period varies according to

the investment horizon.
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• Thus, we define iSt as the spot rate of interest, which is the annualized
effective rate of interest for the period from time 0 to t.

• The subscript t in iSt highlights that the annual rate of interest varies
with the investment horizon.

• Hence, a unit payment at time 0 accumulates to
a(t) = (1 + iSt )

t (3.1)

at time t.

• The present value of a unit payment due at time t is
1

a(t)
=

1

(1 + iSt )t
. (3.2)

• We define iFt as the rate of interest applicable to the period t− 1 to
t, called the forward rate of interest.
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• This rate is determined at time 0, although the payment is due at
time t− 1 (thus, the use of the term forward).

• By convention, we have iS1 ≡ iF1 . However, iSt and iFt are generally
different for t = 2, 3, · · ·.

• See Figure 3.1.

• A plot of iSt against t is called the yield curve, and the mathemat-
ical relationship between iSt and t is called the term structure of
interest rates.

• The spot and forward rates are not free to vary independently of
each other.

• Consider the case of t = 2. If an investor invests a unit amount at
time 0 over 2 periods, the investment will accumulate to (1+ iS2 )

2 at
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time 2.

• Alternatively, she can invest a unit payment at time 0 over 1 period,
and enters into a forward agreement to invest 1 + iS1 unit at time 1

to earn the forward rate of iF2 for 1 period.

• This rollover strategy will accumulate to (1 + iS1 )(1 + iF2 ) at time 2.
The two strategies will accumulate to the same amount at time 2,

so that

(1 + iS2 )
2 = (1 + iS1 )(1 + i

F
2 ), (3.3)

if the capital market is perfectly competitive, so that no arbitrage

opportunities exist.

• Equation (3.3) can be generalized to the following relationship con-
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cerning spot and forward rates of interest

(1 + iSt )
t = (1 + iSt−1)

t−1(1 + iFt ), (3.4)

for t = 2, 3, · · · .
• We can also conclude that

(1 + iSt )
t = (1 + iF1 )(1 + i

F
2 ) · · · (1 + iFt ). (3.5)

• Given iSt , the forward rates of interest iFt satisfying equations (3.4)
and (3.5) are called the implicit forward rates.

• The quoted forward rates in the market may differ from the implicit
forward rates in practice, as when the market is noncompetitive.

• Unless otherwise stated we shall assume that equations (3.4) and
(3.5) hold, so that it is the implicit forward rates we are referring to

in our discussions.
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• From equation (3.4),

iFt =
(1 + iSt )

t

(1 + iSt−1)t−1
− 1. (3.6)

Example 3.1: Suppose the spot rates of interest for investment horizons

of 1, 2, 3 and 4 years are, respectively, 4%, 4.5%, 4.5%, and 5%. Calculate

the forward rates of interest for t = 1, 2, 3 and 4.

Solution: First, iF1 = i
S
1 = 4%. The rest of the calculation, using (3.6),

is as follows

iF2 =
(1 + iS2 )

2

1 + iS1
− 1 = (1.045)2

1.04
− 1 = 5.0024%,

iF3 =
(1 + iS3 )

3

(1 + iS2 )
2
− 1 = (1.045)3

(1.045)2
− 1 = 4.5%

8



and

iF4 =
(1 + iS4 )

4

(1 + iS3 )
3
− 1 = (1.05)4

(1.045)3
− 1 = 6.5144%.

2

Example 3.2: Suppose the forward rates of interest for investments in

year 1, 2, 3 and 4 are, respectively, 4%, 4.8%, 4.8% and 5.2%. Calculate

the spot rates of interest for t = 1, 2, 3 and 4.

Solution: First, iS1 = i
F
1 = 4%. From (3.5) the rest of the calculation

is as follows

iS2 =
h
(1 + iF1 )(1 + i

F
2 )
i 1
2 − 1 = √1.04× 1.048− 1 = 4.3992%,

iS3 =
h
(1 + iF1 )(1 + i

F
2 )(1 + i

F
3 )
i 1
3−1 = (1.04×1.048×1.048) 13−1 = 4.5327%

and

iS4 =
h
(1 + iF1 )(1 + i

F
2 )(1 + i

F
3 )(1 + i

F
4 )
i 1
4 − 1
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= (1.04× 1.048× 1.048× 1.052) 14 − 1
= 4.6991%.

2

• We define the multi-period forward rate iFt,τ as the annualized rate
of interest applicable over τ periods from time t to t + τ , for t ≥ 1
and τ > 0, with the rate being determined at time 0.

• The following no-arbitrage relationships hold

(1+iFt,τ )
τ = (1+iFt+1)(1+i

F
t+2) · · · (1+iFt+τ ), for t ≥ 1, τ > 0, (3.7)

and

(1 + iSt+τ )
t+τ = (1 + iSt )

t(1 + iFt,τ )
τ , for t ≥ 1, τ > 0. (3.8)
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Example 3.3: Based on the spot rates of interest in Example 3.1,

calculate the multi-period forward rates of interest iF1,2 and i
F
1,3.

Solution: Using (3.7) we obtain

iF1,2 = [(1 + i
F
2 )(1 + i

F
3 )]

1
2 − 1 = (1.050024× 1.045) 12 − 1 = 4.7509%.

Similarly, we have

iF1,3 = (1.050024× 1.045× 1.065144)
1
3 − 1 = 5.3355%.

We may also use (3.8) to compute the multi-period forward rates. Thus,

iF1,2 =

"
(1 + iS3 )

3

1 + iS1

# 1
2

− 1 =
"
(1.045)3

1.04

# 1
2

− 1 = 4.7509%,

and similarly,

iF1,3 =

"
(1 + iS4 )

4

1 + iS1

# 1
3

− 1 =
"
(1.05)4

1.04

# 1
3

− 1 = 5.3355%.
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3.2 The Term Structure of Interest Rates

• Empirically the term structure can take various shapes. A sample

of four yield curves of the US market are presented in Figure 3.4.

• The spot-rate curve on 1998/06/30 is an example of a nearly flat
term structure.

• On 2000/03/31 we have a downward sloping term structure. In
this case the forward rate drops below the spot rate.

• We have an upward sloping term structure on 2001/08/31.

• Unlike the case of a downward sloping yield curve, the forward rate
exceeds the spot rate when the yield curve is upward sloping.
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Figure 3.4:  Yield curves of the US market



• An upward sloping yield curve is also said to have a normal term
structure as this is the most commonly observed term structure

empirically.

• We have an inverted humped yield curve on 2007/12/31.

• Some questions may arise from a cursory examination of this sample
of yield curves. For example,

— How are the yield curves obtained empirically?

— What determines the shape of the term structure?

— Why are upward sloping yield curves observed more often?

— Does the term structure have any useful information about the
real economy?
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3.3 Present and Future Values Given the Term Structure

• We now consider the present and future values of an annuity given
the term structure.

• We continue to use the actuarial notations introduced in Chapter 2.

• The present value of a unit-payment annuity-immediate over n pe-
riods is

ane =
nX
t=1

1

a(t)

=
nX
t=1

1

(1 + iSt )t

=
1

(1 + iS1 )
+

1

(1 + iS2 )
2
+ · · ·+ 1

(1 + iSn)
n
. (3.9)
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• The future value at time t of a unit payment at time 0 is

a(t) = (1+ iSt )
t =

tY
j=1

(1 + iFj ) = (1+ i
F
1 )(1 + i

F
2 ) · · · (1 + iFt ). (3.10)

• The present value of a unit payment due at time t is
1

a(t)
=

1Qt
j=1(1 + i

F
j )
, (3.11)

and the present value of a n-payment annuity-immediate can also

be written as

ane =
nX
t=1

1

a(t)
(3.12)

=
nX
t=1

1Qt
j=1(1 + i

F
j )

=
1

(1 + iF1 )
+

1

(1 + iF1 )(1 + i
F
2 )
+ · · ·+ 1

(1 + iF1 ) · · · (1 + iFn )
.
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• The computation of the future value at time n of a payment due at
time t, where 0 < t < n, requires additional assumptions.

• We consider the assumption that a payment occurring in the
future earns the forward rates of interest.

• The future value at time n of a unit payment due at time t is

(1 + iFt,n−t)
n−t = (1 + iFt+1) · · · (1 + iFn ), (3.13)

and the future value at time n of a n-period annuity-immediate is

sne =

"
n−1X
t=1

(1 + iFt,n−t)
n−t

#
+ 1

=

⎡⎣n−1X
t=1

⎛⎝ nY
j=t+1

(1 + iFj )

⎞⎠⎤⎦+ 1
= [(1 + iF2 )(1 + i

F
3 ) · · · (1 + iFn )] + [(1 + iF3 )(1 + iF4 ) · · · (1 + iFn )] + · · ·
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· · ·+ (1 + iFn ) + 1. (3.14)

• From (3.14) we can see that

sne =
"
nY
t=1

(1 + iFt )

#
×
"

1

1 + iF1
+

1

(1 + iF1 )(1 + i
F
2 )
+ · · ·+ 1

(1 + iF1 ) · · · (1 + iFn )

#
.

(3.16)

• Hence,
sne =

Ã
nY
t=1

(1 + iFt )

!
ane = a(n)ane. (3.17)

• An alternative formula to calculate sne using the spot rates of interest
is

sne = (1 + iSn)
n ane

= (1 + iSn)
n

"
nX
t=1

1

(1 + iSt )t

#
. (3.18)
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Example 3.4: Suppose the spot rates of interest for investment horizons

of 1, 2, 3 and 4 years are, respectively, 4%, 4.5%, 4.5%, and 5%. Calculate

a4e, s4e, a3e and s3e.

Solution: From (3.9) we have

a4e =
1

1.04
+

1

(1.045)2
+

1

(1.045)3
+

1

(1.05)4
= 3.5763.

From (3.17) we obtain

s4e = (1.05)
4 × 3.5763 = 4.3470.

Similarly,

a3e =
1

1.04
+

1

(1.045)2
+

1

(1.045)3
= 2.7536,

and

s3e = (1.045)
3 × 2.7536 = 3.1423.
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2

Example 3.5: Suppose the 1-period forward rates of interest for in-

vestments due at time 0, 1, 2 and 3 are, respectively, 4%, 4.8%, 4.8% and

5.2%. Calculate a4e and s4e.

Solution: From (3.12) we have

a4e =
1

1.04
+

1

1.04× 1.048 +
1

1.04× 1.048× 1.048 +
1

1.04× 1.048× 1.048× 1.052
= 3.5867.

As a(4) = 1.04× 1.048× 1.048× 1.052 = 1.2016, we have
s4e = 1.2016× 3.5867 = 4.3099.

Alternatively, from (3.14) we have

s4e = 1 + 1.052 + 1.048× 1.052 + 1.048× 1.048× 1.052
= 4.3099.
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2

• To further understand (3.17), we write (3.13) as (see (3.8))

(1 + iFt,n−t)
n−t =

(1 + iSn)
n

(1 + iSt )t
=
a(n)

a(t)
. (3.19)

• Thus, the future value of the annuity is, from (3.14) and (3.19),

sne =

"
n−1X
t=1

(1 + iFt,n−t)
n−t

#
+ 1

=
nX
t=1

a(n)

a(t)

= a(n)
nX
t=1

1

a(t)

= a(n)ane. (3.20)
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• In Chapter 2 we assume that the current accumulation function a(t)
applies to all future payments.

• Under this assumption, if condition (1.35) holds, equation (3.20) is
valid. However, for a given general term structure, we note that

a(n− t) = (1 + iSn−t)n−t 6=
(1 + iSn)

n

(1 + iSt )t
=
a(n)

a(t)
,

so that condition (1.35) does not hold.

• Thus, if future payments are assumed to earn spot rates of interest
based on the current term structure, equation (3.20) does not hold

in general.

Example 3.6: Suppose the spot rates of interest for investment horizons

of 1 to 5 years are 4%, and for 6 to 10 years are 5%. Calculate the present
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value of an annuity-due of $100 over 10 years. Compute the future value

of the annuity at the end of year 10, assuming (a) future payments earn

forward rates of interest, and (b) future payments earn the spot rates of

interest as at time 0.

Solution: We consider the 10-period annuity-due as the sum of an

annuity-due for the first 6 years and a deferred annuity-due of 4 payments

starting at time 6. The present value of the annuity-due for the first 6

years is

100× ä6e0.04 = 100×
"
1− (1.04)−6
1− (1.04)−1

#
= $545.18.

The present value at time 0 for the deferred annuity-due in the last 4 years
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is

100× (ä10e0.05 − ä6e0.05) = 100×
"
1− (1.05)−10
1− (1.05)−1 −

1− (1.05)−6
1− (1.05)−1

#
= 100× (8.1078− 5.3295)
= $277.83.

Hence, the present value of the 10-period annuity-due is

545.18 + 277.83 = $823.01.

We now consider the future value of the annuity at time 10. Under as-

sumption (a) that future payments earn the forward rates of interest, the

future value of the annuity at the end of year 10 is, by equation (3.20),

(1.05)10 × 823.01 = $1,340.60.
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Note that using (3.20) we do not need to compute the forward rates of

interest to determine the future value of the annuity, as would be required

if (3.16) is used.

Based on assumption (b), the payments at time 0, · · · , 4 earn interest at 5%
per year (the investment horizons are 10 to 6 years), while the payments

at time 5, · · · , 9 earn interest at 4% per year (the investment horizons are
5 to 1 years). Thus, the future value of the annuity is

100× (s̈10e0.05 − s̈5e0.05) + 100× s̈5e0.04 = $1,303.78.

Thus, equation (3.20) does not hold under assumption (b). 2
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3.4 Accumulation Function and the Term Structure

• Equation (3.1) can be extended to any t > 0, which need not be an
integer.

• The annualized spot rate of interest for time to maturity t, iSt , is
given by

iSt = [a(t)]
1
t − 1. (3.22)

• We may also use an accumulation function to define the forward
rates of interest.

• Let us consider the forward rate of interest for a payment due at
time t > 0, and denote the accumulation function of this payment

by at(·), where at(0) = 1.
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• Now a unit payment at time 0 accumulates to a(t+ τ) at time t+ τ ,

for τ > 0.

• On the other hand, a strategy with an initial investment over t pe-
riods and a rollover at the forward rate for the next τ periods will

accumulate to a(t)at(τ) at time t+ τ .

• By the no-arbitrage argument, we have
a(t)at(τ) = a(t+ τ), (3.23)

so that

at(τ) =
a(t+ τ)

a(t)
. (3.24)

• The annualized forward rate of interest in the period t to t+ τ , iFt,τ ,

satisfies

at(τ) = (1 + i
F
t,τ )

τ ,

26



so that

iFt,τ = [at(τ)]
1
τ − 1. (3.25)

• If τ < 1, we define the forward rate of interest per unit time (year)
for the fraction of a period t to t+ τ as

iFt,τ =
1

τ
× at(τ)− at(0)

at(0)
=
at(τ)− 1

τ
. (3.26)

• The instantaneous forward rate of interest per unit time at
time t is equal to iFt,τ for τ → 0, which is given by

lim
τ→0 i

F
t,τ = lim

τ→0
at(τ)− 1

τ

= lim
τ→0

1

τ
×
"
a(t+ τ)

a(t)
− 1

#

=
1

a(t)
lim
τ→0

"
a(t+ τ)− a(t)

τ

#
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=
a0(t)
a(t)

= δ(t). (3.27)

• Thus, the instantaneous forward rate of interest per unit time is
equal to the force of interest.

Example 3.7: Suppose a(t) = 0.01t2+0.1t+1. Compute the spot rates

of interest for investments of 1, 2 and 2.5 years. Derive the accumulation

function for payments due at time 2, assuming the payments earn the

forward rates of interest. Calculate the forward rates of interest for time

to maturity of 1, 2 and 2.5 years.

Solution: Using (3.22), we obtain iS1 = 11%, i
S
2 = 11.36% and iS2.5 =

11.49%. Thus, we have an upward sloping spot-rate curve. To calculate
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the accumulation function of payments at time 2 we first compute a(2) as

a(2) = 0.01(2)2 + 0.1(2) + 1 = 1.24.

Thus, the accumulation function for payments at time 2 is

a2(t) =
a(2 + t)

a(2)
=
0.01(2 + t)2 + 0.1(2 + t) + 1

1.24
= 0.0081t2 + 0.1129t+ 1.

Using the above equation, we obtain a2(1) = 1.1210, a2(2) = 1.2581 and

a2(2.5) = 1.3327, from which we conclude iF2,1 = 12.10%,

iF2,2 = (1.2581)
1
2 − 1 = 12.16%

and

iF2,2.5 = (1.3327)
1
2.5 − 1 = 12.17%.

Thus, the forward rates exceed the spot rates, which agrees with what

might be expected of an upward sloping yield curve. 2
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• We can further establish the relationship between the force of in-
terest and the forward accumulation function, and thus the forward

rates of interest.

• From (3.24), we have

at(τ) =
a(t+ τ)

a(t)
=
exp

³R t+τ
0 δ(s) ds

´
exp

³R t
0 δ(s) ds

´ = exp
µZ t+τ

t
δ(s) ds

¶
,

(3.28)

so that we can compute the forward accumulation function from the

force of interest.

Example 3.8: Suppose δ(t) = 0.05t. Derive the accumulation function

for payments due at time 2, assuming the payments earn the forward rates

of interest. Calculate the forward rates of interest for time to maturity of

1 and 2 years.
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Solution: Using (3.26) we obtain

a2(t) = exp

µZ 2+t

2
0.05s ds

¶
= exp

h
0.025(2 + t)2 − 0.025(2)2

i
= exp(0.025t2+0.1t).

Thus, we can check that a2(0) = 1. Now,

a2(1) = exp(0.125) = 1.1331,

so that iF2,1 = 13.31%. Also, a2(2) = exp(0.3) = 1.3499, so that

iF2,2 = (1.3499)
1
2 − 1 = 16.18%.

2

• We now consider payments of C1, C2, · · · , Cn at time t1 < t2 < · · · <
tn, respectively.

• We wish to compute the value of these cash flows at any time t (≥ 0).
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• For the payment Cj at time tj ≤ t, its accumulated value at time t
is Cj atj(t − tj). On the other hand, if tj > t, the discounted value
of Cj at time t is Cj/at(tj − t).

• Thus, the value of the cash flows at time t is (see equation (3.24))
X
tj≤t

Cj atj (t− tj) +
X
tj>t

Cj

"
1

at(tj − t)

#
=

X
tj≤t

Cj

"
a(t)

a(tj)

#
+
X
tj>t

Cj

"
a(t)

a(tj)

#

=
nX
j=1

Cj

"
a(t)

a(tj)

#

= a(t)
nX
j=1

Cj v(tj)

= a(t)× present value of cash flows.
(3.29)
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• An analogous result can be obtained if we consider a continuous cash
flow.

• If C(t) is the instantaneous rate of cash flow at time t for 0 ≤ t ≤ n,
the value of the cash flow at time τ ∈ [0, n] isZ τ

0
C(t)at(τ − t) dt+

Z n

τ

C(t)

aτ (t− τ)
dt =

Z τ

0

C(t)a(τ)

a(t)
dt+

Z n

τ

C(t)a(τ)

a(t)
dt

= a(τ)

Z n

0

C(t)

a(t)
dt

= a(τ)

Z n

0
C(t)v(t) dt. (3.30)

Example 3.9: Suppose a(t) = 0.02t2+0.05t+1. Calculate the value at

time 3 of a 1-period deferred annuity-immediate of 4 payments of $2 each.

You may assume that future payments earn the forward rates of interest.
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Solution: We first compute the present value of the annuity. The

payments of $2 are due at time 2, 3, 4 and 5. Thus, the present value of

the cash flows is

2×
"
1

a(2)
+

1

a(3)
+

1

a(4)
+

1

a(5)

#
.

Now, a(2) = 0.02(2)2 + 0.05(2) + 1 = 1.18, and similarly we have a(3) =

1.33, a(4) = 1.52 and a(5) = 1.75. Thus, the present value of the cash

flow is

2×
∙
1

1.18
+

1

1.33
+

1

1.52
+

1

1.75

¸
= 2× 2.82866 = $5.6573,

and the value of the cash flow at time 3 is a(3)×5.6573 = 1.33×5.6573 =
$7.5242. 2

Example 3.10: Suppose δ(t) = 0.02t. An investor invests in a fund

at the rate of 10t per period at time t, for t > 0. How much would she
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accumulate in the fund at time 2? You may assume that future payments

earn the forward rates of interest.

Solution: The amount she invests in the period (t, t + ∆t) is 10t∆t,

which would accumulate to (10t∆t)at(2 − t) at time 2. Thus, the total
amount accumulated at time 2 isZ 2

0
10tat(2− t)dt.

From (3.28), we have

at(2− t) = exp
µZ 2

t
δ(s) ds

¶
= exp

µZ 2

t
0.02s ds

¶
.

Now, we have Z 2

t
0.02s ds = 0.01s2]2t = 0.01(2)

2 − 0.01t2,
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so that

at(2− t) = exp(0.04− 0.01t2)
and Z 2

0
10tat(2− t)dt = 10

Z 2

0
te0.04−0.01t

2

dt

= 10e0.04
Z 2

t
te−0.01t

2

dt

=
10e0.04

0.02

³
−e−0.01t2]20

´
=

10e0.04(1− e−0.04)
0.02

= 20.4054.

2

Example 3.11: Suppose the principal is C and interest is earned at the
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force of interest δ(t), for t > 0. What is the present value of the interest

earned over n periods.

Solution: As δ(t) is the instantaneous rate of interest per period at

time t, the amount of interest earned in the period (t, t+∆t) is Cδ(t)∆t,

and the present value of this interest is [Cδ(t)∆t]v(t). Thus, the present

value of all the interest earned in the period (0, n) isZ n

0
Cδ(t)v(t) dt.

Now, we haveZ n

0
δ(t)v(t) dt =

Z n

0
δ(t) exp

µ
−
Z t

0
δ(s) ds

¶
dt

=
µ
− exp

µ
−
Z t

0
δ(s) ds

¶¶¸n
0

= exp
µ
−
Z 0

0
δ(s) ds

¶
− exp

µ
−
Z n

0
δ(s) ds

¶
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= 1− v(n).

Hence, the present value of the interest earned is

C[1− v(n)] = C − Cv(n),

which is the principal minus the present value of the principal redeemed

at time n. 2
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