School of Information Systems

Secure and Practical Key Distribution for RFID-Enabled Supply Chains

Tieyan Li, <u>Yingjiu Li</u>, Guilin Wang SecureComm 2011, London

Outline

- Motivations
- Related Works
- Contributions
- Scenario
- Desired Security Properties
- Resilient Secret Sharing (RSS)
- Our Construction
- Parameterization
- School of Informatio

Motivations

- RFID-enabled supply chains
 - RFID tags, readers, and supply chains
 - RFID security and privacy issues
 - Symmetric key based solutions
 - Key distribution problem
 - Lack of pre-existing trusted relationships in large-scale dynamic supply chains

Related Works

- Centralized control (OSK'04,MW'04,LD'07)
 - A centralized DB manages all tag keys
 - Not practical for large-scale dynamic supply chains
- Secret sharing on tags (LM'07, JPP'08)
 - The encryption key for a batch of tags are shared among the tags
 - Not secure due to weak adv model and clone attack

Contributions

- Secure and practical key distribution for RFID-enabled supply chain
 - Practical: focalized viewpoint on any pair of consecutive parties linked by a transaction and a 3rd party who delivers goods (auth tags with errors) from one party to the other
 - Secure: strong adv model (no clone/privacy attack even for the 3rd party)

Scenario

School of

- Batch goods delivery from A to B by C
 - Each item is attached with an RFID tag
 - C can authenticate the tags (with certain errors) but cannot know tag IDs or clone tags

Desired Security Properties

- Authenticity of tags by C
 - Case based, or individual tag authentication
 - Tolerate certain reading errors or tag missing
 - No access to tag content or clone of tags
- Authenticity/accessibility of tags by B
 - Authenticate tags in batch (with robustness)
 - Obtain all secret information to access/update individual tags
- Privacy protection against C/adversary
 - Tag IDs encrypted by A can be accessed/ decrypted by B only (not C or any adversary)

Resilient Secret Sharing (RSS)

- McEliece's RSS based on Reed-Solomon codes (CACM'81)
 - Let B=(b1,b2,...bk) be the secret, where bi in BF(2^m)
 - There exists D=(d1,d2,...dn) in (k,n)-RS code, where di=bi for i<k+1.</p>
 - The last n-k symbols in D are available for distribution to those sharing the secret.
 - At least k shares are required to recover the secret

RSS at High Level

• RSS scheme. A secret x is shared into n - k available shares, in which r shares are distributed into r tags respectively and the other n - k - r shares are stored in a database.

- Recover secret by combining shares from both physical flow and information flow
- Any single flow cannot contribute enough shares (r<k and n-k-r<k)
- Allow more shares contributed from information flow to compensate the missing shares in physical flow
- A minimum number of shares should be contributed from information flow so that an adversary's guessing attack on missing shares is difficult

Our Construction

 R tags in a batch, allocated equally in I cases, with r tags per case (R=I*r)

Our Construction

- EPC C1G2 tags
 - EPC Memory 48 bits pseudo-ID (PID)
 - 1 share (16 bits) for x
 - 1 share (16 bits) for y
 - 1 sequence order (16 bits)
 - Adversary can access PID, which changes for different peers
 - - Encryption key e=H(y)
 - Accessed and decrypted by B only (ID secrecy, anti-clone)
 - - APIN = H(x,PID)[15:0] || H(y,PID)[15:0]
 - KPIN = H(x,PID)[31,16] || H(y,PID)[31:16]

School of Information System

• C can obtain half APIN and KPIN for authentication

B can obtain whole APIN and KPIN for auth//acc/ident/upd

Comparison of Security Properties

- [9]: OSK'04
- [8]: MW'04
- [6]: LD'07
- [4]: JPP'08

	Key Storage	Authentication	Anti-Cloning	Type of Privacy
	(DB/Tag)	$(\mathrm{Group}/\mathrm{Tag})$	(Tag Corruption)	$({\rm Unlinkability}/{\rm ID~Secrecy})$
[9][8][6]	Central DB	Tag	No	Unlinkability
				betw. auth. sessions
TSS $[4]$	Tag	Group	No	ID Secrecy
RSS	Partner DB & Tag	Group & Tag	Yes	Unlinkability
				betw. diff. peers

Parameterization

- Philips UCODE Gen2 tag (512 bits) •
 - EPC (96 bits), TID (32 bits), User (128 bits), Reserved (64 bits) for access and kill PINs)
- Running Example
 - 100 tags/batch \rightarrow 5 cases with 20 tags/case
 - Case level authentication with secret x
 - (28,60)-RSS: 32 shares with 16 bits/share
 - 448-bit secret x
 - 20 shares for tags/case and 12 shares to C
 - C tolerates up to 4 or 20% reading errors on scanning the case
 - Batch level access with secret y
 - (108,236)-RSS: 108 shares with 16 bits/share
 - 1728-bit secret y

School of

100 shares to tags/batch and 28 shares to B

Conclusion

- Practical and secure key distribution for RFIDenabled supply chains
 - Peer-to-peer transaction with 3PL
 - 3PL can authenticate tags (in cases) with resilience to certain reading errors
 - No adversary or 3PL can access/clone tag content
 - Receiving party can authenticate/access/update tags (in batches) with resilience to certain reading errors
 - Our solution can be easily incorporated in standard RFID appliances

Thanks!

School of Information Systems