
A New Framework for RFID Privacy

ESORICS 2010

Robert H. Deng, Yingjiu Li, Moti Yung, Yunlei Zhao

Outline

• Introduction.
• Model of RFID Systems.
• Adaptive Completeness and Mutual Authentication.
• zk-Privacy: Formulation, Clarifications and Comparisons.
• An RFID Protocol within Our Framework.
• Future Works

Introduction

• RFID tags are low-cost electronic devices, from which the
stored information can be collected by an RFID reader
efficiently (from tens to hundreds of tags per second) at a
distance (from several centimeters to several meters)
without the line of sight.

• RFID technology has been widely used in numerous
applications, ranging from manufacturing, logistics,
transportation, warehouse inventory control, supermarket
checkout counters, to many emerging applications.

• As a key component of future ubiquitous computing
environment, however, RFID technology has triggered
significant concerns on its security and privacy as a tag’s
information can be read or traced by malicious readers
from a distance without its owner’s awareness.

• It is critical to investigate formal RFID security and privacy
frameworks that are fundamental to the design and
analysis of robust RFID systems [JW07,V07,DO08,PV08,
HMZH08,NSMS08,MLDL09,NSMS09].

• However, due to high system complexity, it turns out to be
full of subtleties in developing rigorous and precise RFID
system models.

• In this work, we develop a new definitional framework for
RFID security and privacy in a rigorous and precise
manner. Our framework is based on a zero-knowledge
formulation [GMR85], and incorporates the notions of
adaptive completeness and mutual authentication.

• We make detailed justification and clarifications, and make
comparisons with existing frameworks. Along the way, we
also clarify certain confusions and rectify several defects in
the existing frameworks.

Model of RFID Systems

• We consider the basic scenario of RFID systems,
comprising of a single legitimate reader R and a set of `
tags T = {T1, ..., T`}. We assume reader R is secure.

• An RFID system (R, T) is setup by a procedure Setup(κ, `).
• Setup(κ, `) generates the public system parameter σR , the

reader secret-key kR and initial internal state s1
R for R. It

may also setup an initial database DB1 for R to store
information for identifying and authenticating tags.

• For each i , 1 ≤ i ≤ `, this procedure generates the public
parameter ξTi and the initial secret-key k1

Ti
for a tag Ti and

sets the tag’s initial internal state s1
Ti

.
• We use para = (σR , ξ1, · · · , ξ`) to denote the public system

parameters.

Protocol π(R, Ti)

• A tag Ti , 1 ≤ i ≤ `, exchanges messages with the reader R
through a protocol π(R, Ti).

• W.l.o.g., we assume the protocol run of π is always initiated
by R and π consists of 2γ + 1 rounds. Each protocol run of
π is called a session.

• We assume each tag interacts with the reader sequentially,
but multiple tags can interact with the reader “concurrently”.

• To allow and distinguish concurrent sessions (at the side of
the reader R), we associate each session of protocol π
with a unique session identifier sid .
• In practice, sid is typically generated by the reader when it

is invoked to send the first-round message.

Random Coins, and Internal State and
Secret-Key Updates

• Each uncorrupted player uses fresh and independent
random coins (generated on the fly) in each session, in
case it is an randomized algorithm. We assume that the
random coins used in each session are erased once the
session is completed (whether successfully finished or
aborted).

• We assume that the update process of new internal state
and secret-key, by an uncorrupted tag in a session run,
automatically overwrites (i.e., erases) its old internal state
and secret-key.

Session Numbers, and Session Outputs

• Given a security parameter κ, we assume that each tag Ti
takes part in at most s (sequential) sessions in its life time
with R, and thus R involves at most s` sessions, where s is
some polynomial in κ. In practice, the value s can be a
fixed constant (e.g., s = 228[BBEG09]).

• The output of reader R in a session sid is a bit osid
R , which

indicates either acceptance (osid
R = 1) or rejection

(osid
R = 0). The output of a tag Ti in a session sid is a bit

osid
Ti

, which indicates either acceptance (osid
Ti

= 1) or
rejection (osid

Ti
= 0) of the current session run by Ti .

• We assume the session output bits are public, and can
particularly be accessed by the adversary A. The reason
is that, in reality, such outputs can be publicly observed
from the behaviors of protocol participants during/after the
protocol run or can be learnt by some other side channels.

Adversary

An adversary A, against an RFID system (R, T), is given
access to the following four oracles O = {O1, O2, O3, O4}:
• O1: InitReader()
• O2: SendT(Ti , m̂)

• O3: SendR(ŝid , α̂)
• O4: Corrupt(Ti): Adversary A obtains the secret-key and

internal state information (as well as the random coins)
currently held by Ti . Once a tag Ti is corrupted, all its
actions are controlled and performed by A.

• An adversary is a (t , n1, n2, n3, n4)-adversary, if it works in
time t and makes oracle queries to Oµ without exceeding
nµ times, where 1 ≤ µ ≤ 4.

• We denote by AO(R, T , para) a PPT algorithm A that, on
input of some system public parameter para, concurrently
interacts with R and the tags in T via the four oracles in O,
where (R, T) is setup by Setup(κ, `).

Adaptive Completeness and
Mutual Authentication

Adaptive Completeness

• Roughly speaking, adaptive completeness says that, after
any attacks (particularly the desynchronizing attacks)
made by the adversary A, the protocol execution between
the reader R and any uncorrupted tag is still complete
(e.g., being able to recover from desynchronization).
• In other words, after undergoing arbitrary attacks, the

uncorrupted parties of the RFID system still can recover
whenever the attacks stop.

• Formal formalization is referred to the paper.

Matching Sessions

• For a successfully completed session run by a tag Ti , its
matching session is defined to be the successfully
completed session with the identical session transcript at
the side of reader R.

• But, the matching-session for a successfully completed
session run by R with transcript trs = (trs′, c2γ+1), where
trs′ denotes the transcript of the first 2γ rounds and c2γ+1
denotes the last round message sent by R , its matching
session can be any session at the side of an uncorrupted
tag Ti :
• a successfully finished session of the identical transcript str ;
• a completed but aborted session of the session transcript

(str ′, c′2γ+1), where c′2γ+1 6= c2γ+1.
• an incomplete ongoing session with partial transcript sid ′,

where Ti is waiting for the last-round message.

• This treatment takes into account the following
unpreventable “cutting-last-message” attack: : a CMIM
adversary A relays the messages being exchanged by R
and Ti until receiving the last-round message c2γ+1 from
R; after this, A sends an arbitrary message c′2γ+1(6= c2γ+1)
to Ti (which typically causes Ti to abort the session), or,
just drops the session at the side of Ti without sending Ti
the last-round message.

Formulating Mutual Authentications

Experiment Expauth
A [κ, `]

1. run Setup(κ, `) to setup the reader R and a set of tags T ;
denote by para the public system parameters;

2. trans ← AO(R, T , para).

Denote by E1 the event that trans corresponds to the transcript
of a successfully completed session run by R in which R
successfully identifies an uncorrupted tag Ti , but this session
has no matching session at the side of Ti . Denote by E2 the
event that trans corresponds to the transcript of a successfully
completed session run by some uncorrupted tag Ti ∈ T , and
this session has no matching session at the side of R.

Then, roughly speaking, authentication from reader to tag
(resp., from tag to reader) says that the probability of E1 (resp.,
E2) occurs is negligible.

zk-Privacy: Formulation,
Justification and Comparisons

Notations

• Let AO(R, T̂ , I(Tg), aux) be a PPT algorithm A that, on
input aux ∈ {0, 1}∗, concurrently interacts with R and a set
of tags T̂ via the four oracles O = {O1, O2, O3, O4}, and
has blind access to a challenge tag Tg 6∈ T̂ via a special
interface I.
• From the viewpoint of A, it does not know which tag it is

interacting with. It is also required that A interacts with Tg
via O2 queries only.

• Clean tag: A tag Ti is called clean, if it is not corrupted, and
is not currently running an incomplete session with the
reader.
• In other words, a clean tag is an uncorrupted tag that is

currently at the status of waiting for the first-round message
from the reader to start a new session.

zk-Privacy Experiment: Real World

Experiment Expzkp
A [κ, `]

1. run Setup(κ, `) to setup the reader R and a set of tags
T ; denote by para the public system parameter;

2. {C, st} ← AO1 (R, T , para), where C = {Ti1 , Ti2 , · · · ,
Tiδ} ⊆ T is a set of clean tags, 0 ≤ δ ≤ `;

3. g ∈R {1, · · · , δ}, set Tg = Tig and T̂ = T − C;
4. viewA ← AO2 (R, T̂ , I(Tg), st);
5. output (g, viewA).

zk-Privacy Experiment: Simulated World

Experiment Expzkp
S [κ, `]

1. run Setup(κ, `) to setup the reader R and a set of tags
T ; denote by para the public system parameter;

2. {C, st} ← SO1 (R, T , para), where C = {Ti1 , Ti2 , · · · ,
Tiδ} ⊆ T is a set of clean tags, 0 ≤ δ ≤ `;

3. g ∈R {1, · · · , δ}, and set T̂ = T − C;
4. sview ← SO2 (R, T̂ , st), where sview particularly

includes all oracle answers to queries made by S;
5. output (g, sview).

zk-Privacy

• Roughly speaking, zk-privacy says that the output of real
world experiment (g, viewA) and the output of simulated
world experiment (g, sview) are indistinguishable.

• Informally, an RFID protocol π satisfies zk-privacy, if what
can be derived by interacting with the challenge tag Tg in
the second-stage of A can actually be derived by A itself
without interacting with Tg . In this sense, the interaction
between A2 and Tg leaks “zero knowledge” to A.

• The formulation can be easily extended to capture forward
and backward zk-privacy, where the experiment output
also includes the final (resp., initial) secret-key and internal
state of the challenge tag Ti
• For forward/backward zk-privacy, it is required that the

challenge tag Tg should remain clean at the end of real
world experiment Expzkp

A . But, A is allowed to corrupt the
challenge tag after the end of Expzkp

A .

Why allow A1 to output an arbitrary set C of tags, and limit A2 to blind

access to a challenge tag Tg chosen randomly from C?

• The zk-privacy definition implies that adversary A cannot
distinguish any challenge tag Tg from any set C of tags;
• otherwise, A can figure out the identity of Tg in C from its

view viewA, while this tag’s identity cannot be derived from
any simulator’s view sview .

• If C is removed from the definition of zk-privacy, it is
possible for the adversary to distinguish any two tags
under its attack, even if each of the tags can be perfectly
simulated by a simulator.
• A special case is that each tag has an upper-bound of

sessions in its life time so that an adversary can distinguish
any two tags by setting one tag to be run out of sessions in
the learning stage.

• In addition, we do not restrict C to two tags so as to take
into account the case that any number of tags may be
correlated.

Why limit A1 to output of clean tags?

If A1 is allowed to output “unclean tags”, A2 can trivially violate
the zk-privacy. Consider that A1 selects two tags that are
waiting for different round message (e.g., one tag is clean and
the other is not), then A2 can trivially distinguish them by
forwarding to Tg different round messages.

Why allow S to have access to oracles in O?

Suppose that S simulates a tag Ti from scratch and A (run by S
as a subroutine) requests to corrupt Ti in the middle of the
simulation. Without oracle access, it is difficult or even
impossible for S to continue its simulation and keep it
consistent with its previous simulation for the same tag.
• For example, suppose Ti ever sent H(sk , r) before

corruption, and simulator S has to come up with the secret
values (sk , r) upon corruption.

Why limit sview to include all oracle answers to
queries made by S?

This is to restrict S not to access the oracles in O more than A
does.
• The indistinguishability between the simulated view sview

and the real view viewA of adversary A in zk-privacy
implies that for any (t , n1, n2, n3, n4)-adversary A, with
overwhelming probability, S cannot query O1, O2, O3, O4
more than n1, n2, n3, n4 times, respectively.

Why require Tg to remain clean at the end of
Expzkp

A for forward/backward privacy?

In general, forward/backward privacy cannot be achieved if the
adversary is allowed to corrupt the challenge tag before the end
of its sessions in Expzkp

A (i.e., the tag is not clean at the moment
of corruption).
• Otherwise, the adversary is able to derive certain protocol

messages from the tag’s internal state, secret-key, random
coins, and the partial session transcript

Comparison with Ind-Privacy [JW07]

• Some observations on ind-privacy:
• The issue of “clean tags” was not explicitly clarified.
• Any RFID protocol, even if it just reveals the tag’s

secret-key, trivially satisfies ind-privacy for special RFID
systems consisting only a single tag (e.g., for a unique item
of high value).

• ZK-privacy is strictly stronger than ind-privacy, which also
an open question posed in [JW07] for developing stronger
RFID privacy models.

Comparison with Models of [V07,PV08]

• In [V07,PV08], the simulator is not required to handle tag
corruption queries by the adversary.

• In [V07,PV08], an adversary can corrupt any tag at any
time (possibly in the middle of session). However, in such a
case, forward/backward privacy may not be achievable.

• The matching session concept defined in [V07,PV08] is
restricted to identical session transcript, without realizing
subtleties such as the “cutting last message attacks”.

• The notion of adaptive completeness is not defined in
[V07,PV08], with no adversarial desynchronizing attacks
being taken into account.

• In general, the privacy notions of [V07,PV08] and
ind-privacy of [JW07] are incomparable (though for some
concrete adversarial strategy, privacy notions of
[V07,PV08] may imply ind-privacy), while zk-privacy is
strictly stronger than ind-privacy.

Comparison with unp-privacy of
[HMZH08,MLDL09]

• unp-privacy is formulated w.r.t. a special kind of 3-round
RFID protocols, while zk-privacy is not confined to such.

• unp-privacy requires that messages from tags must be
pseudorandom, which is over restricted to include naturally
secure protocols (e.g., messages from tags may bear
some constant values like protocol version number, etc),
and may exclude the use of PKE in RFID-protocols, as
ciphertexts of PKE are typically not pseudorandom.

• unp-privacy does not allow adversary to access protocol
outputs. Otherwise, no protocol can satisfies unp-privacy.

• In summary, zk-privacy is more reasonable than
unp-privacy in practice. It allows for more general protocol
structure, more powerful adversary, and
non-pseudorandom protocol messages.

An RFID Protocol Within Our
Framework

Protocol Implementation

Reader R
{(I, k , ctr , ID)}

Tag Ti
(k , ctr)

c−−−−−−−−−−−−−−→
I||rT←−−−−−−−−−−−−−−

rR−−−−−−−−−−−−−−→

I = F 0
k (ctr ||pad1)

(r0, r1) = Fk (c||I)
rT = r0 ⊕ (ctr ||pad2)
ctr = ctr + 1

If rR = r1, accept R
Else reject

If find a tuple (I, k , ctr ′, ID), then
compute (r0, r1) = Fk (c||I)
If ctr ′||pad2 = r0 ⊕ rT , then

accept the tag, send back rR = r1
update ctr ′ = ctr ′ + 1 and I = F 0

k (ctr ′||pad1)
Else If ∃(I′, k , ctr ′, ID) s.t. ctr ||pad2 = F 0

k (c||I)⊕ rT and F 0
k (ctr ||pad1) = I,

accept the tag, send back rR = F 1
k (c||I)

update ctr ′ = ctr + 1 and I′ = F 0
k (ctr ′||pad1)

Else reject

• We prove that the protocol is of adaptive completeness,
mutual authentication, and zk-privacy within the new
framework.
• The analysis zk-privacy involving a series of hybrid

experiments.

• In comparison with the protocol proposed in [MLDL09], our
protocol adds mutual authentication, and is logically more
precise.
• Analysis of completeness and authentication was not

conducted in [MLDL09], and the zk-privacy analysis of our
protocol is much more complicated than the unp-privacy
analysis in [MLDL09].

• We suggest that the methodology used in our analysis is of
independent interest, which can be applied to analyze
other RFID protocols (particularly those based on PRFs)
within our new framework.

Future Works

• To analyze existing RFID protocols and design new
protocols within the new framework.

• To extend our RFID privacy framework to more
sophisticated and practical scenarios
• reader corruption, tag cloning (or more feasibly, protocols to

prevent swapping attacks), tag group authentication,
anonymizer-enabled RFID systems, and tag ownership
transfer.

Thanks

