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Abstract

We analyze a sequential decision model with endogenous ordering in which
decision makers are allowed to choose the time of acting (exercising a risky
investment option) or waiting. We show the existence of a unique symmetric
equilibrium and characterize information cascade under endogenous ordering.
Further, if there are two or more risky investment options, individuals tend to
wait longer with competition. Hence, we could end up with a dilemma: more
options might be worse.
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1 Introduction

How do people make sequential decisions under imperfect information? One may
learn from his own experiences or from other people’s choices. For instance, individu-
als currently using a particular software package may also have the choice of upgrad-
ing to some new software packages. They may have some knowledge about the new
software packages. But if the new software packages are brand new and private infor-
mation is limited, individuals may be inclined to wait for other people to discourse
more information about the newly released software packages before they take any
action. If the information previously aggregated dominates their own private infor-
mation, individuals ignore their own private information and follow their predecessors
– information cascade occurs.1 Information cascade prevents the aggregation of
information. Therefore, the initial realization of signals can have long-term conse-
quences and information cascade is often error prone. The decisions of the first few
individuals’ can have a disproportional effect.

Bikhchandani, Hirshleifer, and Welch (1992), hereafter BHW, and Banerjee (1992)
investigate information cascade under exogenous ordering, in which the decision
ordering is exogenously given and only one individual moves in each period. The
restaurant example in Banerjee (1992) may fit the exogenous ordering setting.2 But
in many other cases, endogenous ordering which allows individuals to choose the
time of acting or waiting may be more appropriate. For instance, when individuals
decide to buy a new car or computer, they have the option to buy immediately or
to wait. With endogenous ordering, there exist strategic interactions among decision
makers. Due to the free-rider problem, some decision makers may have incentives
to delay their decisions and learn from other decision makers, while others make
decisions immediately if they feel confident that their decisions will produce desirable
results. Furthermore, more than one individual can act or wait during the same
period and consequently their decisions can be clustered together. Thus, under the
endogenous ordering setting, the insight will be completely different from that under
the exogenous ordering setting.

Continuing with the software upgrading example, suppose there are a number of
new software packages Aj, j ∈ {1, 2, ...,M}, available for upgrading, where M is some
finite integer. Individuals are currently using a software package B. It is known that
with some prior probability Aj, j ∈ {1, 2, ...,M}, is better than B. Each individual
also gets private signals indicating whether Aj, j ∈ 1, 2, ...,M , is better than B or

1Çelen and Kariv (2004) attempt to make the distinction between herding and information cas-
cades. They point out that in a herd, individuals choose the same action; but they may have
acted differently if the realization of private signals had been different. In an information cascade,
individuals ignore their own private information and follow their predecessors.

2In the restaurant example in Banerjee (1992), there are two restaurants next to each other.
Individuals arrive at the restaurants in sequence. Observing the choices made by people before
them, they decide on either one of the two restaurants.
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not. Upgrading to Aj, j ∈ {1, 2, ...,M}, is an irreversible choice. Once they upgrade
to Aj, they are committed to their decisions.3 They cannot switch back to B, or
upgrade to Am, for m ̸= j. But there is no commitment to continuing using B. If
individuals have not upgraded, they continue to have the option of doing so.4 As
there are a number of new software packages, naturally there exists “competition”
among them. The further question of inquiry is: will information cascade be more or
less error prone with competition?

We analyze an endogenous ordering sequential decision model in which decision
makers are allowed to choose the time of upgrading to some new software package Aj,
j ∈ {1, 2, ...,M}, or waiting (continuing using the current software package B). To
emphasize the information aspect, we focus on pure information externalities: each
decision maker’s payoff only depends on his own action and the state of nature.

We show the existence of a unique symmetric perfect Bayesian equilibrium (PBE)
with the following monotonicity property: in each period there exists critical types
of individuals who upgrade with probability less than one; individuals with private
signals indicating higher values upgrade with probability one; others wait. In this
equilibrium, typically there is a strategic phase, followed by a cascading phase. In
the strategic phase, depending on their own private signals, some individuals up-
grade, while others wait. In the cascading phase, all the remaining individuals
either upgrade immediately or wait forever regardless of their own private signals.
Consequently, there exists either an investment surge or a collapse. Further, if there
are two or more risky investment options, individuals tend to wait longer with com-
petition. Hence, we could end up with a dilemma: more options might be worse.5

There are some papers which investigate the decision problem with endogenous
ordering. For example, Chamley and Gale (1994) investigate a discrete time invest-
ment model which assumes the timing of decisions is endogenous, that is, individuals
try to find the best place in the decision-making queue to undertake a profitable
but risky investment. In their model, there are only two types of individuals: those
with investment option and those without. Those individuals without investment
option are assumed to be passive. Further, there is only one risky investment. In
contrast, in our model we allow for a finite number types of individuals and two or
more investment alternatives. Given one’s own signals, each individual decides either
to act immediately or to wait and learn the true value of the investment options by
observing other individuals’ actions.

The rest of the paper is organized as follows. Section 2 provides the model with one

3There exists extremely high “disruption costs” involved in upgrading. In other words, we could
see this upgrade as a perpetual American call option. Individuals are free to exercise the option at
any time they want. But once they exercise the option, they cannot reverse their decision.

4Throughout the paper, we use the software upgrading example to illustrate our model.
5Schwartz (2004) argues that eliminating choices can greatly reduce anxiety of our lives, which

focuses on the psychological aspects of connection between choice and anxiety.
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risky investment option and shows the existence of a unique symmetric equilibrium
with the monotonicity property. Then we characterize information cascade under
endogenous ordering. Section 3 extends the model with two or more risky investment
options. Section 4 investigates the impact of competition with two or more investment
options and discuss our main results. Several extensions are discussed in section 5.

2 One Risky Investment Option

As a benchmark, we start with the case with one risky investment option. There are
N individuals. All are rational and risk neutral. There is a new software package
A1 available for upgrading. Individuals currently use software package B. Assume
that the true value of A1, denoted by V1, is chosen by nature at the beginning of the
game, and is unknown to the individuals.6 Individuals know V1 follows some prior
distribution F1(V1), with density f1(V1). To emphasize the information aspect, we
concentrate on pure information externalities: each individual’s payoff only depends
on his own action and the state of nature.

We focus on the case that upgrading to A1 is an irreversible binary choice.7 Once
they upgrade to A1, they are committed to their decisions. They cannot switch back
to B. But there is no commitment to continuing using B. If individuals have not
upgraded, they continue to have the option of doing so. The indivisibility of the action
space is important. As in Banerjee (1992), since the choices made by individuals are
not sufficient statistics for the information they have, the error prone information
cascade can occur.8

At the beginning of the game, individual i in the market observes some condition-
ally independent private signal θ1i ∈ {s11, s12, . . . , s1D1

}, where s11 < s12 < . . . < s1D1

6Rosenberg (1976) points out that there exist two types of technological uncertainty. First, when
an innovation is introduced, it may have some imperfections: “Innumerable ‘bugs’ may need to be
worked out. The first user often takes considerable risk.” In addition, current innovation could be
improved further in the future. There are two possible situations for the future possible improvement:
expected or unexpected. If it is expected, then it only increases the benefit from waiting by some
constant amount. If it is unexpected, it will not affect the strategic interactions of the current game
until it happens. Thus, we ignore the second type of technological uncertainty here. When we
investigate the switch from one innovation to another, the future improvement, either expected or
unexpected, could be incorporated.

7Similar to Grenadier (1999), we could see this upgrade as a perpetual American call option. In
Grenadier (1999), decisions are made in continuous time and there is a state variable, which follows
some exogenous continuous time stochastic process. In this paper, we assume discrete time decision
and no exogenous state variable.

8Banerjee (1992) assumes a continuous action space and gets similar information cascade results
as BHW. This is due to the degenerate payoff function as pointed out by BHW. Park (2001) as-
sumes perfect observability, and hence in his model players share the same information and hidden
information is not an issue.
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and D1 is some finite integer. θ1i follows some distribution F1(θ
1
i |V1), with den-

sity f1(θ
1
i |V1). Assume F1(θ

1
i |V1) satisfies the Monotone Likelihood Ratio Property

(MLRP)9 with respect to V1:
f1(θ1i |Ṽ1)

f1(θ1i |V1)
increasing in θ1i , for Ṽ1 > V1. That is, individu-

als are more likely to get a higher private signal (indicating higher value of A1) if the
underlying V1 is higher.

With endogenous ordering, individuals are allowed to choose the time of upgrading
to the new software package A1 or waiting (continuing using the current software
package B). There exist strategic interactions among the individuals. The timing of
endogenous ordering is as follows:

In period 1, each individual decides to upgrade to A1 or to wait. If he
waits in period 1, he gets reservation utility V0, normalized to zero, and
has the option of upgrading later.

In period 2, all the remaining individuals decide to upgrade to A1 or to
wait after observing others’ actions in period 1.

The subsequent periods are the same as period 2. The game continues
until everyone upgrades to A1. The time period is denoted by t, t =
1, 2, 3, ....

The benefit from waiting is the information revealed about A1 by other individuals.
The cost of waiting is the difference between the gain from A1 and the reservation
utility. Denote individual i’s action at date t by xi,t, where xi,t = 1 if he upgrades
to A1 at date t and xi,t = 0 if he waits. Let xt ≡ (x1,t, ..., xN,t) denote the outcome
at date t. If individual i upgrades to A1 in period t, then in the following periods,
everyone knows individual i upgrades to A1 in period t. The history of the game at
the beginning of period t is a sequence of outcomes ht = (x1, ..., xt−1).

10 The common
discount factor is δ ∈ (0, 1).

Let µ1
i,t(V1|θ1i ;ht) denote individual i’s posterior belief about the true value of A1

given the history of the game ht and his own information θ1i at the beginning of period
t. The probability that individual i who has not yet upgraded does so after observing
the history ht is denoted by σ1

i,t(θ
1
i ;ht). Then a behavioral strategy is a function

σ1
i,t : H → [0, 1].

Our solution concept is perfect Bayesian equilibrium (PBE). A PBE consists of
a strategy σ and a probability assessment µ, such that (i) each individual’s strategy
is a best response at every information set and (ii) the probability assessments are
consistent with Bayes’ rule at every information set that is reached with positive
probability.

9Landsberger and Meilijson (1990) point out that MLRP holds for exponential type families
(binomial with the same number of trials, normal with equal variances, etc.) as well as for some
non-exponential cases such as uniform with the same left endpoint.

10As the prior, x0 = 0 and hence h1 = x0 = 0.
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Let’s see the incentive for upgrading and waiting respectively. The expected ben-
efit from upgrading to A1 in period t for individual i is:

UA1(θ1i ;ht) = EV1|θ1i ;ht
V1 (1)

The expected benefit from waiting in period t for individual i is:

UW (θ1i ;ht; σ
1
−i,t) = δEHt+1(θ1i ;ht;σ1

−i,t)

[
max{UA1(θ1i ;ht+1);U

W (θ1i ;ht+1;σ
1
−i,t+1)}

]
(2)

where σ1
−i,t represents the strategy profile of all other individuals except for individual

i in period t; Ht+1(θ
1
i ;ht; σ

1
−i,t) represents the set of histories at the beginning of period

t + 1 given θ1i , ht and σ1
−i,t. From equation 2, we can solve the benefit from waiting

forever UW = 0. The following lemma shows that under the worst news (no one is
willing to upgrade), the waiting information cascade starts in the following period.

Lemma 1 If σ1
i,t = 0 for all i, then σ1

i,τ = 0 for any τ > t and i.

Proof. See the Appendix.

Intuitively, for sufficiently pessimistic beliefs, no one is willing to upgrade. This
is the worst news and also an absorbing state. Under this worst news, individuals
will never upgrade to A1 and the waiting information cascade starts in the following
period. This implies, to keep upgrade going, at least one individual must upgrade to
A1 in each period. Thus, with a finite number of N individuals, the game lasts at
most N periods before a cascading phase starts.11

In this paper, we focus on symmetric equilibrium. The following proposition
shows that for any symmetric PBE, it must be monotone with respect to personal
private signals. That is, individuals with higher private signals have higher incentive
to upgrade.

Proposition 1 For individual i, UA1(θ1i ;ht) − UW (θ1i ;ht; σ
1
−i,t) is increasing in θ1i ,

for any ht and σ1
−i,t.

Proof. See the Appendix.

Intuitively, as assumed, the conditionally independent private signals satisfies
MLRP with respect to the true value of V1. By Bayes’ rule, the posterior distribution
of V1 satisfies MLRP with respect to private signals. That is, if an individual gets a
higher private signal, given the same history, he believes that V1 will be higher. So,
UA1(θ1i ;ht) > UA1(θ̃1i ;ht) for θ

1
i > θ̃1i and any ht. Further, by lemma 1, with a finite

number of N individuals, the game lasts at most N periods before a cascading phase

11We may end up with no cascading phase at all. In this case, only the strategic phase exists.
Still, the game lasts at most N periods before the game ends.

6



starts. Let T denote the period when a cascading phase starts. Lemma 1 implies
T ≤ N + 1. With a cascading phase starting in period T , no more new information
is disclosed thereafter. That is, UW (θ1i ;hT ;σ

1
−i,T ) = UW (θ̃1i ;hT ; σ

1
−i,T ) = 0. Thus, in

period T , UA1(θ1i ;hT )−UW (θ1i ;hT ;σ
1
−i,T ) > UA1(θ̃1i ;hT )−UW (θ̃1i ;hT ;σ

1
−i,T ), for any

hT and σ1
−i,T . By backward induction, for any t ≤ T , UA1(θ1i ;ht)−UW (θ1i ;ht; σ

1
−i,t) >

UA1(θ̃1i ;ht)− UW (θ̃1i ;ht; σ
1
−i,t), which is true for any ht and σ1

−i,t.

Based on the proposition above, we create an ordering “index” about private
signals: ν(θ1;ht;σ

1
−,t) = UA1(θ1;ht) − UW (θ1;ht;σ

1
−,t), which is strictly increasing

in θ1 for any ht and σ1
−,t, where σ1

−,t is the behavior strategy profile for all other
remaining individuals in period t.12 In addition, let W1

t (ht) denote the set of possible
remaining types in period t.13 The following proposition shows the existence of a
unique symmetric PBE, in which individuals with higher index of private signals
upgrading earlier till a cascading phase starts.

Proposition 2 There exists a unique symmetric PBE, in which typically there is
a strategic phase, followed by a cascading phase. In the strategic phase, the equilib-
rium strategy profile is a sequence of decreasing critical types {θ1t (ht)}t and a sequence
of probability of critical types {σ

θ1t (ht)
}t: in period t, individuals with ν(θ;ht; σ

1
−,t) >

ν(θ1t (ht);ht;σ
1
−,t) upgrade;

14 the critical type individuals upgrade with probability σ
θ1t (ht)

∈
[0, 1); others wait.15 If a cascading phase starts, all the remaining individuals in the
game either upgrade immediately or wait forever.

Proof. See the Appendix.

Intuitively, by lemma 1, with a finite number of N individuals, the game lasts
at most N periods before a cascading phase starts. Further, by Proposition 1, for
any symmetric PBE, it must be monotone with respect to personal private signals.
Consider Gn(ht), the subgame starting from period t with history ht, where n is the
number of individuals remaining. There are three possible cases as follows.

(1) If beliefs are sufficiently optimistic about A1, all the remaining individuals
upgrade to A1 and A1-upgrading information cascade occurs: W1

τ (hτ ) = ∅ for all
τ > t. To illustrate, A1-upgrading information cascade occurs in period t when
θ1t (ht) = s11 and σ

θ1t (ht)
= 1. All the remaining individuals upgrade to A1 in period t

12With a slight abuse of notation, from now on we drop the subscript i to indicate the term applied
to any individual in the game.

13As s1D1
is the highest possible remaining type in period 1, W1

1 (h1) = { θ | s11 ≤ θ ≤ s1D1
}.

14Since ν(θ1;ht;σ
1
−,t) is strictly increasing in θ1, ν(θ;ht;σ

1
−,t) > ν(θ1t (ht);ht;σ

1
−,t) is equivalent

to saying θ > θ1t (ht).
15Note, σ

θ1
t (ht)

< 1 so that θ1t (ht) is the highest possible remaining type in period t + 1. Hence,

W1
t+1(ht+1) = { θ | s11 ≤ θ ≤ θ1t (ht)}.
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regardless of their own private signal and the game ends (see figure 1). Consequently,
there exists an investment surge.
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Information Cascade 

Strategic Phase 

Figure 1: A1-Upgrading Information Cascade

(2) If beliefs are sufficiently pessimistic about A1, all the remaining individu-
als wait and waiting information cascade starts. To illustrate, waiting informa-
tion cascade starts in period t when θ1t (ht) = θ1t−1(ht−1) and σ

θ1t (ht)
= 0. Since

no more new information is disclosed thereafter, the game reaches an absorbing state:
θ1τ (hτ ) = θ1τ−1(hτ−1), σθ1τ (hτ )

= 0, and W1
τ (hτ ) = W1

τ−1(hτ−1) for all τ ≥ t (see fig-

ure 2). Consequently, there exists an investment collapse.
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Figure 2: Waiting information cascade

(3) Otherwise, strategic phase continues, in which continuity implies there exists
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a critical type θ1t (ht) ≤ θ1t−1(ht−1), such that{
ν(θ1;ht;σ

1
−,t) = UA1(θ1;ht)− UW (θ1;ht;σ

1
−,t) > 0 if θ1 > θ1t (ht)

ν(θ1;ht;σ
1
−,t) = UA1(θ1;ht)− UW (θ1;ht;σ

1
−,t) < 0 if θ1 < θ1t (ht)

As for the realization, there are three scenarios depending on the realization of the
private signals of the n individuals remaining in the game. If all private signals are
greater than θ1t (ht), all the remaining individuals upgrade and the game ends. If all

private signals are less than θ1t (ht), all the remaining individuals will wait forever.
Otherwise, there are two sub-scenarios: (i) some upgrade and others wait; (ii) some
are indifferent between upgrading and waiting, while others upgrade or wait for sure.

For the latter sub-scenario, from ν(θ1t (ht);ht;σ
1
−,t) = UA1(θ1t (ht);ht) −

UW (θ1t (ht);ht; σ
1
−,t) = 0, we can identify σ

θ1t (ht)
. Consequently, we may end up with

the following outcomes: if all upgrade, the game ends; if a number of individuals, say
nt < n, upgrade and others wait, the game continues to the subgame Gn−nt(ht+1); if
all wait, waiting information cascade starts. By backward induction, starting with the
subgame with one individual remaining, we can construct the equilibrium strategy
profile of the original game, GN(h1).

3 Two or More Risky Investment Options

Suppose now there are two or more risky investment options. The setting is the same
as the one in the previous section, except that there are a number of new software
packages Aj, j ∈ {1, 2, ...,M}, available for upgrading, where M is some finite integer
greater than 1. Assume that the true value of Aj, denoted by Vj, is chosen by
nature at the beginning of the game, and is unknown to the individuals. Individuals
know Vj follows some prior distribution Fj(Vj), with density fj(Vj). Upgrading to
Aj, j ∈ {1, 2, ...,M}, is an irreversible choice. Once they upgrade to Aj, they are
committed to their decisions. They cannot switch back to B, or upgrade to Am, for
m ̸= j. But there is no commitment to continuing using B. If individuals have not
upgraded, they continue to have the option of doing so.

At the beginning of the game, for the new software package Aj, j ∈ {1, 2, ...,M},
individual i in the market observes some conditionally independent private signal
θji ∈ {sj1, s

j
2, . . . , s

j
Dj
}, where sj1 < sj2 < . . . < sjDj

and Dj is some finite integer.

θji follows some distribution Fj(θ
j
i |Vj), with density fj(θ

j
i |Vj).

16 Assume Fj(θ
j
i |Vj)

satisfies the Monotone Likelihood Ratio Property (MLRP) with respect to Vj:
fj(θ

j
i |Ṽj)

fj(θ
j
i |Vj)

increasing in θji , for Ṽj > Vj. That is, individuals are more likely to get a higher

16For simplicity, assume the distributions of the private signals, including the prior, are indepen-
dent. In section 5, some extension with correlated signals is discussed.
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private signal (indicating higher value of Aj) if the underlying Vj is higher. The
signal vector observed by individual i is denoted by θi = (θ1i , θ

2
i , ..., θ

M
i ).

With endogenous ordering, individuals are allowed to choose the time of upgrading
to the new software package Aj, j ∈ {1, 2, ...,M}, or waiting (continuing using the
current software package B). There exist strategic interactions among the individuals.
The timing is the same as the one in the previous section, except that there are a
number of new software packages Aj, j ∈ {1, 2, ...,M}, available for upgrading. In
each period, each individual decides to upgrade to Aj, j ∈ {1, 2, ...,M}, or to wait,
if he has not yet upgraded. The game continues until everyone upgrades to Aj,
j ∈ {1, 2, ...,M}. The benefit from waiting is the information revealed about the new
software package Aj, j ∈ {1, 2, ...,M}, by other individuals. The cost of waiting is
the difference between the gain from Aj, j ∈ {1, 2, ...,M}, and the reservation utility.

Denote individual i’s action at date t by xi,t, where xi,t = j if he upgrades to Aj,
j ∈ {1, 2, ...,M}, at date t and xi,t = 0 if he waits. Let xt ≡ (x1,t, ..., xN,t) denote the
outcome at date t. If individual i upgrades to Aj in period t, then in the following
periods, everyone knows individual i upgrades to Aj in period t. The history of the
game at the beginning of period t is a sequence of outcomes ht = (x1, ..., xt−1).

17 The
common discount factor is δ ∈ (0, 1).

Let µj
i,t(Vj|θi;ht) denote individual i’s posterior belief about the true value of Aj

given the history of the game ht and his own information θi at the beginning of period
t. The probability that individual i, who has not yet upgraded, chooses to upgrade to
Aj after observing the history ht is denoted by σj

i,t(θi;ht). Then a behavioral strategy

is a function σj
i,t : H → [0, 1]. The vector of the behavioral strategy for individual i

in period t is denoted by σi,t = (σ1
i,t, σ

2
i,t, ..., σ

M
i,t ), where

M∑
j=1

σj
i,t = 1.

Our solution concept is perfect Bayesian equilibrium (PBE). A PBE consists of
a strategy σ and a probability assessment µ, such that (i) each individual’s strategy
is a best response at every information set and (ii) the probability assessments are
consistent with Bayes’ rule at every information set that is reached with positive
probability.

Let’s see the incentive for upgrading and waiting respectively. The expected ben-
efit from upgrading to Aj, j ∈ {1, 2, ...,M}, in period t for individual i is:

UAj(θi;ht) = EVj |θi;htVj (3)

The expected benefit from waiting in period t for individual i is:

UW (θi;ht; σ−i,t) = δEHt+1(θi;ht;σ−i,t)

[
max

{
max

j
UAj(θi;ht+1);U

W (θi;ht+1; σ−i,t+1)

}]
(4)

17As the prior, x0 = 0 and hence h1 = x0 = 0.
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where σ−i,t represents the strategy profile of all other individuals except for individual
i in period t; Ht+1(θi;ht;σ−i,t) represents the set of histories at the beginning of period
t + 1 given θi, ht and σ−i,t. From equation 4, we can solve the benefit from waiting
forever UW = 0.

For Aj, j ∈ {1, 2, ...,M}, we say it is “inactive” or “dormant” in period t, if no
one intends to upgrade to Aj in period t. Formally, Aj is dormant in period t if
σj
i,t = 0 for all i remaining in the game in period t; otherwise it is active . As there

are two or more risky investment options, some investment option may be dormant
for a while and back to be active later. In contrast, with only one investment option,
if it is dormant, it will remain dormant and never be active again, as showed in lemma
1.

Consider in some period t only Aj is active while all others investment options
are dormant. The following lemma shows that if no one upgrades to Aj in period t,
then Aj will be dormant in period t+ 1.

Lemma 2 Suppose σĵ
i,t = 0 for all i and ĵ ̸= j. If xt = 0, then σj

i,t+1 = 0 for all i.

Similar to the proof of lemma 1, for sufficiently pessimistic beliefs about Aj in
period t, no one is willing to upgrade to Aj, and this is the worst news for Aj. Under
this worst news for Aj in period t, individuals will not upgrade to Aj in the following
period t+1. Otherwise, suppose there were some individual upgrading to Aj in period
t + 1 under this worst news for Aj in period t. He would for sure upgrade to Aj in
period t + 1. Then, he should have upgraded to Aj in period t, other than waiting
for one more period, which is a contradiction.

Lemma 2 says that if only Aj is active in some period and it turns out no one
upgrades to Aj, then Aj must be “cooling off” for at least one period. With two or
more investment options, it is the turn of other investment options to be active. This
implies “information flow” must continue till either all individuals upgrade or all in-
vestment options are dormant. In the latter case, waiting information cascade starts.
Further implication is that with a finite number of N individuals, M investment op-
tions and bounded private signals, the game lasts for a finite number of periods before
a cascading phase starts.18

The next proposition shows that for any symmetric PBE, it must be monotone
with respect to personal private signals. That is, individuals with higher private
signals about Aj, j ∈ {1, 2, ...,M}, have higher incentive to upgrade to Aj.

18Consider M = 1. Once the only investment option is dormant, it will remain dormant and never
be active again, as showed in lemma 1. Thus, with a finite number of N individuals, the game lasts
at most N periods before a cascading phase starts. Comparatively, with two or more investment
options, some investment option may be dormant for a while and back to be active later. The game
could last much longer period of time before a cascading phase starts.
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Proposition 3 For individual i, consider θi and θ̃i, where θji > θ̃ji and θĵi = θ̃ĵi , for
all ĵ ̸= j. For any ht and σ−i,t,

UAj(θi;ht)−max
−j

UA−j(θi;ht) > UAj(θ̃i;ht)−max
−j

UA−j(θ̃i;ht)

UAj(θi;ht)− UW (θi;ht; σ−i,t) > UAj(θ̃i;ht)− UW (θ̃i;ht; σ−i,t)

Proof. See the Appendix.

Intuitively, for Aj, j ∈ {1, 2, ...,M}, as assumed, the conditionally independent
private signals satisfies MLRP with respect to the true value Vj. By Bayes’ rule,
the posterior distribution of Vj satisfies MLRP with respect to private signals. That
is, if an individual gets a higher private signal about Aj, given the same history, he

believes that Vj will be higher. Formally, for individual i, consider θi and θ̃i, where

θji > θ̃ji and θĵi = θ̃ĵi , for all ĵ ̸= j. We have UAj(θi;ht) > UAj(θ̃i;ht) for any ht.

Further, by lemma 2, with a finite number of N individuals, M investment options
and bounded private signals, the game lasts for a finite number of periods before a
cascading phase starts. Suppose either an upgrading or waiting information cascade
starts in period T . With a cascading phase starting in period T , no more new
information is disclosed thereafter. That is, UW (θi;hT ; σ−i,T ) = UW (θ̃i;hT ;σ−i,T ) =
0. Thus, in period T , for any hT and σ−i,T

UAj(θi;hT )−max
−j

UA−j(θi;hT ) > UAj(θ̃i;hT )−max
−j

UA−j(θ̃i;hT )

UAj(θi;hT )− UW (θi;hT ; σ−i,T ) > UAj(θ̃i;hT )− UW (θ̃i;hT ;σ−i,T )

By backward induction, for any t ≤ T

UAj(θi;ht)−max
−j

UA−j(θi;ht) > UAj(θ̃i;ht)−max
−j

UA−j(θ̃i;ht)

UAj(θi;ht)− UW (θi;ht; σ−i,t) > UAj(θ̃i;ht)− UW (θ̃i;ht; σ−i,t)

which is true for any ht and σ−i,t.

Similar to the case of one investment option, we create an ordering “index” about
private signals: ν(θ;ht; σ−,t) = max

j
UAj(θ;ht) − UW (θ;ht;σ−,t), where σ−,t is the

behavior strategy profile for all other remaining individuals in period t. In addition,
let Wt(ht) denote the set of possible remaining types in period t. The following
proposition shows the existence of a unique symmetric PBE, in which individuals
with higher index of private signals upgrading earlier till a cascading phase starts.

Proposition 4 There exists a unique symmetric PBE, in which typically there is a
strategic phase, followed by a cascading phase. In the strategic phase, the equilibrium
strategy profile is a sequence of critical types {θt(ht)}t and a sequence of probability of

12



critical types {σθt(ht)
}t: in period t, individuals with ν(θ;ht; σ−,t) > ν(θt(ht);ht;σ−,t)

upgrade;19 the critical type individuals upgrade with probability
M∑
j=1

σ
θjt (ht)

∈ [0, 1);

others wait. If a cascading phase starts, all the remaining individuals in the game
either upgrade immediately or wait forever.

Proof. See the Appendix.

Intuitively, by lemma 2, with a finite number of N individuals, M investment
options and bounded private signals, the game lasts for a finite number of periods
before a cascading phase starts. Further, by Proposition 3, for any symmetric PBE,
it must be monotone with respect to personal private signals. Consider Gn(ht), the
subgame starting from period t with history ht, where n is the number of individuals
remaining. There are three possible cases: (1) if sufficiently optimistic about Aj,
all the remaining individuals upgrade and Aj-upgrading information cascade occurs:
Wτ (hτ ) = ∅ for all τ > t; (2) if sufficiently pessimistic about all investment options,
all the remaining individuals wait and waiting information cascade starts: Wτ (hτ ) =
Wτ−1(hτ−1) for all τ ≥ t; (3) otherwise, strategic phase continues, in which continuity
implies there exists a critical type θt(ht) such that20{

ν(θ;ht;σ−,t) > 0 if ν(θ;ht; σ−,t) > ν(θt(ht);ht;σ−,t)

ν(θ;ht;σ−,t) < 0 if ν(θ;ht; σ−,t) < ν(θt(ht);ht;σ−,t)

As for the realization, there are three scenarios depending on the realization of
the private signals of the n individuals remaining in the game. If the realization of
the private signals is sufficiently optimistic such that for all the remaining individuals
ν(θ;ht; σ−,t) > ν(θt(ht);ht;σ−,t), they will upgrade to some investment option and the
game ends. To the contrary, if the realization of the private signals is sufficiently pes-
simistic such that for all the remaining individuals ν(θ;ht;σ−,t) < ν(θt(ht);ht;σ−,t),
they will wait forever. Otherwise, there are two sub-scenarios: (i) some upgrade and
others wait; (ii) some are indifferent between upgrading and waiting, while others
upgrade or wait for sure.

For the latter sub-scenario, from max
j

UAj(θt(ht);ht) − UW (θt(ht);ht;σ−,t) = 0,

we can identify σθt(ht)
. Consequently, we may end up with the following outcomes:

if all upgrade, the game ends; if a number of individuals, say nt < n, upgrade and
others wait, the game continues to the subgame Gn−nt(ht+1); if all wait, waiting

19As there are two or more investment options, naturally there exists “competition” among them.
Consider some individual i in period t with ν(θi;ht;σ−i,t) > ν(θt(ht);ht;σ−i,t). He upgrades to the
new software package with the highest expected benefit: max

j
UAj (θi;ht). If there is a tie at the top,

he will follow some tie-breaking rule to upgrade.
20As there are two or more investment options, the critical type may not be unique. In case of

multiple, there is a tie with the same value of index ν.
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information cascade starts. By backward induction, starting with the subgame with
one individual remaining, we can construct the equilibrium strategy profile of the
original game, GN(h1).

Further, from the proposition above, we have the following corollary, which says
that for the sets of possible remaining types in each period, their corresponding convex
hulls contains none of the types with positive “index.” This implies there is no “break”
in between for the “alien” types.

Corollary 1 For θ such that ν(θ;ht;σ−,t) > 0, θ ̸∈ conv (Wt(ht)), where conv (Wt(ht))
is the convex hull of Wt(ht).

Intuitively, the sets of possible remaining types in each period “shrinks” over
time till a cascading phase starts. Wt(ht) only contains θ such that ν(θ;ht;σ−,t) ≤
ν(θt(ht);ht; σ−,t) ≤ 0. By Proposition 3, for any symmetric PBE, it must be monotone
with respect to personal private signals. Similar to Leontief preferences, conv (Wt(ht))
exclude θ such that ν(θ;ht;σ−,t) > 0.

4 The Impact of Competition

As there are two or more risky investment options, naturally there exists “compe-
tition” among them. With more investment options, the benefit from waiting is
increasing. Given the same public information available, the sets of possible remain-
ing types are enlarged for the existing investment options. This implies individuals
tend to wait longer with more investment options.

Delay is costly, but there is potential gain from information revealed by others
to make a better choice. However, overall the welfare impact is ambiguous, which is
closely tied to the discount factor. We discuss the effect of discount factor on PBE
in the following section, and then move on to the welfare properties of PBE.

4.1 The Effect of Discount Factor

In this section, we study the properties of PBE if the discount factor is sufficiently
small or large. By equation 4, the smaller the discount factor, the lower the benefit
from waiting. The following proposition shows that there exists a lower bound δ, such
that if δ < δ, individuals with positive expected benefit from upgrading have no in-
centive to wait in period 1. This resembles self-decision in the one-period static game.
The difference is that in our dynamic setting those who have not upgraded in period
1 still have the option to upgrade in the following periods. Formally, the self-decision
rule in period t is denoted by σs

t : individuals with θ, such that max
j

UAj(θ;ht) > 0,

14



upgrade; individuals with θ, such that max
j

UAj(θ;ht) < 0, wait; others will follow

some tie-breaking rule to upgrade.

Proposition 5 There exists a δ ∈ (0, 1) such that individuals will follow the self-
decision rule σs

1 in period 1 if δ < δ.

Proof. Suppose in period 1 individuals follow the self-decision rule σs
1. Since

the private signal space is discrete, we can always find a j ∈ {1, 2, ...,M} and θj,
such that UAj(θ;h1)|θj = min

U
A
ĵ (θ;h1)>0

UAĵ(θ;h1). That is, for the expected benefit from

upgrading, UAj(θ;h1)|θj is the smallest one among those greater than zero. Without
loss of generality, consider individual i with private signal θi, where θji = θj and

θĵi = sĵDĵ
for ĵ ̸= j. Then, set δ ∈ (0, 1), such that UAj(θi;h1) = UW (θi;h1;σ

s
−i,1),

where the strategy profile σs
−i,1 indicates that all other individuals except for i adopt

the self-decision rule in period 1.

Conversely, by equation 4, the larger the discount factor, the larger the benefit
from waiting. Further, by lemma 2, with a finite number of N individuals, M in-
vestment options and bounded private signals, the game lasts for a finite number of
periods before a cascading phase starts. Consequently, if δ goes to one, we are more
likely to end up with the waiting information cascade.

To the extreme case, if δ = 1, most individuals will wait until they are almost
certain the return to some investment option is the highest. The story is completely
different. The most optimistic individuals upgrade earlier, followed by others. Con-
ceivably, there is a descending order of move based on the private signals. The game
could last

∏
j

Dj periods, even though N is small.

4.2 Welfare Properties

From proposition 5, with M investment options, there exists a lower bound δ, such
that if δ < δ, individuals will follow the self-decision rule σs

1 in period 1. Without loss
of generality, suppose there is one more investment option. Again, from proposition
5, with M+1 investment options, there exists a lower bound δ′, such that if δ < δ′, in
period 1 individuals will follow the self-decision rule σs

1. With one more investment
option, the benefit from waiting is increasing and individuals tend to wait longer,
which implies δ′ ≤ δ. Consider the case that the discount factor is small such that δ <
δ′ ≤ δ. In period 1, individuals still follow the self-decision rule σs

1 even though there
is one more investment option. In this case, ex ante, with the additional investment
option everyone will be either better off or at least as well off.

However, the story will change if the discount factor is large. By lemma 2, with
a finite number of N individuals, M investment options and bounded private sig-
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nals, the game lasts for a finite number of periods before a cascading phase starts.
Consequently, if the waiting costs are low enough, we are more likely to end up with
the waiting information cascade, even though it might be a wrong one ex post. Fur-
ther, with one more investment option, individuals tend to wait longer. This even
exaggerates the likelihood to be stuck with the waiting information cascade.

4.2.1 An Example

To illustrate, we study an example with three individuals (N = 3) and a binary
private signal system to investigate the welfare properties of the PBE. Suppose there
is a new software package A1 available for upgrading. The true value of A1, V1, is
either 1/2 or −1/2, with equal prior probability. At the beginning of the game, for
the new software package A1, individual i in the market observes some conditionally
independent private signal θ1i ∈ {s11, s12}, where s11 < s12. Without loss of generality,
we label s11 = L1 and s12 = H1. H1 is observed with probability p1 > 1/2 if V1 = 1/2
and with probability 1 − p1 if V1 = −1/2, as described in table 1. By proposition 2

Table 1: Signal Probabilities for A1

Pr(θ1i = L1|V1) Pr(θ1i = H1|V1)
V1 = −1/2 p1 1− p1
V1 = 1/2 1− p1 p1

and 5, we have the equilibrium decision rule described in table 2.

Table 2: Equilibrium Decision Rule with A1

t = 1 t = 2 t = 3

δ < δ H1 → A1 2A1 in t = 1 → A1 —
L1 → W otherwise → W

H1 → A1 with 2A1 in t = 1 → A1 1A1 in t = 1 & 1A1 in t = 2 → A1

δ ≥ δ prob. σH1 < 1 1A1 in t = 1 & H1 → A1 otherwise → W
L1 → W otherwise −→ W

Suppose there is one more new software package A2 available for upgrading, which
has the similar binary signal system as A1. The true value of A2, V2, is either 1/2
or −1/2, with equal prior probability. At the beginning of the game, for the new
software package A2, individual i in the market observes some conditionally inde-
pendent private signal θ2i ∈ {s21, s22}, where s21 < s22. Without loss of generality, we
label s21 = L2 and s22 = H2. H2 is observed with probability p2 > 1/2 if V2 = 1/2
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and with probability 1 − p2 if V2 = −1/2.21 In addition, we assume p1 > p2 > 1/2,
which indicates signals of A1 are more accurate. By proposition 4 and 5, we have the
equilibrium decision rule described in table 3.22

By the previous arguments and proposition 5, in our example with one more
investment option A2, individuals tend to wait longer. Hence, δ′ ≤ δ. Consider the
case that the discount factor is in between δ′ and δ. Without A2, individuals with
positive expected benefit from upgrading have no incentive to wait in period 1. In
contrast, with one more investment option A2, some with positive expected benefit
from upgrading may have incentive to wait in period 1. Waiting is costly and even
worse we might be stuck with the wrong information cascade. Overall the welfare
impact is ambiguous.

Specifically, without A2, in period 1 individuals with H1 will upgrade to A1 and
those with L1 will wait as in table 2. With both A1 and A2, individuals with H1H2

may wait in period 1 as in table 3. That is to say, with one more investment option,
individuals with H1H2 may wait instead of upgrading to A1 even though they have
the signal H1 about A1. Hence, we could end up with a dilemma: more options might
be worse.23

5 Discussion and Extension

5.1 Large Number of Individuals

Consider the “large” game as the number of individuals becomes unboundedly large.
By the Law of Large Numbers, if information about some investment option Aj

disclosed is non-negligible in some period, the true value of Aj will be revealed in the
following period. Conceivably, individuals whoever upgrade must be among the most
optimistic ones. Therefore, all the relevant information is transmitted by the highest
signals, and it is irrelevant how good information might be available at lower signal
values.24

Further, the information disclosed by these most optimistic ones must be negligible
in each given period. Same spirit as proposition 7 and 8 in Chamley and Gale (1994),
in the limit the number of individuals upgrading is given by the Poisson approximation
to the binomial distribution with some parameter β, so that the number of individuals

21To get the signal probabilities for A2, simply replace θ1i with θ2i and change the subscript 1 to
2 in table 1.

22There are some minor variations depending on the values of parameters. For more details, please
refer to the online appendix of the paper.

23It is controversial about the welfare comparison criterion, which is rendered to the online ap-
pendix of the paper.

24See Murto and Välimäki (2013) for the technical analysis of large games.
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upgrading in any given period is almost surely finite.

5.2 Correlated Private Signal Systems

For the previous analysis, we assume the distributions of the private signals, including
the prior, are independent. What if the signals are correlated? To illustrate, consider
the restaurant example in Banerjee (1992). There are two restaurants A and B next
to each other. Individuals arrive at the restaurants in sequence. Observing the choices
made by people before them, they decide on either one of the two restaurants. It is
known that only one restaurant is good, either A or B. Apart from the prior, each
individual also gets a signal says either that A is better or that B is better. Comparing
with the independent private signal systems, in the restaurant example there are two
investment options and the signals are perfectly negatively correlated. That is, if a
signal says that A is better, then it indicates that B is worse, and vice versa.

In the setting of Banerjee (1992), the order of choice is exogenously fixed. In
contrast, if the order of choice is endogenized, individuals could wait before deciding
on either one of the two restaurants. As signals are perfectly negatively correlated,
waiting information cascade never happens, which is completely different from our
analysis with the independent signal system. However, the overall analysis is rather
complicated, and we do not yet have very precise ideas about what happens in the
general case.

5.3 Continuous Private Signal Systems

In our setting, the signal space is discrete, which is compatible with the setting of
BHW. Instead, if the signal space is continuous, our conjecture is that the main result
still holds as long as the signal space is bounded.26 Further, with continuous signal
space, we may focus on the pure strategy equilibrium, whereas we need to deal with
the possible mixed strategy if there is a tie with the discrete signal space. In addition,
back to corollary 1, with continuous signal space, Wt(ht), the set of possible remaining
types in period t, itself will be convex. Now that, Wt(ht) “shrinks” over time till a
cascading phase starts, which resembles onion-peeling in the convex hull algorithm.

26If the signal space is unbounded, we may end up with the trivial case that all others will wait
till those “fully informed” moves.
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5.4 Disclosure of Public Information and Fragility of Cas-
cades

With endogenous ordering, once a cascading phase starts, all the remaining individ-
uals either act immediately or wait forever regardless of their own private signals.
Thus, there exists either an investment surge or a collapse when information cascade
starts. Disclosure of public information could have an influence on the strategic and
cascading behavior of individuals.

Since the public information disclosed only needs to offset the information from
individuals’ actions in the last period before the waiting information cascade starts,
the waiting information cascade is not robust to the public disclosure of information,
which is similar to the fragility result of information cascade in BHW with exogenous
ordering. However, if the game falls into the upgrading information cascade, further
disclosure of public information will not have any effect since the game ends once the
upgrading information cascade occurs.

Appendix

Proof of Lemma 1

If in period t individual i chooses to wait, then UA1(θ1i ;ht) ≤ UW (θ1i ;ht;σ
1
−i,t). By the

Martingale property,

UA1(θ1i ;ht) = EHt+1(θ1i ;ht;σ1
−i,t)

UA1(θ1i ;ht+1)

The set of historiesHt+1(θ
1
i ;ht;σ

1
−i,t) can be decomposed into two disjoint sets: HA1

t+1(θ
1
i ;ht;σ

1
−i,t)

and HW
t+1(θ

1
i ;ht;σ

1
−i,t), where H

A1
t+1(θ

1
i ;ht;σ

1
−i,t) is the set of histories in period t+1 in which

individual i will upgrade to A1 according to some strategy of individual i; HW
t+1(θ

1
i ;ht;σ

1
−i,t)

is the set of histories in period t+1 in which individual i will wait according to some strategy
of individual i. Then we have

UA1(θ1i ;ht) = E
H

A1
t+1(θ

1
i ;ht;σ1

−i,t)
UA1(θ1i ;ht+1) + EHW

t+1(θ
1
i ;ht;σ1

−i,t)
UA1(θ1i ;ht+1)

By equation 2,

UW (θ1i ;ht;σ
1
−i,t) = δEHt+1(θ1i ;ht;σ1

−i,t)
[max{UA1(θ1i ;ht+1);U

W (θ1i ;ht+1;σ
1
−i,t+1)}]

= δ[E
H

A1
t+1(θ

1
i ;ht;σ1

−i,t)
UA1(θ1i ;ht+1) + EHW

t+1(θ
1
i ;ht;σ1

−i,t)
UW (θ1i ;ht+1;σ

1
−i,t+1)]

Consider the case σ1
i,t = 0 for all i. No one upgrades in t. This is the worst news from

period t. Suppose under this worst news from period t individual i still upgrades in period
t+ 1. Then he will for sure upgrade in period t+ 1, which means HW

t+1(θ
1
i ;ht;σ

1
−i,t) = ∅.
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Back to the equations above, we have

UA1(θ1i ;ht) = E
H

A1
t+1(θ

1
i ;ht;σ1

−i,t)
UA1(θ1i ;ht+1)

UW (θ1i ;ht;σ
1
−i,t) = δE

H
A1
t+1(θ

1
i ;ht;σ−i,t)

UA1(θ1i ;ht+1)

Since HW
t+1(θ

1
i ;ht;σ

1
−i,t) = ∅, UW (θ1i ;ht;σ

1
−i,t) > UW = 0.27 We have UA1(θ1i ;ht) >

UW (θ1i ;ht;σ
1
−i,t), which is a contradiction. Therefore, under this worst news, the wait-

ing information cascade starts in period t+ 1: σ1
i,τ = 0 for any τ > t and i.

Proof of Proposition 1

As assumed, F1(θ
1
i |V1) satisfies MLRP with respect to V1. By Bayes’ rule, the posterior

distribution of V1 satisfies MLRP with respect to private signal θ1i :
f1(V1|θ1i ,ht)

f1(V1|θ̃1i ,ht)
is increasing

in V1, for θ
1
i > θ̃1i and any ht. That is, if an individual gets a higher private signal, given the

same history, he believes that V1 will be higher. According to Landsberger and Meilijson
(1990), F1(V1|θ1i , ht) first order stochastic dominates (FOSD) F1(V1|θ̃1i , ht) for any θ1i > θ̃1i
and ht. So, U

A1(θ1i ;ht) > UA1(θ̃1i ;ht), for θ
1
i > θ̃1i and any ht.

Similar to the proof of lemma 1, by the Martingale property,

UA1(θ1i ;ht) = E
H

A1
t+1(θ

1
i ;ht;σ1

−i,t)
UA1(θ1i ;ht+1) + EHW

t+1(θ
1
i ;ht;σ1

−i,t)
UA1(θ1i ;ht+1)

UW (θ1i ;ht;σ
1
−i,t) = δ[E

H
A1
t+1(θ

1
i ;ht;σ1

−i,t)
UA1(θ1i ;ht+1) + EHW

t+1(θ
1
i ;ht;σ1

−i,t)
UW (θ1i ;ht+1;σ

1
−i,t+1)]

Thus, for any non-negative integer k

UA1(θ1i ;ht)− δkUW (θ1i ;ht;σ
1
−i,t) = (1− δk+1)E

H
A1
t+1(θ

1
i ;ht;σ1

−i,t)
UA1(θ1i ;ht+1)

+ EHW
t+1(θ

1
i ;ht;σ1

−i,t)
[UA1(θ1i ;ht+1)− δk+1UW (θ1i ;ht+1;σ

1
−i,t+1)]

(5)

Let us check the incentives of waiting and upgrading for individual i who has a lower
private signal θ̃1i < θ1i . Similarly, we have

UA1(θ̃1i ;ht)− δkUW (θ̃1i ;ht;σ
1
−i,t) = (1− δk+1)E

H
A1
t+1(θ̃

1
i ;ht;σ1

−i,t)
UA1(θ̃1i ;ht+1)

+ E
HW

t+1(θ̃
1
i ;ht;σ1

−i,t)
[UA1(θ̃1i ;ht+1)− δk+1UW (θ̃1i ;ht+1;σ

1
−i,t+1)]

(6)

By lemma 1, with a finite number of N individuals, the game lasts at most N periods
before a cascading phase starts. Let T denote the period when a cascading phase starts.
Lemma 1 implies T ≤ N + 1. With a cascading phase starting in period T , no more new

27Otherwise, UW (θ1i ;ht;σ
1
−i,t) = UW = 0, in which individual i will be indifferent between upgrad-

ing or waiting. Since waiting leaves the upgrading option open, it is convenient to set the tie-breaking
rule such that individual i will wait with some positive probability, which implies HW

t+1(θ
1
i ;ht;σ

1
−i,t)

is not empty.

21



information is disclosed thereafter. That is, UW (θ1i ;hT ;σ
1
−i,T ) = UW (θ̃1i ;hT ;σ

1
−i,T ) = 0.

Thus, in period T , for any hT and σ1
−i,T

UA1(θ1i ;hT )− δkUW (θ1i ;hT ;σ
1
−i,T ) > UA1(θ̃1i ;hT )− δkUW (θ̃1i ;hT ;σ

1
−i,T )

Back to period T −1, since information cascade starts in period T ,HA1
T (θ1i ;hT −1;σ

1
−i,T −1) =

HA1
T (θ̃1i ;hT −1;σ

1
−i,T −1) and HW

T (θ1i ;hT −1;σ
1
−i,T −1) = HW

T (θ̃1i ;hT −1;σ
1
−i,T −1). By equa-

tion 5 and 6, for any hT −1 and σ1
−i,T −1

UA1(θ1i ;hT −1)− δkUW (θ1i ;hT −1;σ
1
−i,T −1) > UA1(θ̃1i ;hT −1)− δkUW (θ̃1i ;hT −1;σ

1
−i,T −1)

Considering k = 0, the equation above indicates that individuals with private signals indi-
cating higher value of A1 have a higher incentive to upgrade to A1 given the same public
history in period T − 1. That is to say,

HA1
T −1(θ

1
i ;hT −2;σ

1
−i,T −2) ⊇ HA1

T −1(θ̃
1
i ;hT −2;σ

1
−i,T −2)

HW
T−1(θ

1
i ;hT −2;σ

1
−i,T −2) ⊆ HW

T −1(θ̃
1
i ;hT −2;σ

1
−i,T −2)

Back to period T − 2, by equation 5 and 6,

UA1(θ1i ;hT −2)− δkUW (θ1i ;hT −2;σ
1
−i,T −2) = (1− δk+1)E

H
A1
T −1(θ̃

1
i ;hT −2;σ1

−i,T −2)
UA1(θ1i ;hT −1)

+ (1− δk+1)E
H

A1
T −1(θ

1
i ;hT −2;σ1

−i,T −2)∩HW
T −1(θ̃

1
i ;hT −2;σ1

−i,T −2)
UA1(θ1i ;hT −1)

+ EHW
T −1(θ

1
i ;hT −2;σ1

−i,T −2)
[UA1(θ1i ;hT −1)− δk+1UW (θ1i ;hT −1;σ

1
−i,T −1)]

UA1(θ̃1i ;hT −2)− δkUW (θ̃1i ;hT −2;σ
1
−i,T −2) = (1− δk+1)E

H
A1
T−1(θ̃

1
i ;hT −2;σ1

−i,T−2)
UA1(θ̃1i ;hT −1)

+E
H

A1
T −1(θ

1
i ;hT −2;σ1

−i,T −2)∩HW
T−1(θ̃

1
i ;hT −2;σ1

−i,T −2)
[UA1(θ̃1i ;hT −1)− δk+1UW (θ̃1i ;hT −1;σ

1
−i,T −1)]

+EHW
T −1(θ

1
i ;hT −2;σ1

−i,T −2)
[UA1(θ̃1i ;hT −1)− δk+1UW (θ̃1i ;hT −1;σ

1
−i,T −1)]

For hT −1 ∈ [HA1
T −1(θ

1
i ;hT−2;σ

1
−i,T −2) ∩HW

T−1(θ̃
1
i ;hT −2;σ

1
−i,T −2)],

UW (θ̃1i ;hT −1;σ
1
−i,T −1) ≥ UA1(θ̃1i ;hT −1)

which implies UA1(θ̃1i ;hT −1) − δk+1UW (θ̃1i ;hT −1;σ
1
−i,T −1) ≤ (1 − δk+1)UA1(θ̃1i ;hT −1) <

(1− δk+1)UA1(θ1i ;hT −1). Thus, for any hT −2 and σ1
−i,T −2

UA1(θ1i ;hT −2)− δkUW (θ1i ;hT −2;σ
1
−i,T−2) > UA1(θ̃1i ;hT −2)− δkUW (θ̃1i ;hT −2;σ

1
−i,T −2)

And so on, backwards further, for any t ≤ T

UA1(θ1i ;ht)− δkUW (θ1i ;ht;σ
1
−i,t) > UA1(θ̃1i ;ht)− δkUW (θ̃1i ;ht;σ

1
−i,t)

which is true for any ht and σ1
−i,t. Set k = 0. We are done.
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Proof of Proposition 2

By lemma 1, with a finite number of N individuals, the game lasts at most N periods
before a cascading phase starts. As defined earlier, Gn(ht) denotes the subgame starting
from period t with history ht, where n is the number of individuals remaining. In addition,
W1

t (ht) denotes the set of possible remaining types in period t.

By backward induction, consider the subgame with only one individual i11 remaining,
G1(ht). There are three possible cases: (1) if U

A1(θ1;ht) > 0 for all θ1 ∈ W1
t (ht), upgrading

information cascade occurs; (2) if UA1(θ1;ht) ≤ 0 for all θ1 ∈ W1
t (ht), waiting information

cascade starts; (3) otherwise, strategic phase continues, in which there exists a critical type

θ1t (ht) ∈ W1
t (ht), such that {

UA1(θ1;ht) > 0 if θ1 > θ1t (ht)

UA1(θ1;ht) < 0 if θ1 < θ1t (ht)

As for the realization, there are three scenarios depending on θi11 . If UA1(θ1;ht) > 0,

σi11,t = 1 and the game ends. If UA1(θ1;ht) < 0, σi11,t = 0 and individual i11 will wait forever.

If UA1(θ1;ht) = UA1(θ1t (ht);ht) = 0, individual i11 is indifferent between upgrading and
waiting and will follow some tie-breaking rule to upgrade with probability σi11,t = σ

θ1t (ht)
∈

[0, 1).

Now consider the subgame with two individuals i11, i
1
2 remaining, G2(ht). By Propo-

sition 1, for any symmetric PBE, it must be monotone with respect to personal private
signals. That is, individuals with higher private signals have higher incentive to upgrade.
Similar to G1(ht), there are three possible cases: (1) if UA1(θ1;ht) > 0 for all θ1 ∈ W1

t (ht),
upgrading information cascade occurs; (2) if UA1(θ1;ht) ≤ 0 for all θ1 ∈ W1

t (ht), waiting
information cascade starts; (3) otherwise, strategic phase continues, in which continuity

implies there exists a critical type θ1t (ht) ∈ W1
t (ht), such that{

ν(θ1;ht;σ
1
−,t) = UA1(θ1;ht)− UW (θ1;ht;σ

1
−,t) > 0 if θ1 > θ1t (ht)

ν(θ1;ht;σ
1
−,t) = UA1(θ1;ht)− UW (θ1;ht;σ

1
−,t) < 0 if θ1 < θ1t (ht)

As for the realization, there are three scenarios depending on θi11 and θi12 . If min{θi11 , θi12} >

θ1t (ht), σi11,t = σi12,t = 1 and the game ends. If max{θi11 , θi12} < θ1t (ht), σi11,t = σi12,t = 0

and individual i11, i
1
2 will wait forever. Otherwise, there are two sub-scenarios: (i) one up-

grades and the other waits; (ii) one is indifferent between upgrading and waiting, while

the other upgrades or waits for sure. For the latter sub-scenario, from ν(θ1t (ht);ht;σ
1
−,t) =

UA1(θ1t (ht);ht)−UW (θ1t (ht);ht;σ
1
−,t) = 0, we can identify σ

θ1t (ht)
.28 Consequently, we may

end up with the following outcomes: if both upgrade, the game ends; if one upgrades and
the other waits, the game continues to G1(ht+1); if both wait, waiting information cascade
starts.

28Note, UW (θ1;ht;σ
1
−,t) = 0 for σ1

−,t = 0 and σ1
−,t = 1. Therefore, UW (θ1;ht;σ

1
−,t) may not be

monotonic with respect to σ1
−,t.
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Continue backwards to the subgame with n individuals i11, i
1
2, ..., i

1
n remaining, Gn(ht).

Similarly, there are three possible cases: (1) if UA1(θ1;ht) > 0 for all θ1 ∈ W1
t (ht), upgrading

information cascade occurs; (2) if UA1(θ1;ht) ≤ 0 for all θ1 ∈ W1
t (ht), waiting information

cascade starts; (3) otherwise, strategic phase continues, in which continuity implies there

exists a critical type θ1t (ht) ∈ W1
t (ht), such that{

ν(θ1;ht;σ
1
−,t) = UA1(θ1;ht)− UW (θ1;ht;σ

1
−,t) > 0 if θ1 > θ1t (ht)

ν(θ1;ht;σ
1
−,t) = UA1(θ1;ht)− UW (θ1;ht;σ

1
−,t) < 0 if θ1 < θ1t (ht)

As for the realization, there are three scenarios depending on θi11 , θi12 , ..., θi1n . If

min{θi11 , θi12 , ..., θi1n} > θ1t (ht), σi11,t = σi12,t = ... = σi1n,t = 1 and the game ends. If

max{θi11 , θi12 , ..., θi1n} < θ1t (ht), σi11,t = σi12,t = ... = σi1n,t = 0 and individual i11, i
1
2, ..., i

1
n

will wait forever. Otherwise, there are two sub-scenarios: (i) some upgrade and others
wait; (ii) some are indifferent between upgrading and waiting, while others upgrade or wait

for sure. For the latter sub-scenario, similarly from ν(θ1t (ht);ht;σ
1
−,t) = UA1(θ1t (ht);ht) −

UW (θ1t (ht);ht;σ
1
−,t) = 0, we can identify σ

θ1t (ht)
. Consequently, we may end up with the

following outcomes: if all upgrade, the game ends; if a number of individuals, say nt < n,
upgrade and others wait, the game continues to Gn−nt(ht+1); if all wait, waiting information
cascade starts.

Set n = N and ht = h1. Then Gn(ht) becomes GN (h1), which is the original game.

Proof of Proposition 3

For the new software package Aj , j ∈ {1, 2, ...,M}, as assumed, Fj(θ
j
i |Vj) satisfies MLRP

with respect to Vj . By Bayes’ rule, the posterior distribution of Vj satisfies MLRP with

respect to private signal θji :
fj(Vj |θji ,ht)

fj(Vj |θ̃ji ,ht)
increasing in Vj , for θ

j
i > θ̃ji . That is, if an individual

gets a higher private signal about Aj , given the same history, he believes that Vj will be

higher. According to Landsberger and Meilijson (1990), Fj(Vj |θji , ht) first order stochastic
dominates (FOSD) Fj(Vj |θ̃ji , ht) for any θji > θ̃ji . For individual i, consider θi and θ̃i, where

θji > θ̃ji and θĵi = θ̃ĵi for all ĵ ̸= j. We have UAj (θi;ht) > UAj (θ̃i;ht) for any ht.

Similar to the proof of Proposition 1, by the Martingale property,

UAj (θi;ht) = E
H

Aj
t+1(θi;ht;σ−i,t)

UAj (θi;ht+1) + E
H

A−j
t+1 (θi;ht;σ−i,t)

UAj (θi;ht+1)

+ EHW
t+1(θi;ht;σ−i,t)U

Aj (θi;ht+1)

max
−j

UA−j (θi;ht) = E
H

Aj
t+1(θi;ht;σ−i,t)

max
−j

UA−j (θi;ht+1) + E
H

A−j
t+1 (θi;ht;σ−i,t)

max
−j

UA−j (θi;ht+1)

+ EHW
t+1(θi;ht;σ−i,t) max

−j
UA−j (θi;ht+1)

UW (θi;ht;σ−i,t) = δE
H

Aj
t+1(θi;ht;σ−i,t)

UAj (θi;ht+1) + δE
H

A−j
t+1 (θi;ht;σ−i,t)

[
max
−j

UA−j (θi;ht+1)

]
+ δEHW

t+1(θi;ht;σ−i,t)U
W (θi;ht+1;σ−i,t+1)
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where H
Aj

t+1(θi;ht;σ−i,t) is the set of histories in period t + 1 in which individual i will

upgrade to Aj according to some strategy of individual i; H
A−j

t+1 (θi;ht;σ−i,t) is the set of
histories in period t+ 1 in which individual i will upgrade to a new software package other
than Aj according to some strategy of individual i; HW

t+1(θi;ht;σ−i,t) is the set of histories
in period t+ 1 in which individual i will wait according to some strategy of individual i.

Thus, for any non-negative integer k

UAj (θi;ht)− δk max
−j

UA−j (θi;ht) = E
H

Aj
t+1(θi;ht;σ−i,t)

[
UAj (θi;ht+1)− δk max

−j
UA−j (θi;ht+1)

]
+ E

H
A−j
t+1 (θi;ht;σ−i,t)

[
UAj (θi;ht+1)− δk max

−j
UA−j (θi;ht+1)

]
+ EHW

t+1(θi;ht;σ−i,t)

[
UAj (θi;ht+1)− δk max

−j
UA−j (θi;ht+1)

] (7)

UAj (θi;ht)− δkUW (θi;ht;σ−i,t) = (1− δk+1)E
H

Aj
t+1(θi;ht;σ−i,t)

UAj (θi;ht+1)

+ E
H

A−j
t+1 (θi;ht;σ−i,t)

[
UAj (θi;ht+1)− δk+1 max

−j
UA−j (θi;ht+1)

]
+ EHW

t+1(θi;ht;σ−i,t)

[
UAj (θi;ht+1)− δk+1UW (θi;ht+1;σ−i,t+1)

] (8)

Let us check the incentives of waiting and upgrading for individual i who has a lower

private signal about Aj . Again, consider θi and θ̃i, where θji > θ̃ji and θĵi = θ̃ĵi for all ĵ ̸= j.
Similarly, we have

UAj (θ̃i;ht)− δk max
−j

UA−j (θ̃i;ht) = E
H

Aj
t+1(θ̃i;ht;σ−i,t)

[
UAj (θ̃i;ht+1)− δk max

−j
UA−j (θ̃i;ht+1)

]
+ E

H
A−j
t+1 (θ̃i;ht;σ−i,t)

[
UAj (θ̃i;ht+1)− δk max

−j
UA−j (θ̃i;ht+1)

]
+ EHW

t+1(θ̃i;ht;σ−i,t)

[
UAj (θ̃i;ht+1)− δk max

−j
UA−j (θ̃i;ht+1)

] (9)

UAj (θ̃i;ht)− δkUW (θ̃i;ht;σ−i,t) = (1− δk+1)E
H

Aj
t+1(θ̃i;ht;σ−i,t)

UAj (θ̃i;ht+1)

+ E
H

A−j
t+1 (θ̃i;ht;σ−i,t)

[
UAj (θ̃i;ht+1)− δk+1 max

−j
UA−j (θ̃i;ht+1)

]
+ EHW

t+1(θ̃i;ht;σ−i,t)

[
UAj (θ̃i;ht+1)− δk+1UW (θ̃i;ht+1;σ−i,t+1)

] (10)

Further, by lemma 2, with a finite number of N individuals, M investment options and
bounded private signals, the game lasts for a finite number of periods before a cascading
phase starts. Suppose either an upgrading or waiting information cascade starts in period
T , which means no one will upgrade after period T given history hT and strategy profile
(σi,t, σ−i,t). With a cascading phase starting in period T , no more new information is

disclosed thereafter. That is, UW (θi;hT ;σ−i,T ) = UW (θ̃i;hT ;σ−i,T ) = 0. Thus, in period
T , for any hT and σ−i,T

UAj (θi;hT )− δk max
−j

UA−j (θi;hT ) > UAj (θ̃i;hT )− δk max
−j

UA−j (θ̃i;hT )

UAj (θi;hT )− δkUW (θi;hT ;σ−i,T ) > UAj (θ̃i;hT )− δkUW (θ̃i;hT ;σ−i,T )
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Back to period T − 1, since information cascade starts in period T ,

H
Aj

T (θi;hT −1;σ−i,T −1) = H
Aj

T (θ̃i;hT −1;σ−i,T −1)

H
A−j

T (θi;hT −1;σ−i,T −1) = H
A−j

T (θ̃i;hT −1;σ−i,T −1)

HW
T (θi;hT −1;σ−i,T −1) = HW

T (θ̃i;hT −1;σ−i,T −1)

By equation 7 – 10, for any hT −1 and σ−i,T −1

UAj (θi;hT −1)− δk max
−j

UA−j (θi;hT −1) > UAj (θ̃i;hT −1)− δk max
−j

UA−j (θ̃i;hT −1)

UAj (θi;hT −1)− δkUW (θi;hT −1;σ−i,T −1) > UAj (θ̃i;hT −1)− δkUW (θ̃i;hT −1;σ−i,T −1)

When j = 0, the equation above implies that individuals with private signals indicating
higher value of Aj have a higher incentive to upgrade to Aj given the same public history
in period T − 1. That is to say,

H
Aj

T −1(θi;hT −2;σ−i,T −2) ⊇ H
Aj

T −1(θ̃i;hT −2;σ−i,T −2)

H
A−j

T −1(θi;hT −2;σ−i,T −2) ⊆ H
A−j

T −1(θ̃i;hT −2;σ−i,T −2)

HW
T −1(θi;hT −2;σ−i,T −2) ⊆ HW

T −1(θ̃i;hT −2;σ−i,T −2)

Back to period T − 2, by equation 7 and 9, we have

UAj (θi;hT −2)− δk max
−j

UA−j (θi;hT −2) = E
H

Aj
T −1(θi;hT −2;σ−i,t)

[
UAj (θi;hT −1)− δk max

−j
UA−j (θi;hT −1)

]
+ E

H
A−j
T −1 (θi;hT −2;σ−i,t)

[
UAj (θi;hT −1)− δk max

−j
UA−j (θi;hT −1)

]
+ EHW

T −1(θi;hT −2;σ−i,t)

[
UAj (θi;hT −1)− δk max

−j
UA−j (θi;hT −1)

]
UAj (θ̃i;hT −2)− δk max

−j
UA−j (θ̃i;hT −2) = E

H
Aj
T −1(θ̃i;hT −2;σ−i,t)

[
UAj (θ̃i;hT −1)− δk max

−j
UA−j (θ̃i;hT −1)

]
+ E

H
A−j
T −1 (θ̃i;hT −2;σ−i,t)

[
UAj (θ̃i;hT −1)− δk max

−j
UA−j (θ̃i;hT −1)

]
+ EHW

T −1(θ̃i;hT −2;σ−i,t)

[
UAj (θ̃i;hT −1)− δk max

−j
UA−j (θ̃i;hT −1)

]
As UAj (θi;hT −1)− δk max

−j
UA−j (θi;hT −1) > UAj (θ̃i;hT −1)− δk max

−j
UA−j (θ̃i;hT −1) for

any hT −1 and σ−i,T −1, we have

UAj (θi;hT −2)− δk max
−j

UA−j (θi;hT −2) > UAj (θ̃i;hT −2)− δk max
−j

UA−j (θ̃i;hT −2)

Similarly, by equation 8 and 10, we have

UAj (θi;hT −2)− δkUW (θi;hT −2;σ−i,T −2) = (1− δk+1)E
H

Aj
T −1(θ̃i;hT −2;σ−i,T −2)

UAj (θi;hT −1)

+ (1− δk+1)E
H

Aj
T −1(θi;hT −2;σ−i,T −2)∩H

A−j
T −1 (θ̃i;hT −2;σ−i,T −2)

UAj (θi;hT −1)

+ (1− δk+1)E
H

Aj
T −1(θi;hT −2;σ−i,T −2)∩HW

T −1(θ̃i;hT −2;σ−i,T −2)
UAj (θi;hT −1)

+ E
H

A−j
T −1 (θi;hT −2;σ−i,t)

[
UAj (θi;hT −1)− δk+1 max

−j
UA−j (θi;hT −1)

]
+ EHW

T −1(θi;hT −2;σ−i,T −2)

[
UAj (θi;hT −1)− δk+1UW (θi;hT −1;σ−i,T −1)

]
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UAj (θ̃i;hT −2)− δkUW (θ̃i;hT −2;σ−i,T −2) = (1− δk+1)E
H

Aj
T −1(θ̃i;hT−2;σ−i,T −2)

UAj (θ̃i;hT −1)

+ (1− δk+1)E
H

Aj
T −1(θi;hT −2;σ−i,T −2)∩H

A−j
T −1 (θ̃i;hT −2;σ−i,T −2)

UAj (θ̃i;hT −1)

+ E
H

Aj
T −1(θi;hT −2;σ−i,T −2)∩HW

T −1(θ̃i;hT −2;σ−i,T −2)

[
UAj (θ̃i;hT −1)− δk+1UW (θ̃i;hT −1;σ−i,T −1)

]
+ E

H
A−j
T −1 (θi;hT −2;σ−i,t)

[
UAj (θ̃i;hT −1)− δk+1 max

−j
UA−j (θ̃i;hT −1)

]
+ EHW

T −1(θi;hT −2;σ−i,T −2)

[
UAj (θ̃i;hT −1)− δk+1UW (θ̃i;hT −1;σ−i,T −1)

]
For hT −1 ∈ [H

Aj

T −1(θi;hT −2;σ−i,T −2)∩HW
T −1(θ̃i;hT −2;σ−i,T −2)], U

W (θ̃i;hT −1;σ−i,T −1) ≥
UAj (θ̃i;hT −1), which implies UAj (θ̃i;hT −1)−δk+1UW (θ̃i;hT −1;σ−i,T −1) ≤ (1−δk+1)UAj (θ̃i;hT −1) <
(1− δk+1)UAj (θi;hT −1). Thus,

UAj (θi;hT −2)− δkUW (θi;hT −2;σ−i,T −2) > UAj (θ̃i;hT −2)− δkUW (θ̃i;hT −2;σ−i,T −2)

And so on, backwards further, for any t ≤ T

UAj (θi;ht)− δk max
−j

UA−j (θi;ht) > UAj (θ̃i;ht)− δk max
−j

UA−j (θ̃i;ht)

UAj (θi;ht)− δkUW (θi;ht;σ−i,t) > UAj (θ̃i;ht)− δkUW (θ̃i;ht;σ−i,t)

which is true for any ht and σ−i,t. Set k = 0. We are done.

Proof of Proposition 4

By lemma 2, with a finite number of N individuals, M investment options and bounded
private signals, the game lasts for a finite number of periods before a cascading phase starts.
As defined earlier, Gn(ht) denotes the subgame starting from period t with history ht, where
n is the number of individuals remaining. In addition, Wt(ht) denotes the set of possible
remaining types in period t.

By backward induction, consider the subgame with only one individual i1 remaining,
G1(ht). There are three possible cases: (1) if there exists j ∈ {1, 2, ...,M}, such that

UAj (θ;ht) > max

{
max
ĵ ̸=j

UAĵ (θ;ht); 0

}
for all θ ∈ Wt(ht), Aj-upgrading information cascade

occurs; (2) if max
j

UAj (θ;ht) ≤ 0 for all θ ∈ Wt(ht), waiting information cascade starts; (3)

otherwise, strategic phase continues, in which there exists a critical type θt(ht) ∈ Wt(ht),
such that29  max

j
UAj (θ;ht) > 0 if max

j
UAj (θ;ht) > max

j
UAj (θt(ht);ht)

max
j

UAj (θ;ht) < 0 if max
j

UAj (θ;ht) < max
j

UAj (θt(ht);ht)

29For the case that UAj (θ;ht) ≤ 0 for all θ ∈ Wt(ht), Aj will drop out of the race as no one has
incentive to upgrade to Aj anymore.
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As for the realization, there are three scenarios depending on θi1 . If max
j

UAj (θi1 ;ht) > 0,

individual i1 will upgrade and the game ends. If max
j

UAj (θi1 ;ht) < 0, σi1,t = 0 and individ-

ual i1 will wait forever. Otherwise, max
j

UAj (θ;ht) = max
j

UAj (θt(ht);ht) = 0. Individual

i1 is indifferent between upgrading and waiting and will follow some tie-breaking rule to
upgrade with probability σθt(ht)

∈ [0, 1).

Now consider the subgame with two individuals i1, i2 remaining, G2(ht). By Propo-
sition 3, for any symmetric PBE, it must be monotone with respect to personal private
signals. That is, individuals with higher private signals have higher incentive to upgrade.
Similar to G1(ht), there are three possible cases: (1) if there exists j ∈ {1, 2, ...,M}, such

that UAj (θ;ht) > max

{
max
ĵ ̸=j

UAĵ (θ;ht); 0

}
for all θ ∈ Wt(ht), Aj-upgrading information

cascade occurs; (2) if max
j

UAj (θ;ht) ≤ 0 for all θ ∈ Wt(ht), waiting information cascade

starts; (3) otherwise, strategic phase continues, in which continuity implies there exists a
critical type θt(ht) ∈ Wt(ht), such that{

ν(θ;ht;σ−,t) > 0 if ν(θ;ht;σ−,t) > ν(θt(ht);ht;σ−,t)

ν(θ;ht;σ−,t) < 0 if ν(θ;ht;σ−,t) < ν(θt(ht);ht;σ−,t)

As for the realization, there are three scenarios depending on θi1 and θi2 . If
min{ν(θi1 ;ht;σ−,t), ν(θi2 ;ht;σ−,t)} > ν(θt(ht);ht;σ−,t), they will upgrade to some new soft-
ware package and the game ends. If max{ν(θi1 ;ht;σ−,t), ν(θi2 ;ht;σ−,t)} > ν(θt(ht);ht;σ−,t),
they will wait forever. Otherwise, there are two sub-scenarios: (i) one upgrades and the
other waits; (ii) one is indifferent between upgrading and waiting, while the other upgrades
or waits for sure. For the latter sub-scenario, from ν(θt(ht);ht;σ−,t) = max

j
UAj (θt(ht);ht)−

UW (θt(ht);ht;σ−,t) = 0, we can identify σθt(ht)
. Consequently, we may end up with the

following outcomes: if both upgrade, the game ends; if one upgrades and the other waits,
the game continues to G1(ht+1); if both wait, waiting information cascade starts.

Continue backwards to the subgame with n individuals i1, i2, ..., in remaining, Gn(ht).
Similarly, there are three possible cases: (1) if there exists j ∈ {1, 2, ...,M}, such that

UAj (θ;ht) > max

{
max
ĵ ̸=j

UAĵ (θ;ht); 0

}
for all θ ∈ Wt(ht), Aj-upgrading information cascade

occurs; (2) if max
j

UAj (θ;ht) ≤ 0 for all θ ∈ Wt(ht), waiting information cascade starts; (3)

otherwise, strategic phase continues, in which continuity implies there exists a critical type
θt(ht) ∈ Wt(ht), such that{

ν(θ;ht;σ−,t) > 0 if ν(θ;ht;σ−,t) > ν(θt(ht);ht;σ−,t)

ν(θ;ht;σ−,t) < 0 if ν(θ;ht;σ−,t) < ν(θt(ht);ht;σ−,t)

As for the realization, there are three scenarios depending on θi1 , θi2 , ..., θin .
If min{ν(θi1 ;ht;σ−,t), ν(θi2 ;ht;σ−,t), ..., ν(θin ;ht;σ−,t)} > ν(θt(ht);ht;σ−,t), all indi-
viduals will upgrade to some new software package and the game ends. If
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max{ν(θi1 ;ht;σ−,t), ν(θi2 ;ht;σ−,t), ..., ν(θin ;ht;σ−,t)} < ν(θt(ht);ht;σ−,t), all individuals
will wait forever. Otherwise, there are two sub-scenarios: (i) some upgrade and others
wait; (ii) some are indifferent between upgrading and waiting, while others upgrade or wait
for sure. For the latter sub-scenario, similarly from ν(θt(ht);ht;σ−,t) = 0, we can identify
σθt(ht)

. Consequently, we may end up with the following outcomes: if all upgrade, the game
ends; if a number of individuals, say nt < n, upgrade and others wait, the game continues
to Gn−nt(ht+1); if all wait, waiting information cascade starts.

Set n = N and ht = h1. Then Gn(ht) becomes GN (h1), which is the original game.
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