
Robust Storage Assignment in Unit-Load Warehouses

Marcus Ang∗ • Yun Fong Lim∗ • Melvyn Sim†

∗ Lee Kong Chian School of Business, Singapore Management University,

50 Stamford Road, Singapore 178899, Singapore

† NUS Business School, Singapore-MIT Alliance, NUS Risk Management Institute,

National University of Singapore, 1 Business Link, Singapore 117592, Singapore

marcusang@smu.edu.sg • yflim@smu.edu.sg • melvynsim@nus.edu.sg

January 26, 2012

Abstract

Assigning products to and retrieving them from proper storage locations are crucial in minimizing

the operating cost of a unit-load warehouse. The problem becomes intractable when the warehouse

faces variable supply and uncertain demand in a multi-period setting. We assume a factor-based de-

mand model in which demand for each product in each period is affinely dependent on some uncertain

factors. The distributions of these factors are only partially characterized. We introduce a robust

optimization model that minimizes the worst-case expected total travel in the warehouse with distri-

butional ambiguity of demand. Under a linear decision rule, we obtain a storage and retrieval policy

by solving a moderate-size linear optimization problem. Surprisingly, despite imprecise specification

of demand distributions, our computational studies suggest that the linear policy achieves close to

the expected value given perfect information, and significantly outperforms existing heuristics in the

literature.

1 Introduction

In a global economy, companies create a competitive advantage by paying substantial attention to

their supply chain design and operations. A warehouse is a consolidation hub of various products in

a supply chain. A large warehouse that supports a wide range of businesses may store thousands of

different products, which pass through the warehouse in huge volume daily. The operational efficiency

1

of warehouses is crucial to the competence of a supply chain. For excellent reviews of warehouse design

and operations, see Van den Berg (1999), de Koster et al. (2007), and Gu et al. (2007).

In a unit-load warehouse, all products are stored and retrieved in unit-load (pallet) quantities. Each

pallet carries items of the same product and is generally handled singly at a time. Unit-load warehouses

can be found upstream in a supply chain and are linked to production facilities. For example, Section 4

describes a case study that we have done with a unit-load warehouse owned by a logistics company. The

warehouse stores pallets of products for a manufacturer located nearby and retrieves these pallets when

they are requested. Unit-load warehouses can also be found in the reserve areas of large distribution

centers where products are stored to replenish fast-pick areas in separate locations within the centers

(Bartholdi and Hackman 2007). For the sake of presentation, each pallet is moved by a forklift in the

following description. Our model is equally suitable for warehouses using very-narrow-aisle trucks or

automated storage and retrieval systems (Roodbergen and Vis 2009).

Arrivals of products to a unit-load warehouse in each time period (say, every day) generally follow

some predetermined schedule according to the suppliers’ production plans. In contrast, the number

of pallets of each product departing from the warehouse is less predictable due to uncertain demand.

Arriving pallets are moved from a receiving dock to their storage locations. (In some cases, products

need to be palletized before they are stored.) Each pallet is stored at its assigned location until it is

requested and moved to a shipping dock. A key performance measure of a unit-load warehouse is the

average travel time to move each pallet from a receiving dock to its storage location, and then to a

shipping dock. In the storage assignment problem of a unit-load warehouse the storage location of each

pallet is determined so that the expected total travel time is minimized over a planning horizon.

To store a pallet to a storage location, a forklift first moves the pallet from a receiving dock to the

storage location. After inserting the pallet into its location, the forklift returns to the receiving dock.

To retrieve a pallet, a forklift first moves from a shipping dock to the pallet’s location, extracts the

pallet, and then moves it to the shipping dock. This travel pattern is known as single-command travel.

We assume the time durations to insert and to extract each pallet at its storage location are constant

and they are ignored in deciding where to store the pallets.

A storage assignment policy is a set of rules that determines the storage locations of pallets. Two

types of storage assignment policies are commonly used: the dedicated storage policies and the shared

storage policies. A dedicated storage policy reserves each storage location for a specific product and

no other products can be stored in that location. Since products’ locations are fixed, they can be

memorized. A well-known dedicated storage policy is proposed by Heskett (1963, 1964). The author

2

defines the cube-per-order index (COI) of a product as the ratio of its allocated storage space to its

demand rate. Products are ranked in increasing COI and are assigned sequentially to locations with the

smallest travel time. The inverse of COI of a product is called the turnover rate of the product. Thus,

this policy is also known as the full turnover policy (de Koster et al. 2007, Roodbergen and Vis 2009).

Mallette and Francis (1972) consider multiple receiving and shipping docks and identify the optimal

dedicated storage policy. They show that if all products have the same probability mass function for

selecting a dock, the full turnover policy (or the COI policy) is optimal. Malmborg and Bhaskaran

(1990) prove the optimality of the full turnover policy for more complicated situations.

Under a dedicated storage policy, the empty storage locations cannot be reassigned to other products

when the inventory of a product is depleted. To overcome this problem one can use a shared storage

policy, which allows an empty location to be assigned to any product. Thus, a product may be assigned

to different locations over time. A warehouse that implements a shared storage policy must rely on a

computerized system to track products. An example of a shared storage policy is the random policy,

which randomly assigns an arriving pallet to any empty location with equal probability.

Another example of a shared storage policy is the class-based turnover policy proposed by Hausman,

Graves, and Schwarz (1976, 1977, 1978). Under this policy storage locations are grouped into several

classes. Products with the highest turnover rate are assigned to the class with the smallest average travel

time. A pallet is assigned randomly to any empty location within a class. Rosenblatt and Eynan (1989,

1994) determine the optimal boundaries of the classes in a rectangular warehouse for the class-based

turnover policy. Thonemann and Brandeau (1998) derive the expected travel time for the random, full

turnover, and class-based turnover policies under stochastic demand with a stationary distribution.

Goetschalckx and Ratliff (1990) study a warehouse that is perfectly balanced: For every time period,

the number of arriving pallets equals the number of departing pallets with identical duration of stay.

They show that if a warehouse is perfectly balanced, an optimal shared storage policy is the full duration-

of-stay policy, which assigns the pallets with the shortest duration of stay to the locations with the

smallest travel time. Following the ideas of the class-based turnover policy, the authors also introduce

the class-based duration-of-stay policy. This policy sorts the pallets in increasing duration of stay and

sequentially assigns them to a predetermined number of classes. The pallets with the shortest duration

of stay are assigned to the class with the smallest average travel time. If a warehouse is not perfectly

balanced, their simulation results based on a deterministic environment suggest that the full duration-

of-stay policy outperforms the class-based turnover policy with two classes, which in turn outperforms

the class-based duration-of-stay policy with two classes.

3

Kulturel et al. (1999) compare the class-based turnover policy with the class-based duration-of-stay

policy using computer simulations for a warehouse with three classes facing stochastic demand. Their

results echo the findings of Goetschalckx and Ratliff (1990) that the class-based turnover policy generally

outperforms the class-based duration-of-stay policy. All the papers discussed above assume demand for

each product is stationary over the planning horizon, which is hardly true in reality due to seasonality or

life cycles of products. A heuristic approach to handle nonstationary demand is to constantly reshuffle

the products so that products with increased mean demand are relocated to more economic locations.

See Table 4 of Gu et al. (2007) for references in this area of research.

In this paper, we study the storage assignment problem in a unit-load warehouse that faces uncertain

demand over a multi-period planning horizon. To capture the complexity of demand pattern, we consider

a factor-based demand model in which demand for each product is affinely dependent on some uncertain

factors. This allows us to model different seasonality effects. Furthermore, unlike most papers in the

literature, we do not restrict the system to an EOQ-based replenishment policy with a fixed order

quantity for each product. Instead, we assume the number of arriving pallets of each product in each

period is predetermined according to the supplier’s production plan. We adopt an approach based on

robust optimization to solve the storage assignment problem.

Robust optimization is a promising approach to address optimization problems under uncertainty.

This is justified by the significant growth in this area of research. See, for instance, Soyster (1973),

Ben-Tal and Nemirovski (1998, 1999, 2000), Bertsimas and Sim (2003, 2004), Bertsimas et al. (2003),

Chen et al. (2008), Chen and Sim (2009), Goh and Sim (2010), El-Ghaoui and Lebret (1997), El-

Ghaoui et al. (1998), and Erdoğan and Iyengar (2006). Robust optimization has also been implemented

in a dynamic setting that involves decision making in stages. Bertsimas and Thiele (2006) propose a

robust optimization solution to a multi-period inventory control problem. Similarly, Adida and Perakis

(2006) handle demand uncertainty in a dynamic pricing and inventory control problem by formulating

a deterministic robust optimization problem.

To better adapt to a multi-stage decision process, Ben-Tal et al. (2004) introduce the concept of

adjustable robust counterpart that permits decisions to be delayed until information becomes available.

Applications of the adjustable robust counterpart include Atamtürk and Zhang (2007) and Erera et al.

(2009). Unfortunately, adjustable robust counterpart models are generally NP -hard. The authors pro-

pose a linear decision rule called affinely adjustable robust counterpart. Ben-Tal et al. (2005) demonstrate

that affinely adjustable robust counterpart can be remarkably effective in minimizing the worst-case ob-

jective of a multi-period inventory control problem. Bertsimas et al. (2009) show that affinely adjustable

4

robust counterpart can be optimal in some situations. See and Sim (2010) demonstrate the effective-

ness of piecewise linear decision rules in minimizing the expected objective of a multi-period inventory

control problem under stochastic demand with correlation.

Our approach to the storage assignment problem is similar to the affinely adjustable robust coun-

terpart. We restrict the storage and retrieval decisions to a linear decision rule in order to obtain a

tractable formulation. Specifically, our contributions can be summarized as follows:

1. We have developed a new method for storage assignment in unit-load warehouses. Our approach

has the following three unique characteristics: (i) We can handle stochastic demand over multiple

periods without specifying its exact probability distribution. (ii) We assume the number of pallets

of each product arriving in each period can be of any integer. In contrast, almost all existing

models adopt an EOQ-based replenishment policy with a fixed re-order quantity for each product.

(iii) We consider the capacity constraint of each storage class to determine storage and retrieval

decisions. In contrast, all existing approaches neglect these capacity constraints. A case study

with a company and numerical experiments based on realistic warehouse settings suggest that our

method requires significantly less travel than the best-known methods in the literature.

2. We propose a factor-based demand model in which the demand for each product is affinely de-

pendent on some uncertain factors. The support set of the uncertain factors is a polytope called

the factors support set. The means of the uncertain factors are also uncertain. The support set

of these uncertain means is also a polytope called the factor means support set. In our model we

adopt the approach by Gilboa and Schmeidler (1989) of minimizing the worst-case expected total

cost. In contrast, Ben-Tal et al. (2005) minimize the worst-case total cost, which is a special case

of our model in which the factor means support set is the same as the factors support set.

3. We characterize the factors support set to ensure feasibility in the storage assignment problem

under a linear decision rule. Such characterization is not required in the inventory control problem

of Ben-Tal et al. (2005) where feasibility is guaranteed for any bounded support set, which is not

the case for the storage assignment problem.

In this paper, let z̃ denote an uncertain variable and let z̃ (bold letter) denote an uncertain vector.

The support set W of an uncertain vector z̃ is the smallest convex set containing all instances of z̃.

Let f, g : W → ℜp, for any integer p, denote function mappings. We use the notation f(z̃) ≥ g(z̃) to

represent state-wise dominance: f(z) ≥ g(z) for all z ∈ W . Similarly, f(z̃) = g(z̃) denotes state-wise

equality: f(z) = g(z) for all z ∈ W . We use y′ to denote the transpose of vector y.

5

2 Problem formulation

We consider a unit-load warehouse with single command travel. We assume a single receiving dock and

a single shipping dock and their locations may not coincide with each other. As explained later, our

model can be generalized to warehouses with multiple receiving and shipping docks. For each storage

location, we define its store cost (retrieve cost) as the travel time for a standard forklift to move from

the receiving (shipping) dock to the location and then return to the receiving (shipping) dock.

We partition the storage locations using a grid into different classes. Figure 4(a) in Appendix E

shows an example. Each rectangle defined by four neighboring grid points corresponds to a class. Let

sj and rj denote the average store cost and the average retrieve cost of all locations in class j and we

assume each location in class j has store cost sj and retrieve cost rj, for j = 1, . . . , N . Each class j has

capacity cj , which represents the number of locations in the class. We assume the N -th class represents

emergency storage, which has infinite capacity (cN = ∞) but incurs high store and retrieve costs. When

a pallet is assigned to a class, it is stored at an arbitrary location in the class.

Suppose there are M products indexed by i = 1, . . . ,M . We divide the planning horizon into T

periods indexed by t = 1, . . . , T . For each period, we assume all pallets from suppliers arrive at the

start of the period and all pallets ordered by customers during the period are retrieved at the end of

the period. Our goal is to minimize the total expected cost over the planning horizon. For convenience,

let N = {1, . . . , N}, N− = {1, . . . , N − 1}, M = {1, . . . ,M}, T = {1, . . . , T}, and T + = {1, . . . , T +1}.

2.1 Deterministic demand

We begin with a deterministic model in which all information throughout the entire planning horizon is

available at the start of the first period. Let ati denote the number of pallets of product i arriving at the

start of period t. Let vtij be a decision variable determining the number of arriving pallets of product i

that are assigned to class j in period t. Since all arriving pallets must be assigned to some classes, we

have
∑

j∈N vtij = ati, for i ∈ M, t ∈ T . Similarly, let dti denote the number of pallets of product i that

are ordered in period t. Let wt
ij be a decision variable determining the number of pallets of product i

that are retrieved from class j in period t. We have
∑

j∈N wt
ij = dti, for i ∈ M, t ∈ T .

Let xtij denote the number of pallets of product i in class j at the start of period t. We assume there is

no initial inventory in the warehouse and so x1ij = 0, for i ∈ M, j ∈ N . We do not allow backlog of orders

at all time, even after the planning horizon. Thus, xtij ≥ 0, for i ∈ M, j ∈ N , t ∈ T +. The inventory

of product i in class j at the start of period t + 1 is xt+1
ij = xtij + vtij − wt

ij , for i ∈ M, j ∈ N , t ∈ T .

6

Since the inventory in each class j must not exceed its capacity, we have the capacity constraints
∑

i∈M(xtij + vtij) ≤ cj , for j ∈ N−, t ∈ T .

Rightfully, the decision variables should be restricted to integers. However, in order to yield a

tractable formulation, we relax the integrality constraints and formulate a linear optimization problem

to minimize the total cost of the warehouse as follows:

ZD = min
∑

t∈T

∑

i∈M

∑

j∈N

(sjv
t
ij + rjw

t
ij) (1)

s.t.
∑

j∈N

vtij = ati, i ∈ M, t ∈ T ;

∑

j∈N

wt
ij = dti, i ∈ M, t ∈ T ;

xt+1
ij = xtij + vtij − wt

ij, i ∈ M, j ∈ N , t ∈ T ;

x1ij = 0, i ∈ M, j ∈ N ;

∑

i∈M

(xtij + vtij) ≤ cj , j ∈ N−, t ∈ T ;

xtij ≥ 0, i ∈ M, j ∈ N , t ∈ T +;

vtij, w
t
ij ≥ 0, i ∈ M, j ∈ N , t ∈ T .

We assume any shortage will be handled by the suppliers and this will not incur any cost. Thus,

there is always sufficient inventory to meet demand for every period. Equivalently,

t
∑

τ=1

dτi ≤
t
∑

τ=1

aτi , i ∈ M, t ∈ T . (2)

Proposition 1 Problem (1) is feasible if and only if Inequalities (2) hold.

Proof : See Appendix A.

Note that the initial conditions x1ij = 0, for i ∈ M, j ∈ N are not overly restrictive. Proposition 1 can

be extended to a more general initial setting in which Inequalities (2) become
∑t

τ=1 d
τ
i ≤

∑t
τ=1 a

τ
i +

∑

j∈N x1ij, for i ∈ M, t ∈ T , where x1ij ≥ 0 for i ∈ M, j ∈ N .

2.2 Factor-based demand model

We adopt a factor-based demand model similar to that of See and Sim (2010) in which demand for each

product in period t is affinely dependent on uncertain factors z̃k, k = 1, ...,Kt, where Kt represents the

number of such factors used to model demand up to period t. At the end of period t, the uncertain

7

factors are realized and so the values of z̃k, k = 1, . . . ,Kt, are known. At the start of period t+ 1, new

uncertain factors z̃k, k = Kt + 1, . . . ,Kt+1 are introduced and they are realized at the end of period

t + 1. Thus, we have 1 ≤ K1 ≤ K2 ≤ · · · ≤ KT . We define Kt
∆
= {1, . . . ,Kt}, K

0
t

∆
= {0, . . . ,Kt},

z̃t ∆
= (z̃1, . . . , z̃Kt), and z̃

∆
= z̃T .

Demand for product i in period t is an affine function of z̃t: dti(z̃
t)

∆
= dt,0i +

∑

k∈Kt
dt,ki z̃k, i ∈ M, t ∈ T ,

where dt,ki , k ∈ K0
t are known coefficients. The factor-based demand model can capture correlation of

demand for different products across different periods with appropriate values of dt,ki . For example, for

a two-period, two-product case with K1 = 2 and K2 = 4, we have d11(z̃
1) = d1,01 + d1,11 z̃1 + d1,21 z̃2 and

d12(z̃
1) = d1,02 + d1,12 z̃1 + d1,22 z̃2 for period 1; and d21(z̃

2) = d2,01 + d2,11 z̃1 + d2,21 z̃2 + d2,31 z̃3 + d2,41 z̃4 and

d22(z̃
2) = d2,02 + d2,12 z̃1 + d2,22 z̃2 + d2,32 z̃3 + d2,42 z̃4 for period 2. If demand for product 1 is independent

of demand for product 2, then we have d1,21 = d1,12 = 0 and d2,21 = d2,41 = d2,12 = d2,32 = 0. This implies

d11(z̃
1) = d1,01 + d1,11 z̃1 and d12(z̃

1) = d1,02 + d1,22 z̃2 for period 1, and d21(z̃
2) = d2,01 + d2,11 z̃1 + d2,31 z̃3 and

d22(z̃
2) = d2,02 + d2,22 z̃2 + d2,42 z̃4 for period 2. Furthermore, if demand for each product is independent

across periods, then we have d2,11 = d2,22 = 0. This implies d11(z̃
1) = d1,01 + d1,11 z̃1, d

1
2(z̃

1) = d1,02 + d1,22 z̃2,

d21(z̃
2) = d2,01 + d2,31 z̃3, and d22(z̃

2) = d2,02 + d2,42 z̃4. In Section 4, we will demonstrate how a warehouse

manager could set up such a demand model using historical demand data.

In practice, it is often difficult to obtain the actual distribution of the uncertain factors. As a result,

we need to handle this ambiguity and characterize the uncertain factors as follows.

Assumption U:

The uncertain factors z̃ are random variables with an unknown distribution. They lie in a

full dimensional polytope support set W called the factors support set. The factors have

uncertain means with a support set Ŵ called the factor means support set, which is also a

polytope. We define U as a family of distributions of z̃ such that for all P ∈ U , we have

EP(z̃) ∈ Ŵ , where EP(z̃) represents the expected values of z̃ under a distribution P.

Similar to Inequalities (2), demand cannot exceed inventory for each product in any period. Thus,

W and Ŵ are subsets of the set G
∆
=
{

z ∈ ℜKT :
∑t

τ=1 d
τ
i (z

τ) ≤
∑t

τ=1 a
τ
i , dti(z

t) ≥ 0, i ∈ M, t ∈ T
}

.

Without loss of generality, we can define the factors support set as W
∆
=
{

z ∈ ℜKT : z ∈ G,z ∈ S
}

,

where S represents other constraints on the factors and can be expressed as S = {z ∈ ℜKT : ∃u ∈

ℜNb : Az +Bu ≤ q}, A ∈ ℜNa×KT , B ∈ ℜNa×Nb , and q ∈ ℜNa . Likewise, we can define the factor

means support set as Ŵ
∆
=
{

z ∈ ℜKT : z ∈ G,z ∈ Ŝ
}

, where Ŝ = {z ∈ ℜKT : ∃u ∈ ℜN̂b : Âz+B̂u ≤

q̂}, Â ∈ ℜN̂a×KT , B̂ ∈ ℜN̂a×N̂b , and q̂ ∈ ℜN̂a. In classical robust optimization the uncertainty sets used

8

are typically simple geometric sets such as boxes, ellipsoids, or their intersections. Such uncertainty sets

are not always subsets of G and can render the problem infeasible. We assume W and Ŵ are nonempty.

Note that Ŵ ⊆ W and thus, we may assume Ŝ ⊆ S. If the factor means are completely unknown, we

have Ŵ = W , which becomes the adjustable robust counterpart model of Ben-Tal et al. (2005).

3 A robust optimization model

We consider a robust optimization model that takes adjustability into account as information unfolds.

For each period t, the following sequence of events is repeated: At the start of period t, a decision on

where to store the arriving pallets is made based on the information captured in z̃t−1. These pallets are

then moved to their assigned storage locations. After the demand in period t is realized, z̃t becomes

available. A decision on where to retrieve pallets is made and then pallets are retrieved from their

storage locations. We define the following adjustable variables: (1) vtij(z̃
t−1) is the number of arriving

pallets of product i assigned to class j at the start of period t after z̃t−1 is realized. This decision

is made after the pallets for period t arrive at the warehouse. (2) wt
ij(z̃

t) is the number of pallets of

product i retrieved from class j at the end of period t after z̃t is realized. This decision is made after

demand in period t is realized. (3) xt+1
ij (z̃t) is the number of pallets of product i in class j at the start

of period t+ 1.

Since the actual demand distribution is not known, we consider a family of distributions of z̃ under

Assumption U. To address distributional ambiguity, we use the approach by Gilboa and Schmeidler

(1989) that minimizes the worst-case expected total cost over the family of distributions as follows:

ZR = min max
P∈U

EP

∑

t∈T

∑

i∈M

∑

j∈N

(

sjv
t
ij(z̃

t−1) + rjw
t
ij(z̃

t)
)

 (3)

s.t.
∑

j∈N

vtij(z̃
t−1) = ati, i ∈ M, t ∈ T ;

∑

j∈N

wt
ij(z̃

t) = dti(z̃
t), i ∈ M, t ∈ T ;

xt+1
ij (z̃t) = xtij(z̃

t−1) + vtij(z̃
t−1)− wt

ij(z̃
t), i ∈ M, j ∈ N , t ∈ T ;

x1ij(z̃
0) = 0, i ∈ M, j ∈ N ;

∑

i∈M

(

xtij(z̃
t−1) + vtij(z̃

t−1)
)

≤ cj , j ∈ N−, t ∈ T ;

xtij(z̃
t−1) ≥ 0, i ∈ M, j ∈ N , t ∈ T +;

vtij(z̃
t−1), wt

ij(z̃
t) ≥ 0, i ∈ M, j ∈ N , t ∈ T ;

9

vtij , x
t
ij ∈ FKt−1 , i ∈ M, j ∈ N , t ∈ T ;

wt
ij ∈ FKt , i ∈ M, j ∈ N , t ∈ T ;

where Fp denotes a family of measurable functions that map ℜp to ℜ for any integer p. In Problem (3),

the optimal solutions vtij and wt
ij are functions representing the optimal storage and retrieval decisions.

3.1 Linear storage-retrieval policy

It is generally intractable to determine the optimal storage and retrieval decisions for Problem (3). To

obtain a tractable formulation, we assume vtij and wt
ij are affine functions as follows:

vtij(z̃
t−1) = vt,0ij +

∑

k∈Kt−1

vt,kij z̃k, i ∈ M, j ∈ N , t ∈ T ; (4)

wt
ij(z̃

t) = wt,0
ij +

∑

k∈Kt

wt,k
ij z̃k, i ∈ M, j ∈ N , t ∈ T . (5)

Given the coefficients vt,kij , k ∈ K0
t−1 and wt,k

ij , k ∈ K0
t , for i ∈ M, j ∈ N , t ∈ T , the functions vtij and wt

ij

defined above constitute a linear storage-retrieval policy or a linear decision rule. Under Assumption

U, the objective function of Problem (3) becomes

max
P∈U

∑

t∈T

∑

i∈M

∑

j∈N

(

sjv
t
ij(EP(z̃

t−1)) + rjw
t
ij(EP(z̃

t))
)

= max
z∈Ŵ

∑

t∈T

∑

i∈M

∑

j∈N

(

sjv
t
ij(z

t−1) + rjw
t
ij(z

t)
)

.

By limiting to linear decision rules, Problem (3) becomes the following optimization problem:

ZLR = min max
z∈Ŵ

∑

t∈T

∑

i∈M

∑

j∈N

(

sjv
t
ij(z

t−1) + rjw
t
ij(z

t)
)

(6)

s.t.
∑

j∈N

vtij(z̃
t−1) = ati, i ∈ M, t ∈ T ;

∑

j∈N

wt
ij(z̃

t) = dti(z̃
t), i ∈ M, t ∈ T ;

xt+1
ij (z̃t) = xtij(z̃

t−1) + vtij(z̃
t−1)− wt

ij(z̃
t), i ∈ M, j ∈ N , t ∈ T ;

x1ij(z̃
0) = 0, i ∈ M, j ∈ N ;

∑

i∈M

(

xtij(z̃
t−1) + vtij(z̃

t−1)
)

≤ cj , j ∈ N−, t ∈ T ;

xtij(z̃
t−1) ≥ 0, i ∈ M, j ∈ N , t ∈ T +;

vtij(z̃
t−1), wt

ij(z̃
t) ≥ 0, i ∈ M, j ∈ N , t ∈ T ;

vtij, x
t
ij ∈ LKt−1 , i ∈ M, j ∈ N , t ∈ T ;

wt
ij ∈ LKt, i ∈ M, j ∈ N , t ∈ T ;

10

where Lp denotes a family of affine functions that map ℜp to ℜ for any integer p. Clearly, if Problems (3)

and (6) are feasible, we have ZR ≤ ZLR. Chen et al. (2008) show that a feasible stochastic optimization

problem can become infeasible under a linear decision rule. Even if Problem (3) is feasible, it is not

clear whether there exists a linear decision rule that is feasible. Fortunately, this is not the case for the

storage assignment problem.

Theorem 1 Under Assumption U, Problem (6) is feasible and its objective function ZLR is finite.

The coefficients of the optimal linear storage-retrieval policy can be computed by solving the following

optimization problem:

ZLR = min g0 +max
z∈Ŵ

∑

k∈KT

gkzk (7)

s.t. gk =
∑

t∈T

∑

i∈M

∑

j∈N

(

sjv
t,k
ij + rjw

t,k
ij

)

, k ∈ K0
T ;

∑

j∈N

vt,kij =

ati, if k = 0,

0, otherwise,
i ∈ M, k ∈ K0

T , t ∈ T ;

∑

j∈N

wt,k
ij =

dt,ki , if k ∈ K0
t ,

0, otherwise,
i ∈ M, k ∈ K0

T , t ∈ T ;

xt+1,k
ij = xt,kij + vt,kij − wt,k

ij , i ∈ M, j ∈ N , k ∈ K0
T , t ∈ T ;

x1ij = 0, i ∈ M, j ∈ N ;

ht,kj =
∑

i∈M

(

xt,kij + vt,kij

)

, j ∈ N , k ∈ K0
T , t ∈ T ;

ht,0j +
∑

k∈KT

ht,kj zk ≤ cj , ∀z ∈ W, j ∈ N−, t ∈ T ;

vt,0ij +
∑

k∈KT

vt,kij zk ≥ 0, ∀z ∈ W, i ∈ M, j ∈ N , t ∈ T ;

wt,0
ij +

∑

k∈KT

wt,k
ij zk ≥ 0, ∀z ∈ W, i ∈ M, j ∈ N , t ∈ T ;

xt,0ij +
∑

k∈KT

xt,kij zk ≥ 0, ∀z ∈ W, i ∈ M, j ∈ N , t ∈ T +;

vt,kij = xt,kij = ht,kj = 0, i ∈ M, j ∈ N , k ∈ KT \Kt−1, t ∈ T ;

wt,k
ij = 0, i ∈ M, j ∈ N , k ∈ KT \Kt, t ∈ T .

Proof : See Appendix B.

For a special case where the factor means are known, we have Ŵ = {E(z̃)}. We can translate the

11

factors such that E(z̃) = 0. The objective function of Problem (7) reduces to ZLR = min g0, which

becomes the optimal expected total cost under a linear decision rule.

Note that the objective function and some of the constraints of Problem (7) involve the parameters

z over the support sets Ŵ and W . These are known as robust counterparts (see, for instance, Ben-Tal

and Nemirovski (1998)). Problem (7) can be represented as a linear optimization problem. For brevity,

we present the derivation of the constraints corresponding to the robust counterparts involving the

set W in the resultant linear optimization problem. It is similar to do so for the robust counterpart

involving the set Ŵ .

Proposition 2 The variables y and r are feasible in the robust counterpart z′y ≤ r,∀z ∈ W , or

equivalently maxz∈W z′y ≤ r, if and only if there exist γ ∈ ℜNa and αt,βt ∈ ℜM , for t ∈ T , that are

feasible in
∑

t∈T

(

āt′αt + dt,0′βt
)

+ γ ′q ≤ r,

∑

t∈T

(

D̄
t′
αt −Dt′βt

)

+A′γ = y,

B′γ = 0,

γ ≥ 0, αt,βt ≥ 0, t ∈ T ,

where āt =
t
∑

τ=1
(aτ − dτ,0), at′ =

(

at1 . . . a
t
M

)

, dt,0′ =
(

dt,01 . . . dt,0M

)

, D̄
t
=
∑t

τ=1 D
τ , and

Dt =

dt,11 . . . dt,Kt

1 0 . . . 0

.

.

. . . .
.

.

.

.

.

. . . .
.

.

.

dt,1
M

. . . dt,Kt

M
0 . . . 0

∈ ℜM×KT .

Proof : See Appendix C.

We use Proposition 2 to transform Problem (7) to a linear optimization problem. Since the resultant

formulation is heavy in notation, we present it in Appendix D.

3.2 Restricted linear storage-retrieval policy

The large number of decision variables needed to characterize the linear storage-retrieval policy in

Problem (7) impedes practical implementations. According to Equation (5), the number of variables

needed to determine the retrieval decisions wt
ij(z̃

t) under the linear decision rule is |Kt| + 1, where

|Kt| = Mt. The full implementation of the linear decision rule is memory intensive and limits the

12

problem size we could handle. To address this issue, we propose the following restricted linear storage-

retrieval policy or restricted linear decision rule:

vtij(z̃
t−1) = vt,0ij +

∑

k∈Ki,t−1

vt,kij zk, i ∈ M, j ∈ N ; (8)

wt
ij(z̃

t) = wt,0
ij +

∑

k∈Ki,t

wt,k
ij zk, i ∈ M, j ∈ N ; (9)

where Ki,t = {k ∈ Kt : dt,ki 6= 0}. Note that under the factor-based model, the demand for product

i in period t can be written as dti(z̃
t) = dt,0i +

∑

k∈Ki,t
dt,ki z̃k, i ∈ M, t ∈ T . In practice, most of

the coefficients dt,ki are zeros, and thus |Ki,t| is small compared to |Kt|. For example, if demands are

independent across products and periods, then |Ki,t| = 1. To change from the linear decision rule to

the restricted linear decision rule, a subset of the decision variables are forced to zeros. Specifically, the

decisions vtij(z̃
t−1) and wt

ij(z̃
t) under the restricted linear decision rule only respond to factors associated

with the realized demand of product i and are not affected by factors of other products. Therefore, the

restricted linear decision rule can result in a much smaller optimization problem and greatly improve

scalability. Although the restricted linear decision rule may be inferior to the linear decision rule, the

following result ensures that the restricted linear decision rule remains feasible in Problem (3).

Proposition 3 Under assumption U, there exists a restricted linear storage-retrieval policy in the form

of Equations (8) and (9) that is feasible for Problem (3).

Proof : The proof of feasibility is the same as that of Theorem 1 and is omitted for brevity.

Our numerical studies suggest that the restricted linear decision rule greatly extends the problem

size we could handle. Furthermore, it significantly outperforms existing heuristics in the literature and

achieves close to the expected value given perfect demand information.

3.3 An example

We illustrate our approach using a small example with 2 products and 3 classes. Table 1(a) shows

the layout of the warehouse with class 3 represents emergency storage. We assume demand for each

product in each period is independent of other products and periods. Table 1(b) gives a problem

instance for a planning horizon of 2 periods. Assume the uncertain factors z̃1, . . . , z̃4 have support set

W = {z : ‖z‖∞ ≤ 10} and zero means so that Ŵ = {0}. It is easy to verify that there is enough

inventory to meet demand for all z ∈ W in each period. Thus, we have W ⊆ G.

13

Table 1: (a) A warehouse layout. (b) Number of arrivals and demand for each product in each period.

Class Store cost Retrieve cost Capacity

1 10 10 300

2 50 50 500

3 1000 1000 ∞

t = 1 t = 2

i a1
i

d
1
i (z̃

1) a2
i

d
2
i (z̃

2)

1 300 100 + z̃1 50 50 + z̃3

2 300 10 + z̃2 0 200 + z̃4

(a) (b)

The robust counterpart z′y ≤ r, ∀z ∈ W is simply 10
∑4

k=1 |yk| ≤ r, which can be easily transformed

to linear constraints. The storage assignment problem under linear storage-retrieval policies is to

min
2
∑

t=1

2
∑

i=1

3
∑

j=1

(

sjv
t,0
ij + rjw

t,0
ij

)

(10)

s.t.
3
∑

j=1

vt,kij =

ati, if k = 0,

0, otherwise ,
i = 1, 2, k = 0, . . . , 4, t = 1, 2;

3
∑

j=1

wt,k
ij =

dt,ki , if k ∈ K0
t ,

0, otherwise,
i = 1, 2, k = 0, . . . , 4, t = 1, 2;

xt+1,k
ij = xt,kij + vt,kij −wt,k

ij , i = 1, 2, j = 1, . . . , 3, k = 0, . . . , 4, t = 1, 2;

x1ij = 0, i = 1, 2, j = 1, . . . , 3;

2
∑

i=1

(

(

xt,0ij + vt,0ij

)

+ 10
4
∑

k=1

∣

∣

∣x
t,k
ij + vt,kij

∣

∣

∣

)

≤ cj , j = 1, 2, t = 1, 2;

vt,0ij − 10
4
∑

k=1

∣

∣

∣v
t,k
ij

∣

∣

∣ ≥ 0, i = 1, 2, j = 1, . . . , 3, t = 1, 2;

wt,0
ij − 10

4
∑

k=1

∣

∣

∣w
t,k
ij

∣

∣

∣ ≥ 0, i = 1, 2, j = 1, . . . , 3, t = 1, 2;

xt,0ij − 10
4
∑

k=1

∣

∣

∣x
t,k
ij

∣

∣

∣ ≥ 0, i = 1, 2, j = 1, . . . , 3, t = 1, . . . , 3;

vt,kij = xt,kij = 0, i = 1, 2, j = 1, . . . , 3, k=2(t-1)+1, . . . , 4, t = 1, 2;

w1,k
ij = 0, i = 1, 2, j = 1, . . . , 3, k = 3, 4.

We only need to solve Problem (10) once to obtain the optimal vt,kij and wt,k
ij , which represent an optimal

linear policy. Note that we can reduce the size of the problem by removing the variables that are assigned

to zeros. The corresponding problem under restricted linear policies would require the variables v2,21j ,

v2,12j , w
1,2
1j , w

1,1
2j , w

2,2
1j , w

2,1
2j , w

2,4
1j , and w2,3

2j for all j to be set to zeros. In this example, the optimum

solutions for both linear and restricted linear policies coincide.

14

Let vt,k and wt,k denote 2× 3 matrices with vt,kij and wt,k
ij as their (i, j) entries respectively. Solving

Problem (10) gives

v1,0 =

(

90 210

210 90

0 0

)′

, v1,k = 0, k = 1, . . . , 4. (11)

The matrix v1,0 determines the number of pallets of product i assigned to class j in period 1. For

example, there are 90, 210, and 0 pallets of product 1 assigned to classes 1, 2, and 3 respectively.

The solution to Problem (10) also determines the coefficients w1,k
ij as follows:

w1,0 =

(

90 0

10 10

0 0

)′

, w1,1 =

(

0 0

1 0

0 0

)′

, w1,2 =

(

0 0

0 1

0 0

)′

, w1,k = 0, k = 3, 4. (12)

Given these coefficients, once demand in period 1 is realized, we can determine the retrieval decisions for

period 1 according to Equation (5): w1
ij(z̃

1) = w1,0
ij +w1,1

ij z̃1 +w1,2
ij z̃2. Suppose in period 1 the realized

demands for products 1 and 2 are 95 and 18 respectively. According to Table 1(b), the corresponding

realized factors are z̃1 = (z̃1, z̃2) = (−5, 8). Using product 1 for illustration, we have

(

w1

11
(z̃1)

w1

12
(z̃1)

w1

13
(z̃1)

)

=

(

90

10

0

)

+

(

0

1

0

)

(−5) +

(

0

0

0

)

(8) =

(

90

5

0

)

.

Thus, in period 1 we should retrieve 90, 5, and 0 pallets of product 1 from classes 1, 2, and 3 respectively.

Similarly, given the realized factors z̃1, we can determine the storage decisions for period 2 according

to Equation (4): v2ij(z̃
1) = v2,0ij + v2,1ij z̃1 + v2,2ij z̃2. From the solution of Problem (10), we have

v2,0 =

(

50 0

0 0

0 0

)′

, v2,k = 0, k = 1, . . . , 4. (13)

The storage decisions for product 1 in period 2 are

(

v2

11
(z̃1)

v2

12
(z̃1)

v2

13
(z̃1)

)

=

(

50

0

0

)

+

(

0

0

0

)

(−5) +

(

0

0

0

)

(8) =

(

50

0

0

)

.

Thus, we should store 50, 0, and 0 pallets of product 1 in classes 1, 2, and 3 respectively.

The coefficients w2,k
ij for the retrieval decisions are given as follows:

w2,0 =

(

45 200

5 0

0 0

)′

, w2,k = 0, k = 1, 2, w2,3 =

(

0.5 0

0.5 0

0 0

)′

, w2,4 =

(

0 1

0 0

0 0

)′

. (14)

We can determine the retrieval decisions for period 2 based on these coefficients according to Equation

(5): w2
ij(z̃

2) = w2,0
ij + w2,1

ij z̃1 + w2,2
ij z̃2 + w2,3

ij z̃3 + w2,4
ij z̃4. Suppose in period 2 the realized demands

15

for products 1 and 2 are 56 and 198 respectively. According to Table 1(b), the corresponding realized

factors are z̃2 = (z̃1, z̃2, z̃3, z̃4) = (−5, 8, 6,−2). Using product 1 for illustration, we have

(

w2

11
(z̃2)

w2

12
(z̃2)

w2

13
(z̃2)

)

=

(

45

5

0

)

+

(

0

0

0

)

(−5) +

(

0

0

0

)

(8) +

(

0.5

0.5

0

)

(6) +

(

0

0

0

)

(−2) =

(

48

8

0

)

.

Thus, in period 2 we should retrieve 48, 8, and 0 pallets of product 1 from classes 1, 2, and 3 respectively.

The procedure of using the optimal restricted linear policy is summarized as follows: We first obtain

the coefficients vt,kij and wt,k
ij by solving a linear optimization problem. After demand is realized in each

period t, we derive the factors z̃t and then use them to determine the storage and retrieval decisions

according to Equations (8) and (9).

4 Implementation in practice: A case study

We perform a case study with a major third-party logistics provider in Singapore to demonstrate the

applicability of our method. The company owns a unit-load warehouse that provides storage services for

its client. All other activities such as demand forecasting, customer order processing, and production

scheduling are done by the client. All pallets are handled by a fleet of 15 forklifts. The warehouse pays

its employees by hours and charges the client by volume for storing and handling the products.

The warehouse operates in two shifts per day. It receives and puts away products during the day shift

between 8:00AM and 5:30PM. Sixty percent of the arriving pallets are from the client’s manufacturing

plant located nearby and the rest are imported from foreign countries. The warehouse is informed

one week in advance about the arrivals of pallets with 98% accuracy. The day shift is supported by

30 employees who not only receive and put away pallets, but also batch customer orders that are

transmitted from the client. All orders arriving during the day shift are retrieved in the following night

shift, which has 10 employees working between 8:00PM and 6:00AM. In our model, we set each period

as a day so that the warehouse’s business processes are in line with our assumption: All arriving pallets

in each period are stored before any pallets are retrieved for demand occurring in the period.

Figure 4(a) in Appendix E shows the warehouse’s layout. The storage area is 90 meters wide with

10 aisles. Each aisle is 65 meters long. There are 18 single-deep racks. Every aisle has a rack on each

side except the end aisles. Each rack contains 48 sections and each section has 4 to 5 levels. Only one

pallet can be stored in each level of a section. All levels of the same section belong to the same class

because they have identical store cost and identical retrieve cost. The warehouse is partitioned into 10

classes (thus, N = 11) with a grid shown in Figure 4(a).

16

0 50 100 150 200 250 300 350 400 450
0

1000

2000

3000

4000

5000

6000

7000

Product

A
n
n
u
a
l

D
e
m
a
n
d

(
P
a
l
l
e
t
s
)

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

A
u
t
o
c
o
r
r
e
l
a
t
i
o
n

(a) (b)

Figure 1: Products’ characteristics. (a) The distribution of annual demands is strongly skewed. (b)
The autocorrelation of the total daily demand suggests a weekly seasonality pattern.

We have collected the actual numbers of arriving and departing pallets of each product in each period

for 48 weeks. Figure 1(a) sorts the 410 products in the warehouse according to their annual demands.

The first 122 products account for about 80% of the total annual demand. Since the warehouse operates

six days a week, a natural choice for the length of planning horizon is 6 periods (that is, weekly planning).

Figure 1(b) shows the autocorrelation of the total daily demand for all products over time. The peaks

at lags 6, 12, and 18 suggest a weekly seasonality pattern.

We assume no correlation between different products. Using the factor-based demand model, we

assume demand for product i in period t is dti(z̃
t
i) = dt,0i + z̃ti , where dt,0i represents the sample mean

of demand. We assume the uncertain factor z̃ti falls in the range
[

max
{

−dt,0i ,−3σt
i

}

, 3σt
i

]

, where σt
i is

the sample standard deviation of demand1.

We compare the restricted linear decision rule (RLR) with the static class-based turnover policy

(TOS), the dynamic class-based turnover policy (TOD), and the class-based duration-of-stay policy

(DOS). We evaluate the actual cost of each policy using the data given. The implementation of each

policy requires the means and standard deviations of daily demands. To achieve this, we use the first 16

weeks of data to estimate these parameters in each period of week 172. We then implement the policy

for week 17 to evaluate its actual cost. Following a rolling-horizon principle, the demand parameters

for week 18 can be estimated based on the data from week 2 to week 17, and so on.

1Note that it is difficult to estimate the support of demand statistically. Nevertheless, in our computational studies, we

found that the solution is rather insensitive to the size of the support set. Thus, we only report the results of this case.
2Due to the weekly seasonality pattern, we determine the mean d

t,0
i and the standard deviation σ

t
i of demand based on

the corresponding day of each of the previous weeks. For example, we use the actual demand for product i on Mondays of

the first 16 weeks to estimate its mean demand on Monday of week 17.

17

For the RLR, we round any non-integral vtij and wt
ij to the nearest integers. If the rounded solution

does not match the actual number of arriving (departing) pallets, then we store (retrieve) any additional

pallets to (from) the most economic class available. For example, if demand for a product is 20 but the

rounded solution is to retrieve 19 pallets from class 1 and 0 from other classes, then we retrieve 1 more

pallet from the most economic class that contains the product.

For the TOS policy, define the static turnover rate as
[

∑T
t=1

(

ati + dt,0i

)

/δti

]

/T for each product i,

where δti is the average number of pallets of product i in period t. Products are ranked according to

their static turnover rates and the product with the highest static turnover rate is assigned to the most

economic class. When a product is requested it is retrieved from the most economic class containing

the product. The TOD policy is similar to the TOS policy except in each period t the former ranks

products according to their dynamic turnover rates
(

ati + dt,0i

)

/δti . For the DOS policy, we use the

ADAPTIVE algorithm by Goetschalckx and Ratliff (1990). We also compare with a DET policy, which

is based on the optimal solution of Problem (1). This policy is implemented with a rolling horizon using

the realized demands of the past period and mean demands of the coming periods. We implement all

policies in JAVA programming language and solve the linear programs using CPLEX 10.2 on a personal

computer with a 3.06GHz Intel Core 2 Duo processor with 4GB of SDRAM. For the RLR, it takes

about 20 minutes to create a weekly plan, which is acceptable for the company.

The cost of each policy is computed based on the store and retrieve costs of each class. Table 2

shows that the average daily cost under the RLR is significantly lower than that of other heuristics in

this case study from week 17 to week 48. The table also shows that our method has the lowest 85%,

90%, and 95% quantiles of daily cost among all the policies. Figure 2 shows the percentage of days that

have cost less than a value s under each policy. The daily cost of the RLR is first-order stochastically

dominated by that of other heuristics. This strongly indicates that the RLR generally results in lower

daily cost than other heuristics. We will see later that this superiority of the RLR in daily cost results

in substantial savings in the long run.

Table 2: Daily cost profile under each policy for the case study from week 17 to week 48.

Average 85% quantile 90% quantile 95% quantile
daily cost of daily cost of daily cost of daily cost

RLR 9,220,164 15,388,911 15,832,972 17,573,184
TOS 10,014,759 16,367,066 17,157,081 18,968,993
TOD 10,044,606 16,437,146 17,240,289 18,993,355
DOS 9,951,695 16,415,298 16,883,752 18,855,040
DET 9,730,629 15,926,992 16,705,780 18,243,095

18

0 0.5 1 1.5 2 2.5

x 10
7

0

10

20

30

40

50

60

70

80

90

100

sP
e
r
c
e
n
t
a
g
e

o
f

D
a
y
s

w
i
t
h

C
o
s
t

L
e
s
s

T
h
a
n

s

RLR

TOS

TOD

DOS

DET

Figure 2: The restricted linear decision rule generally results in lower daily cost than other heuristics.

We benchmark all policies against the expected value given perfect information (EV |PI), which is

determined by resolving Problem (1) every time we enter a new week. For example, to find EV |PI for

week 17, we solve Problem (1) with the actual demands in week 17. As we enter week 18, we resolve

Problem (1) with the actual demands in weeks 17 and 18 to obtain a new EV |PI, and so on. We define

percentage efficiency of a policy as (EV |PI)/Z×100%, where Z represents the cost given by the policy.

An efficient policy would have high percentage efficiency. Figure 3(a) shows that the cumulative cost of

the RLR is consistently lower than that of other heuristics and is close to EV |PI. Figure 3(b) shows

that the RLR significantly outperforms other heuristics in percentage efficiency. For example, in week

48 it is about 8% more efficient than all the existing heuristics, which have similar costs. This strongly

suggests that the RLR can generate substantial savings over other heuristics in the long run. Note that

the DET policy is significantly worse than the RLR, but more efficient than other heuristics. We also

try different starting dates and durations to estimate the demand parameters and find that the RLR

consistently outperforms other heuristics.

It is noteworthy that replenishments and fulfillments may occur simultaneously and continuously

over time in other warehouses. We can approximate continuous time using shorter periods. To obtain

a solution quickly, we can set a shorter planning horizon and solve the problem more frequently.

5 Numerical studies on more general cases

We test the performance of the policies in more general settings by considering a warehouse shown in

Figure 4(b) in Appendix E. It has 50 single-deep racks and each rack contains 80 sections. Depending

on the number of products in the warehouse, the number of levels in each section ranges from 1 to 6.

19

20 25 30 35 40 45
0

1

2

3

4

5

6
x 10

8

Week

C
u
m
u
l
a
t
i
v
e

C
o
s
t

RLR
TOS
TOD
DOS
DET
EV|PI

20 25 30 35 40 45
82

84

86

88

90

92

94

96

98

100

Week

P
e
r
c
e
n
t
a
g
e

E
f
f
i
c
i
e
n
c
y

RLR
TOS
TOD
DOS
DET

(a) (b)

Figure 3: Cumulative costs and percentage efficiencies. (a) The RLR outperforms other heuristics
in cumulative cost. (b) The RLR is significantly more efficient than other heuristics.

Only one pallet can be stored in each level of a section. We consider three layouts. The first is a U-flow

layout shown in Figure 4(b) with the receiving dock R and shipping dock S coincide. The second and

third layouts are shown in Figures 4(c) and (d) respectively. The receiving and shipping docks in the

latter two layouts are not located at the same point.

We perform simulations to compute the average cost of each policy for T = 7. We create 500

replications of arrival and demand data, which is sufficient to ensure that the standard error is within

2% of the average cost for each policy. To compute EV |PI, we first use the realized demand in each

replication to solve Problem (1) and then use the average cost over all replications as EV |PI. In the

simulations we assume the uncertain factors z̃k follow a uniform distribution U(−q, q), where q is a

parameter. Thus, we have W = {z : ‖z‖∞ ≤ q} and Ŵ = {0}. Table 3 shows the average cost and

percentage efficiency of each policy for q = 5. The subscript of each cost value represents the standard

error in percentage of the average cost. The fourth column shows the computational times of the RLR.

The RLR significantly outperforms other heuristics and gives results close to EV |PI. The savings given

by the RLR over other heuristics can be as high as 36% (for layout 1, M = 300, and N = 33). In

general, the DET policy outperforms the TOD and DOS policies, which outperform the TOS policy.

An extensive set of experiments suggest that the RLR is consistently better than other heuristics and its

costs are very close to EV |PI for wide ranges of N , M , q, T , and different class generation methods. We

do not include all the results here due to space limitation. Interested readers can refer to supplementary

materials at http://www.mysmu.edu/faculty/yflim/sup.pdf.

20

Table 3: Average cost and percentage efficiency of each policy under different layouts.

Layout M N
Time Average Cost (×108) / Percentage Efficiency (%)

(sec) RLR TOS TOD DOS DET

1

1500 11 44669 30.2(0.29)/91.0 45.3(0.27)/60.6 34.8(0.71)/79.1 35.8(0.29)/76.8 31.5(0.19)/87.3

600 19 19793 11.9(0.98)/92.3 18.7(0.70)/58.6 15.6(0.97)/70.5 14.7(1.87)/74.6 12.6(0.73)/87.2

300 33 21699 8.83(0.68)/92.1 14.6(0.77)/55.7 10.5(0.66)/77.5 10.4(0.67)/77.9 9.36(1.69)/86.9

80 111 17387 2.11(0.27)/97.5 2.84(0.08)/72.5 2.23(0.80)/92.3 2.53(1.14)/81.5 2.23(0.16)/92.4

2

1500 11 45718 30.1(0.57)/91.2 44.9(0.32)/61.1 34.4(0.17)/79.6 35.6(0.01)/77.0 31.2(0.37)/88.0

600 19 15498 11.4(0.79)/90.7 18.5(1.20)/55.8 15.2(1.75)/68.0 14.4(1.20)/71.6 12.1(0.86)/85.9

300 33 25353 8.85(0.94)/91.8 14.5(0.86)/56.1 10.4(0.54)/77.9 10.4(0.47)/78.1 9.23(0.76)/88.0

80 111 17633 2.14(0.64)/97.3 2.81(0.49)/74.1 2.24(0.98)/92.8 2.53(0.74)/82.3 2.22(0.10)/93.5

3

1500 11 43319 30.7(0.01)/92.5 45.7(0.20)/62.1 35.4(0.57)/80.2 36.5(1.24)/77.9 32.5(0.16)/87.6

600 19 17150 12.5(1.03)/93.1 19.0(1.90)/61.4 16.0(0.64)/72.8 15.2(1.13)/76.6 13.1(1.51)/88.5

300 33 19166 9.10(0.04)/92.3 14.8(0.01)/56.9 10.7(1.46)/78.4 10.7(1.29)/78.8 9.58(0.70)/87.7

80 111 17470 2.21(0.85)/97.0 2.9(1.40)/73.8 2.31(1.82)/92.5 2.59(1.73)/82.6 2.32(0.92)/92.4

6 Understanding the policies

To explain the differences between the policies, we use the example in Section 3.3 to compare their

decisions. Consider an extreme case where z̃k = −10, for k = 1, . . . , 4. The realized demands in periods

1 and 2 are (90, 0) and (40, 190) respectively. Table 4 shows the inventory level of each product in each

class after storage and retrieval are done at the start and the end, respectively, of each period under

each policy. The costs of the storage and retrieval decisions associated with each class are also shown.

Under the TOS policy, product 2 has higher priority than product 1. Consequently, all arriving

pallets of product 2 are stored in class 1 at the start of period 1. On the contrary, the TOD policy

ranks product 1 higher in period 1 and stores all its arriving pallets in class 1. Both policies assign all

locations of the most economic class to a single product in period 1. This strategy is myopic because,

due to variability in arrivals and demands, the storage and retrieval activities in the subsequent periods

may only involve the other product, which is stored at locations with higher costs. To absorb the

variability, we should share the most economic storage locations between different products. The DOS

policy partially addresses this issue by evenly allocating the locations of class 1 to the two products in

period 1. However, as we can see from Table 4, this policy does not give the best solution.

Assume we know the above realized demands for products 1 and 2, what is a good policy to store

and retrieve pallets? To minimize cost, one should store at least 90 pallets of product 1 in class 1 at the

start of period 1 such that demand for this product in period 1 can be fully satisfied by class 1. This

also ensures sufficient space in class 1 to accommodate all arrivals of product 1 in period 2. On the

other hand, because there is no arrival of product 2 in period 2, one should store at least 190 pallets of

21

Table 4: Inventory levels and costs of each class under different policies.

t = 1 t = 2
TOS Start End Start End

Product \ Class 1 2 3 1 2 3 1 2 3 1 2 3
1 0 300 0 0 210 0 0 260 0 0 220 0
2 300 0 0 300 0 0 300 0 0 110 0 0 Total Cost

Cost 3000 15000 0 0 4500 0 0 2500 0 1900 2000 0 28900

TOD Start End Start End
Product \ Class 1 2 3 1 2 3 1 2 3 1 2 3

1 300 0 0 210 0 0 260 0 0 220 0 0
2 0 300 0 0 300 0 0 300 0 0 110 0 Total Cost

Cost 3000 15000 0 900 0 0 500 0 0 400 9500 0 29300

DOS Start End Start End
Product \ Class 1 2 3 1 2 3 1 2 3 1 2 3

1 150 150 0 60 150 0 110 150 0 70 150 0
2 150 150 0 150 150 0 150 150 0 0 110 0 Total Cost

Cost 3000 15000 0 900 0 0 500 0 0 1900 2000 0 23300

RLR Start End Start End
Product \ Class 1 2 3 1 2 3 1 2 3 1 2 3

1 90 210 0 0 210 0 50 210 0 10 210 0
2 210 90 0 210 90 0 210 90 0 20 90 0 Total Cost

Cost 3000 15000 0 900 0 0 500 0 0 2300 0 0 21700

product 2 in class 1 at the start of period 1. Using this initial allocation, except the storage in period

1, class 2 is not involved for the rest of the planning horizon. All policies in Table 4 fail to satisfy this

initial allocation requirement except the RLR, which stores 90 and 210 pallets of products 1 and 2,

respectively, to class 1 in period 1. This indicates the superiority of the RLR over other heuristics.

Both the TOS and DOS policies consider only the aggregated arrival and demand information for

each product, while the TOD policy relies on the detailed information in each individual period. In

contrast, the RLR stores and retrieves pallets according to coefficients in Equations (11)–(14), which are

obtained by solving Problem (10). This optimization problem considers both aggregated information

(over the entire planning horizon) and detailed information (in each period). In addition, it also takes

the capacity constraint of each class and demand uncertainty into account. As we can see in Table 4,

the RLR indeed gives the lowest total cost in this example.

7 Conclusions

Minimizing travel in a unit-load warehouse is nontrivial because replenishments may not follow a simple

rule as they typically depend on the production plans and status of the suppliers. The problem is further

complicated by the fact that products face uncertain demand over multiple periods. It is therefore very

challenging to find an efficient storage-retrieval policy for the warehouse.

22

Existing heuristics in the literature such as the turnover-based and the duration-of-stay-based poli-

cies do not consider variability of both inflow and outflow of products. Furthermore, these heuristics

neglect the capacity of each storage class in the warehouse. Although these heuristics are easier to imple-

ment in practice, our results suggest that remarkable savings can be obtained by taking the variability

of product flow and the capacity constraints of storage classes into account.

To handle variability of product flow, we consider a factor-based demand model in which demand for

each product in each period is affinely dependent on some uncertain factors. We only require information

on the mean and the bounds of each uncertain factor. We formulate the storage assignment problem in

a unit-load warehouse as a robust optimization problem that minimizes the worst-case expected total

cost subject to the capacity constraints of storage classes. By limiting to restricted linear decision rules,

we obtain a storage-retrieval policy by solving a moderate-size linear program.

A case study with a logistics company suggests that the restricted linear storage-retrieval policy can

be obtained in a reasonable amount of time for weekly planning and it generates substantial savings over

other heuristics. A detailed analysis on daily costs shows that the restricted linear policy, on average,

significantly outperforms other heuristics. The case study strongly supports the claim that our method

is implementable and promising for practical use.

The restricted linear policy outperforms the class-based turnover and the class-based duration-of-

stay policies in all numerical experiments that we conduct based on realistic warehouse settings. In

some experiments, the savings by the restricted linear policy can be as high as 36%. Surprisingly,

despite imprecise specification on demand distributions, the restricted linear policy attains close to the

expected value given perfect information (a lower bound of the optimal expected cost) in many cases.

A detailed observation on the storage and retrieval decisions reveals that the restricted linear policy

outperforms other heuristics by carefully allocating the storage space of economic classes to different

products. This is accomplished by considering variable arrivals and stochastic demands for products

and the capacity constraints of storage classes, which are ignored by the existing heuristics.

Our model can be generalized to a warehouse with multiple receiving and multiple shipping docks

as follows: Change ati to ati,ν , where ati,ν represents the number of arriving pallets of product i at dock

ν in period t. Likewise, we can do so for the demand dti and the decision variables vtij and wt
ij .

Although our numerical results are based on a storage class generation method that partitions the

warehouse using a grid, further numerical studies reveal that the performance of the restricted linear

policy relative to other heuristics is not sensitive to the class generation method used. Details can be

found at http://www.mysmu.edu/faculty/yflim/sup.pdf.

23

Finally, we emphasize that the computational time to solve large linear programs could be further

reduced in the future due to continuing improvements in linear optimization. We would also like to

highlight that although the formulation of robust optimization models can be rather tedious, it has been

made easier due to the availability of software such as ROME (Goh and Sim 2011) and AIMMS3.

Acknowledgments

The authors thank the associate editor and the two anonymous referees for their valuable comments

and suggestions, which have substantially improved the paper.

References

Adida, E., G. Perakis. 2006. A robust optimization approach to dynamic pricing and inventory control
with no backorders. Math. Progr. 107(1-2) 97–129.

Atamtürk, A., M. Zhang. 2007. Two-stage robust network flow and design under demand uncertainty.
Oper. Res. 55(4) 662–673.

Bartholdi, J.J. III, S.T. Hackman. 2007. Warehouse and Distribution Science.
http://www.warehouse-science.com/.

Ben-Tal, A., B. Golany, A. Nemirovski, J. Vial. 2005. Supplier-retailer flexible commitments contracts:
A robust optimization approach. Manufacturing Service Oper. Management 7(3) 248–273.

Ben-Tal, A., A. Goryashko, E. Guslitzer, A. Nemirovski. 2004. Adjustable robust solutions of uncertain
linear programs. Math. Progr. 99 351–376.

Ben-Tal, A., A. Nemirovski. 1998. Robust convex optimization. Math. Oper. Res. 23 769–805.

Ben-Tal, A., A. Nemirovski. 1999. Robust solutions to uncertain programs. Oper. Res. Let. 25 1–13.

Ben-Tal, A., A. Nemirovski. 2000. Robust solutions of linear programming problems contaminated
with uncertain data. Math. Progr. 88 411–424.

Bertsimas, D., D.A. Iancu, P.A. Parrilo. 2009. Optimality of affine policies in multi-stage robust
optimization. Submitted to Math. Oper. Res..

Bertsimas, D., D. Pachamanova, M. Sim. 2003. Robust linear optimization under general norms . Oper.
Res. Letters 32(6) 510–516.

Bertsimas, D., M. Sim. 2003. Robust discrete optimization and network flows. Math. Progr. 98 49–71.

Bertsimas, D., M. Sim. 2004. The price of robustness. Oper. Res. 52(1) 35–53.

Bertsimas, D., A. Thiele. 2006. A robust optimization approach to inventory theory. Oper. Res. 54(1)
150–168.

3AIMMS webpage: http://www.aimms.com/

24

Chen, W., M. Sim. 2009. Goal driven optimization. Oper. Res. 57(2), 342 – 357

Chen, X., M. Sim, P. Sun, J. Zhang. 2008. A linear decision-based approximation approach to stochastic
programming. Oper. Res. 56(2) 344–357.

de Koster, R., T. Le-Duc, K.J. Roodbergen. 2007. Design and control of warehouse order-picking: A
literature review. Eur. J. Oper. Res. 182 481–501.

El-Ghaoui, L., H. Lebret. 1997. Robust solutions to least-square problems to uncertain data matrices.
SIAM J. Matrix Anal. Appl. 18 1035–1064.

El-Ghaoui, L., F. Oustry, H. Lebret. 1998. Robust solutions to uncertain semidefinite programs. SIAM
J. Optim. 9 33–52.

Erdoğan E., G. Iyengar. 2006. Ambiguous chance constrained problems and robust optimization. Math.
Progr. 107 37–61.

Erera, A.L., J.C. Morales, M.W.P. Savelsbergh. 2009. Robust optimization for empty repositioning
problems. Oper. Res. 57 468 – 483.

Eynan, A., M.J. Rosenblatt. 1994. Establishing zones in single-command class-based rectangular
AS/RS. IIE Trans. 26(1) 38–46.

Gilboa, I., D. Schmeidler. 1989. Maximin expected utility theory with non-unique prior. J. Math.
Econ. 18 141–153.

Goetschalckx, M., H.D. Ratliff. 1990. Shared storage policies based on the duration stay of unit loads.
Management Sci. 36(9) 1120–1132.

Goh, J., M. Sim. 2010. Distributionally robust optimization and its tractable approximations. Oper.
Res. 58(4) 902–917

Goh, J., M. Sim. 2011. Robust optimization made easy with ROME. Oper. Res. 59(4) 973–985. The
ROME webpage. http://robustopt.com/.

Graves, S.C., W.H. Hausman, L.B. Schwarz. 1977. Storage-retrieval interleaving in automatic ware-
housing systems. Management Sci. 23(9) 935–945.

Gu, J., M. Goetschalckx, L.F. McGinnis. 2007. Research on warehouse operation: A comprehensive
review. Eur. J. Oper. Res. 177 1–21.

Hausman, W.H., L.B. Schwarz, S.C. Graves. 1976. Optimal storage assignment in automatic warehous-
ing systems. Management Sci. 22(6) 629–638.

Heskett, J.L. 1963. Cube-per-order index: A key to warehouse stock location. Transportation and
Distribution Management 3 27–31.

Heskett, J.L. 1964. Putting the cube-per-order index to work in warehouse layout. Transportation and
Distribution Management 4 23–30.

Kulturel, S., N.E. Ozdemirel, C. Sepil, Z. Bozkurt. 1999. Experimental investigation of shared storage
assignment policies in automated storage/retrieval systems. IIE Trans. 31 739–749.

25

Mallette, A.J., R.L. Francis. 1972. A generalized assignment approach to optimal facility layout. AIIE
Trans. 4(2) 144–147.

Malmborg, C.J., K. Bhaskaran. 1990. A revised proof of optimality for the cube-per-order index rule
for stored item location. Appl. Math. Modelling 14 87–95.

Roodbergen, K.J., I.F.A. Vis. 2009. A survey of literature on automated storage and retrieval systems.
Eur. J. Oper. Res. 194 343–362.

Rosenblatt, M.J., A. Eynan. 1989. Deriving the optimal boundaries for class-based automatic stor-
age/retrieval systems. Management Sci. 35(12) 1519–1524.

Schwarz, L.B., S.C. Graves, W.H. Hausman. 1978. Scheduling policies for automatic warehousing
systems: Simulation results. AIIE Trans. 10(3) 260–270.

See, C., M. Sim. 2010. Robust approximation to multi-period inventory management. Oper. Res.
58(3) 583–594.

Soyster, A.L. 1973. Convex programming with set-inclusive constraints and applications to inexact
linear programming. Oper. Res. 21 1154–1157.

Thonemann, U.W., M.L. Brandeau. 1998. Note. Optimal storage assignment policies for automated
storage and retrieval systems with stochastic demands. Management Sci. 44(1) 142–148.

Van den Berg, J.P. 1999. A literature survey on planning and control of warehousing systems. IIE
Trans. 31 751–762.

A Proof of Proposition 1

(⇒) Suppose that (1) is feasible, then there exists a feasible solution x,v,w such that

xt+1
ij = xtij + vtij − wt

ij i ∈ M, j ∈ N , t ∈ T (15)

From the third constraint when t = 1 and summing all the j-th terms for j ∈ N , we have

∑

j∈N

x2ij =
∑

j∈N

(x1ij + v1ij − w1
ij)

= a1i − d1i (from the first and second constraint of (1)) (16)

From the constraint xtij ≥ 0, i ∈ M, j ∈ N , t ∈ T +, we conclude that inequality (2) is true for t = 1.

Similarly, for t = 2, ..., T , we have

t
∑

τ=1

∑

j∈N

xτ+1
ij =

t
∑

τ=1

∑

j∈N

(

xτij + vτij − wτ
ij

)

=
t
∑

τ=1

∑

j∈N

xτij +
t
∑

τ=1

∑

j∈N

(

vτij − wτ
ij

)

=
t
∑

τ=1

∑

j∈N

xτij +
t
∑

τ=1

(aτi − dτi) (17)

26

Hence,

t
∑

τ=1

(aτi − dτi) =
t
∑

τ=1

∑

j∈N

xτ+1
ij −

t
∑

τ=2

∑

j∈N

xτij

=
∑

j∈N

xt+1
ij

≥ 0 (18)

Similarly, the last inequality is deduced from the non-negativity of xtij for i ∈ M, j ∈ N , t ∈ T +. Thus

we proved Inequality (2).

(⇐) Suppose that
t
∑

τ=1

aτi −
t
∑

τ=1

dτi ≥ 0 for i ∈ M, t ∈ T . Using the assumption that there is an emergency

storage class, N , with infinite storage, the fifth constraint (capacity constraint) is satisfied, we have

vtij =

ati for j = N,

0 otherwise,

and

wt
ij =

dti for j = N,

0 otherwise,

for i ∈ M, j ∈ N , t ∈ T . Hence, vtij , w
t
ij ≥ 0 for i ∈ M, j ∈ N , t ∈ T . We now prove the nonnegativity

of xtij . For j 6= N , it is clear that xtij = 0 for all i ∈ M, t ∈ T . We now prove the case j = N . For t = 1,

x2iN = x1iN + v1iN − w1
iN

= a1i − d1i

≥ 0 (from Inequality (2) when τ = 1).

For any i ∈ M, j ∈ N , t ∈ T ,

xt+1
iN = xtij + vtiN − wt

iN

= xt−1
iN +

t
∑

τ=t−1

(vτiN − wτ
iN)

= xt−1
iN +

t
∑

τ=t−1

(aτi − dτi)

= xt−2
iN +

t
∑

τ=t−2

(aτi − dτi)

= · · ·

= x1iN +
t
∑

τ=1

(aτi − dτi)

≥ 0 (from Inequality(2))

Inductively, xtiN ≥ 0, , i ∈ M, t ∈ T . Thus, xtij ≥ 0, i ∈ M, j ∈ N , t ∈ T .

27

B Proof of Theorem 1

Under Assumption U, we have z̃ has support set W . For i ∈ M, j ∈ N , t ∈ T , let

vtij(z
t−1) =

ati for j = N

0 otherwise,

and

wt
ij(z

t) =

dti(z
t) for j = N

0 otherwise,

where z ∈ W . Under the uncertainty set W , we have dti(z
t) ≥ 0, hence wt

ij(z
t) ≥ 0. The nonnegativity

of vtij(z
t−1) follows from the nonnegativity of ati. We now prove the constraint xt+1

ij (zt) ≥ 0. For

i ∈ M, j ∈ N , t ∈ T ,

xt+1
ij (zt) = xtij(z

t−1) + vtij(z
t−1)− wt

ij(z
t)

=

xtij(z
t−1) + ati − dti(z

t) for j = N

xtij(z
t−1) otherwise.

Since x1ij = 0, it is clear that xt+1
ij (zt) = 0 for j 6= N . For i ∈ M, j = N and t ∈ T ,

xt+1
iN (zt) = xtiN (zt−1) + vtiN (zt−1)− wt

iN (zt)

= xtiN (zt−1) + atN − dtN (zt)

= xt−1
iN (zt−2) +

t
∑

τ=t−1

(aτN − dτN (zτ))

= · · ·

= x1iN +
t
∑

τ=1

(aτN − dτN (zτ))

≥ 0 (since z ∈ W)

Thus xt+1
ij (zt) ≥ 0 for i ∈ M, j ∈ N , t ∈ T , and we have found a feasible solution for ZLR. It is

clear that the objective value is also finite.

Using the linear decision rule on the objective function of (6), we have

∑

t∈T

∑

i∈M

∑

j∈N

(

sjv
t
ij(z

t−1) + rjw
t
ij(z

t)
)

=
∑

t∈T

∑

i∈M

∑

j∈N

sjv
t,0
ij +

∑

k∈Kt−1

sjv
t,k
ij zk

+

rjw
t,0
ij +

∑

k∈Kt

rjw
t,k
ij zk

=
∑

t∈T

∑

i∈M

∑

j∈N

(

sjv
t,0
ij + rjw

t,0
ij

)

+
∑

k∈KT

(

sjv
t,k
ij + rjw

t,k
ij

)

zk

28

in which vt,kij = 0 for i ∈ M, j ∈ N , k ∈ KT \Kt, t ∈ T and wt,k
ij = 0 for i ∈ M, j ∈ N , k ∈ KT \Kt−1, t ∈

T . Setting gk =
∑

t∈T

∑

i∈M

∑

j∈N

(

sjv
t,k
ij + rjw

t,k
ij

)

for k ∈ K0
T , the objective function becomes

minmax
z∈Ŵ

g0 +
∑

k∈KT

gkzk

= min

g0 +max
z∈Ŵ

∑

k∈KT

gkzk

 .

For i ∈ M,

∑

j∈N

vtij(z̃
t−1) = ati, t ∈ T .

⇔
∑

j∈N

vt,0ij +
∑

k∈KT

vt,kij zk

 = ati ∀z ∈ W, t ∈ T .

⇔
∑

j∈N

vt,kij =

ati, if k = 0,

0, otherwise,
k ∈ K0

T , t ∈ T .

The last equivalence holds since the set W is full dimensional. Similarly, for i ∈ M,

∑

j∈N

wt
ij(z̃

t) = dti(z̃
t), t ∈ T .

⇔
∑

j∈N

wt,0
ij +

∑

k∈KT

wt,k
ij zk

 = dt,0i +
∑

k∈KT

dt,ki zk ∀z ∈ W, t ∈ T .

⇔
∑

j∈N

wt,k
ij = dt,ki , k ∈ K0

T , t ∈ T .

For i ∈ M, j ∈ N ,

xt+1
ij (z̃t) = xtij(z̃

t−1) + vtij(z̃
t−1)− wt

ij(z̃
t), t ∈ T .

⇔ xt+1,0
ij +

∑

k∈Kt

xt+1,k
ij zk

=

xt,0ij +
∑

k∈Kt

xt,kij zk

+

vt,0ij +
∑

k∈Kt−1

vt,kij zk

−

wt,0
ij +

∑

k∈Kt

wt,k
ij zk

 , t ∈ T .

⇔ xt+1,0
ij +

∑

k∈KT

xt+1,k
ij zk

=

xt,0ij +
∑

k∈KT

xt,kij zk

+

vt,0ij +
∑

k∈KT

vt,kij zk

−

wt,0
ij +

∑

k∈KT

wt,k
ij zk

 , t ∈ T .

⇔ xt+1,k
ij = xt,kij + vt,kij − wt,k

ij , k ∈ K0
T , t ∈ T .

For i ∈ M, j ∈ N , since vt,kij = 0, wt,k
ij = 0 for k ∈ KT \ Kt, t ∈ T , we have xt+1,k

ij = xt,kij for

k ∈ KT \ Kt, t ∈ T . From the constraint x1ij = 0 for i ∈ M, j ∈ N , we conclude that xt,kij = 0 for

i ∈ M, j ∈ N , k ∈ KT \ Kt, t ∈ T .

29

By the definition that ht,kj =
∑

i∈M

xt,kij + vt,kij , for j ∈ N , k ∈ K0
T , t ∈ T , we can draw the similar

deduction that ht,kj = 0 for j ∈ N , k ∈ KT \ Kt, t ∈ T .

Finally, for inequality constraints involving linear decision rule, we note that given y ∈ LKt the

constraint

y(z̃t) ≤ r

is equivalent the following robust counterpart

y0 +
∑

k∈KT

ykzk ≤ r, ∀z ∈ W.

Hence, we prove that under the linear storage-retrieval policy, we have Problem (7).

C Proof of Proposition 2

Note that with

dt,0 =

dt,01
...

dt,0M

,Dt =

dt,11 . . . dt,Kt

1 0 . . . 0
... . . .

. . . 0 . . . 0

dt,1M . . . dt,Kt

M 0 . . . 0

∈ ℜM×KT ,

we can concisely represent the vector of uncertain demands as

dt(z̃t) =

dt
1(z̃

t)
...

dt
M (z̃t)

= dt,0 +Dtz for t ∈ T ,

where z
∆
= zT . Hence, we can express the factor support set, W as follows:

W =

{

z | ∃u :
t
∑

τ=1

dτ (zτ) ≤
t
∑

τ=1

aτ ,dt(zt) ≥ 0, t ∈ T ,Az +Bu ≤ q

}

=

{

z | ∃u :
t
∑

τ=1

Dτz ≤
t
∑

τ=1

(aτ − dτ,0),dt,0 +Dtz ≥ 0, t ∈ T ,Az +Bu ≤ q

}

=
{

z | ∃u : D̄
t
z ≤ āt,−Dtz ≤ dt,0, t ∈ T ,Az +Bu ≤ q

}

,

where at =

at1
...

atM

, āt =
t
∑

τ=1
(aτ − dτ,0) and D̄

t
=

t
∑

τ=1
Dτ . To obtain the robust counterpart,

max
z∈W

z′y ≤ y, we note that by strong linear programming duality, the primal problem

max
u,z

y′z

s.t. D̄
t
z ≤ āt t ∈ T

−Dtz ≤ dt,0 t ∈ T

Az +Bu ≤ q,

30

has the same objective value as the following dual problem,

min
∑

t∈T

(

āt′αt + dt,0′βt
)

+ γ ′q

s.t.
∑

t∈T

(

D̄
t′
αt −Dt′βt

)

+A′γ = y

B′γ = 0

γ ≥ 0,βt,αt ≥ 0 t ∈ T .

Hence, the robust counterpart, max
z∈W

z′y ≤ y is feasible if and only if there exists γ, αt,βt , t ∈ T

feasible in the dual problem and that
∑

t∈T

(

āt′αt + dt,0′βt
)

+ γ′q ≤ r.

D Formulation for computing the optimal linear policy

min g0 +max
z∈Ŵ

∑

k∈Kt

gkzk

s.t. gk =
∑

t∈T

∑

i∈M

∑

j∈N

(

sjv
t,k
ij + rjw

t,k
ij

)

, k ∈ K0
T ;

∑

j∈N

vt,kij =

ati, if k = 0,

0, otherwise,
i ∈ M, k ∈ KT , t ∈ T ;

∑

j∈N

wt,k
ij = dt,ki , i ∈ M, k ∈ K0

T , t ∈ T ;

xt+1,k
ij = xt,kij + vt,kij − wt,k

ij , i ∈ M, j ∈ N , k ∈ K0
T , t ∈ T ;

x1ij = 0, i ∈ M, j ∈ N ;

ht,kj =
∑

i∈M

(

xt,kij + vt,kij

)

, j ∈ N , k ∈ K0
T , t ∈ T ;

∑

τ∈T

(

āτ ′ατ
ht
j
+ dτ,0′βτ

ht
j

)

+ γ ′
ht
j
q ≤ cj − ht,0j , j ∈ N−, t ∈ T ;

∑

τ∈T

(

D̄
τ ′
ατ

ht
j
−Dτ ′βτ

ht
j

)

+A′γht
j
= h

t,KT

j , j ∈ N−, t ∈ T ;

B′γht
j
= 0, j ∈ N−, t ∈ T ;

∑

τ∈T

(

āτ ′ατ
vt
ij
+ dτ,0′βτ

vt
ij

)

+ γ′
vt
ij
q ≤ −vt,0ij , i ∈ M, j ∈ N , t ∈ T ;

∑

τ∈T

(

D̄
τ ′
ατ

vt
ij
−Dτ ′βτ

vt
ij

)

+A′γvt
ij
= v

t,KT

ij , i ∈ M, j ∈ N , t ∈ T ;

B′γvt
ij
= 0, i ∈ M, j ∈ N , t ∈ T ;

∑

τ∈T

(

āτ ′ατ
wt

ij
+ dτ,0′βτ

wt
ij

)

+ γ′
wt

ij
q ≤ −wt,0

ij , i ∈ M, j ∈ N , t ∈ T ;

31

∑

τ∈T

(

D̄
τ ′
ατ

wt
ij
−Dτ ′βτ

wt
ij

)

+A′γwt
ij
= w

t,KT

ij , i ∈ M, j ∈ N , t ∈ T ;

B′γwt
ij
= 0 i ∈ M, j ∈ N , t ∈ T ;

∑

τ∈T

(

āτ ′ατ
xt
ij
+ dτ,0′βτ

xt
ij

)

+ γ ′
xt
ij
q ≤ −xt,0ij , i ∈ M, j ∈ N , t ∈ T ;

∑

τ∈T

(

D̄
τ ′
ατ

xt
ij
−Dτ ′βτ

xt
ij

)

+A′γxt
ij
= x

t,KT

ij , i ∈ M, j ∈ N , t ∈ T ;

B′γxt
ij
= 0, i ∈ M, j ∈ N , t ∈ T ;

vt,kij = xt,kij = ht,kj = 0, i ∈ M, j ∈ N , k ∈ KT \Kt, t ∈ T ;

wt,k
ij = 0, i ∈ M, j ∈ N , k ∈ KT \Kt−1, t ∈ T

γht
j
,γvt

ij
,γwt

ij
,γxt

ij
≥ 0, i ∈ M, j ∈ N , t ∈ T ;

αht
j
,αvt

ij
,αwt

ij
,αxt

ij
≥ 0, i ∈ M, j ∈ N , t ∈ T ;

βht
j
,βvt

ij
,βwt

ij
,βxt

ij
≥ 0, i ∈ M, j ∈ N , t ∈ T ;

where h
t,KT

j =

ht,1j
...

ht,KT

j

, vt,KT

ij =

vt,1ij
...

vt,KT

ij

, wt,KT

ij =

wt,1
ij
...

wt,KT

ij

and x
t,KT

ij =

xt,1ij
...

xt,KT

ij

.

32

E Warehouse layouts

· · ·

r

R

rS

· · ·

r

R/S

(a) (b)

· · ·

r

R

r

S

· · ·

r

R

r

S

(c) (d)

Figure 4: (a) Layout of the case study in Section 4: Storage locations are grouped into different
classes by partitioning the warehouse with a grid. (b) Layout 1 (U-flow layout): The receiving dock
and shipping dock are located at the same point. (c) Layout 2 (flow-through layout): The receiving
and shipping docks are located at the centers of the opposite sides of the warehouse. (d) Layout 3:
The receiving and shipping docks are located at arbitrary points on the opposite sides of the warehouse.

33

