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A Quay Crane System That Self-Recovers From Random Shocks

Yun Fong Lim • Yan Zhang • Chen Wang

Abstract The main challenge for a container terminal is to maximize its throughput using limited
resources subject to various operational constraints under uncertainty. Traditional methods try to
achieve this through an optimized plan by solving a quay crane scheduling problem; but the plan
may become obsolete or infeasible after shocks (changes in the system due to uncertainty). To
respond to shocks these methods require frequent re-planning, which increases the operations cost.
We propose a new method to counter this. Instead of creating plans, we develop an operating
protocol to respond to shocks without re-planning. Under this protocol, each quay crane along
a berth follows simple rules to serve vessels that arrive continuously in time. If the system is
configured properly, it always spontaneously recovers to its efficient form after a random shock.
The average throughput of the system operating on its efficient form is very near its full capacity if
the crane travel time per bay is relatively short. This self-recovery is robust even under a sequence
of shocks as the system persistently restores its throughput after each shock. Most importantly,
this is accomplished without complex computation.

Keywords: quay cranes; container terminals; shocks; self-organizing systems

1 Introduction

As globalization shapes the world rapidly, deep-sea maritime transportation becomes increasingly
important as a key component in the global supply chain (UNCTAD 2009). The top three busiest
container ports in the world: Shanghai, Singapore, and Hong Kong handle 31,740, 29,940, and
24,380 thousand TEUs (Twenty-foot Equivalent Units), respectively, in 2011. These ports compete
not only with each other, but also with new ports from emerging economies with significantly lower
operations costs. As a result, container port operators are keen to improve their productivity by
adopting new operations methods to increase their competitiveness.

Typically, each container port consists of several terminals. Each terminal comprises several
berths and each berth is equipped with quay cranes to handle containers. For example, the port
of Singapore has 4 terminals, 54 berths (with a total quay length of 52,480 feet), and 190 quay
cranes. In contrast, the port of Rotterdam, which is the busiest port in Europe, has 9 terminals,
23 berths (with a total quay length of 291,920 feet), and 103 quay cranes.

Within a container terminal there are three types of container movements: import, export,
and transshipment. Figure 1 shows that after a vessel arrives at a container terminal, quay cranes
transfer import containers to internal trucks (operated by the terminal), which carry them to their
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Fig. 1 Typical import and export operations in a container terminal.

assigned storage locations at the yard. These containers are then unloaded to the yard by yard
cranes. The import containers stay in the yard until they are transported to customers by external
trucks (operated by the customers).

On the other hand, export containers arrive at the terminal by external trucks. These containers
are stored in the yard until the vessels that transport them to their next destination ports arrive.
The export containers are then loaded by yard cranes to internal trucks that carry them to a berth,
where they are loaded to the corresponding vessels by quay cranes.

Transshipment containers arrive at the terminal by sea. They are stored in the yard temporarily
before they are shipped to their next destination ports. For modeling purposes, each transshipment
container is seen as a pair of import and export containers in this paper.

Quay cranes are standard equipment for handling containers at the berth. A quay crane usually
handles one container at a time. A large crane can reach out to serve a vessel that is 22 container
rows wide. It is crucial to operate the quay cranes efficiently because they are the most expensive
equipment in a container terminal. The operations of quay cranes are subject to two constraints:
(1) The non-crossing constraint requires quay cranes to remain in a fixed sequence along the berth.
This is because cranes along the same berth share a common rail. (2) The minimum separation
constraint requires quay cranes to keep a minimum distance from each other due to safety reasons.

Each vessel is assigned to a berthing position when it arrives at a container terminal. After
they are moored at their assigned positions, they wait to be served by quay cranes. Given limited
quay length and resources, the container terminal can only serve a finite number of vessels at a
time. For congested ports, it is generally crucial to serve the vessels swiftly. Thus, it is important
to coordinate quay cranes effectively to maximize the throughput (number of containers handled
per unit time). In fact, the average throughput of a port is one of the most important performance
measures for container ports.

Typically, a fixed number of quay cranes along a berth serve a series of vessels that arrive
sequentially over time. The problem is to allocate import and export containers to the quay cranes
such that the long-run average throughput of the berth is maximized, subject to the non-crossing
and the minimum separation constraints. Despite the vessels’ arrival times and information on
import and export containers are generally given in advance, this problem is still difficult to solve
due to uncertainty in terminal operations. Sources of uncertainty include mishandling of containers,
breakdowns of equipment, and delay of vessels’ arrivals.

Most papers in the literature address the above problem by solving a quay crane scheduling
problem. The goal is to find a plan for the cranes to operate within a finite time horizon so that an
objective function is optimized (see Bierwirth and Meisel (2010) for a survey). The plan is typically
found through mathematical programming methods or heuristics.

A shock is an unexpected event that may cause a plan created by the above approach to become
obsolete or infeasible. According to Meisel and Bierwirth (2013), two types of shocks are frequently
observed. The first type of shocks lengthens a container’s handling time, and the affected quay crane
may block the movements of other cranes along the berth. A shock of this type could be caused
by a disrupted stowage plan (a predetermined stowage plan differs from the actual stowage of
containers) or a breakdown of an internal truck in the yard. The second type of shocks corresponds
to late vessel arrivals. Both types of shocks will delay the service for a vessel. This may generate
conflicts among services for vessels and cause the original plan infeasible. The problem with the
above, traditional approach is that it requires re-planning if its original plan for crane operations
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is no longer feasible after a shock. As shocks occur from time to time, the above approach could
be onerous to implement in practice as it may require frequent re-planning.

To counter this, we propose a new and potentially applicable approach to address the above
problem. Instead of repeatedly finding optimized plans, we develop an operating protocol to re-
spond to shocks without re-planning. Under this protocol, each quay crane along the berth follows
simple rules to serve vessels that arrive continuously in time. We assume the crane travel time from
one point to another along the berth is proportional to the distance traveled. Under the operating
protocol, the system can be configured such that it will spontaneously recover to its efficient form
after a random shock. If the crane travel time per bay is sufficiently short, then the throughput
of the system operating on its efficient form is very near its full capacity. Even under a sequence
of shocks (a sequence of unexpected events such as misplacements of containers, breakdowns of
internal trucks, etc.), the system is robust to recover from each shock as it persistently restores
its throughput. This is especially appealing to terminal operators because the system can sponta-
neously restore near maximum efficiency after each shock without complex computation or onerous
re-planning. Furthermore, the non-crossing and the minimum separation constraints can be easily
satisfied under our approach.

To use our approach a terminal operator will have to control the processing rate of each crane
(the number of containers that a crane can handle per unit time). In practice, the bottleneck of
the unloading and loading processes lies on the internal trucks that transport containers between
the berth and the yard. Due to traffic congestion in the terminal, quay cranes often wait for the
internal trucks to arrive. By properly allocating the internal trucks to the quay cranes, one can
control the processing rates of the cranes.

The contributions of this paper are summarized as follows:

1. We propose an operating protocol to coordinate quay cranes along a berth such that the system
spontaneously responds to shocks and constantly maximizes its throughput. This protocol is
easy to implement as it only requires the cranes to follow simple rules.

2. We analyze the system’s dynamics for a special case where workload is uniformly distributed
on the vessels. If the internal trucks are allocated to the cranes such that the cranes’ processing
rates are from slowest to fastest, then the system always recovers to its efficient form after
a random shock. We also show that if the crane travel time per bay is sufficiently short, the
throughput of the system operating on its efficient form is very near its full capacity. When
the system is subject to a sequence of shocks, it repeatedly recovers from each shock and
persistently restores its throughput. Even if workload is not uniformly distributed (which is
common in practice), our numerical experiments suggest that the system constantly maintains
its throughput near its full capacity.

We organize the paper as follows. After reviewing the related literature, we first analyze the
system with uniform workload in Section 3. We assume the port is sufficiently congested so that new
jobs are always available. We demonstrate in Section 4 that the system under the proposed protocol
can self-recover from shocks and restore its efficiency. We then test the system’s performance when
workload is nonuniform in Section 5. We consider cases including variable turnover time of internal
trucks and nonuniform number of bays per job. Section 6 gives concluding remarks.

2 Related literature

Bierwirth and Meisel (2010) give an excellent survey on seaside operations planning in container
terminals. The authors divide the problem into three parts: the berth allocation problem, the
quay crane assignment problem, and the quay crane scheduling problem. See references therein for
the literature of each problem and of integrated models. For a comprehensive review of seaside
operations planning in container terminals, please refer to Meisel (2009).

For the quay crane scheduling problem, many papers in the literature assume deterministic set-
tings and consider various objective functions. Under this approach, a terminal operator may need
to re-solve the problem when a shock occurs. Daganzo (1989) and Peterkofsky and Daganzo (1990)
are the first to address the quay crane scheduling problem. The authors neglect the crane travel
time and the non-crossing and minimum separation constraints. Lim et al. (2004) solve the quay
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crane scheduling problem using dynamic programming. Their objective is to maximize throughput
subject to the non-crossing, the minimum separation, and the job separation constraints. Kim and
Park (2004) consider the non-crossing and the minimum separation constraints with significant
crane travel time. Zhu and Lim (2006) minimize the latest completion time subject to the non-
crossing constraint with negligible crane travel time. Other variants of the quay crane scheduling
problem have been studied by Liu et al. (2006), Lim et al. (2007), Lee et al. (2008), Guan et al.
(2010), Meisel (2011), and Legato et al. (2012). Li et al. (2009) study the crane scheduling prob-
lem in the yard with inter-crane interference and the minimum separation constraint. Meisel and
Bierwirth (2011) present a unified approach to compare different models and solution procedures
for quay crane scheduling.

The literature on quay crane scheduling under uncertainty is very limited. Legato et al. (2010)
consider unloading and loading containers under uncertainty. They find a schedule by solving the
deterministic quay crane scheduling problem and then evaluate the schedule under the impact of
uncertainty by simulation. Zeng et al. (2011) study the problem of recovering quay crane schedules
when disruptions occur. They find an updated schedule by solving a recovery model such that the
deviation of the updated schedule from the original one is minimized.

A closely related problem is the berth allocation problem in which each vessel is assigned a
berthing position and a berthing time such that an objective is optimized. See Bierwirth and
Meisel (2010) and references therein for models and methods to solve the berth allocation problem.
For work related to berth allocation under uncertainty, please see Guan and Yang (2010), Hendriks
et al. (2010), Zhen et al. (2011), Golias (2011), and Xu et al. (2012).

Several authors have proposed approaches to solve the berth allocation problem and the quay
crane scheduling problem in an integrated manner. Lee et al. (2006) integrate berth allocation and
quay crane scheduling using a feedback loop. The solution of the berth allocation problem is input
to the quay crane scheduling problem. The latter is then solved to obtain the total processing time
of each vessel, which is used to update the berth allocation. The loop is repeated for a number of
iterations. Similar approach is proposed by Meier and Schumann (2007). Liu et al. (2006) study
an integrated model where quay crane schedules are preprocessed to generate the total processing
time of each vessel, which is then used to solve the berth allocation problem. Meisel and Bierwirth
(2013) proposes an integrated approach similar to that of Liu et al. (2006) and further adjusts the
berth allocation and the crane schedule in a feedback loop. Han et al. (2010) develop a proactive
approach to solve the simultaneous berth and quay crane scheduling problem with stochastic arrival
and handling time.

A significant amount of work has been done on the integration of berth allocation and the
problem of assigning cranes to vessels (without scheduling). For this stream of work, please see
Park and Kim (2003), Oğuz et al. (2004), Meisel and Bierwirth (2006, 2009), Theofanis et al.
(2007), Giallombardo et al. (2008), Imai et al. (2008), Hendriks et al. (2010), and Blażewicz et al.
(2011). The resultant assignment of cranes to vessels is then used to find crane schedules.

The rules that we propose to coordinate quay cranes are closely related to the ideas of self-
balancing assembly lines introduced by Bartholdi and Eisenstein (1996, 2005). The authors propose
a simple protocol (called “bucket brigades”) to coordinate workers along an assembly line such that,
if the workers are sequenced appropriately, their workload will be balanced spontaneously. The same
ideas can be applied to order-picking in warehouses to boost productivity (Bartholdi et al. 2001),
to bus routes to resist bus bunching (Bartholdi and Eisenstein 2012), and to inventory systems
to recover a target replenishment schedule after shocks (Eisenstein 2005). For related work in this
area, see Bartholdi et al. (2006, 2009, 2010), Lim and Yang (2009), Lim (2011, 2012), and Lim and
Wu (2014). However, the technical analysis and proofs of this paper are very different from that of
the above papers.

A well-known approach to address optimization problems under uncertainty is robust optimiza-
tion (see, for example, Ben-Tal and Nemirovski (1999, 2000), Bertsimas and Sim (2003, 2004)).
This approach has been implemented in a dynamic setting that involves decision making in stages
(Bertsimas and Thiele 2006, Adida and Perakis 2006). Ben-Tal et al. (2004) propose the concept
of adjustable robust counterpart to better adapt to a multi-stage decision process. This concept
allows decisions to be delayed until information becomes available. Unfortunately, models based
on adjustable robust counterpart are generally NP-hard. Although linear (Ben-Tal et al. 2005,
Bertsimas et al. 2010) and piecewise linear (See and Sim 2010) decision rules have been proposed
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to reduce the complexity, the resultant models generally remain large and finding their solutions
often involves heavy computation. In contrast, we propose an operating protocol that enables the
system to respond to shocks after they occur. This approach does not require complex computation
and is relatively straightforward to implement.

3 The uniform workload case

We first consider an ideal case where workload is uniformly distributed on vessels. Although in
practice workload is usually not uniformly distributed, this special case provides useful insights
on the system’s dynamics. It also allows us to find a lower bound on the average throughput,
which can be used to evaluate the system’s performance under various parameter settings. Table
1 summarizes the notation used in this paper.

Table 1 Notation used in this paper.

b Number of bays per job
n Number of quay cranes in the system
B Length of the berth (in number of bays)
zi Location of crane i along the berth (in number of bays)
d Minimum distance between two neighboring cranes
µi Processing rate of crane i (in number of containers per unit time)
α Average time for a crane to travel a bay along the berth
τ̄ Time when all cranes start moving backward simultaneously in a reset
σ(i) Rotation function of crane index
xi Fraction of workload completed on the job of crane i
x State of the system, x = (x1, . . . , xn)
m Number of containers to be handled (unloaded and loaded) per bay
ρ Average throughput of the system
h Maximum number of tiers in each stack of containers
θ Maximum variation of turnover time of internal trucks
δb Maximum variation of number of bays per job

3.1 Definitions

Consider a berth that serves a sequence of vessels. Containers on each vessel are partitioned into
bays along the vessel’s longitudinal axis. Each bay stretches across the width of the vessel. Figure
2 shows a vessel where containers are stored in 12 bays along its longitudinal axis, in 8 rows across
its width, and up to 4 tiers. After all import containers are unloaded from a bay, export containers
are then loaded to the same bay. Both import and export containers of each bay are determined
in advance before the vessel arrives at the berth.

Define a job as the unloading and loading operations for b adjacent bays on the vessels, where
b is a parameter. As shown in Figure 3, a job may comprise bays from different vessels that are
adjacent to each other along the berth. We first analyze an ideal case where the workload of each
job is a constant, and is uniformly distributed on each bay of the job so that every bay has the same
workload. This assumption is aligned with a practical objective that strives to evenly distribute
cargo on each vessel to ensure balance of the vessel’s center of gravity. We assume each job is
preemptive so that a crane can take over another crane’s job before the job is completed. This
assumption is acceptable because each job comprises many unloading and loading operations in
practice. Preemptive jobs allow the cranes to dynamically share their workload in a more flexible
manner. We will see in our analysis that this flexibility allows the system to effectively absorb the
impact of shocks and to constantly maintain its efficiency.

Define the direction from left to right along the berth as forward and the reverse direction as
backward. Each job is processed in the forward direction from its left-most bay to its right-most
bay. For each bay, all import cargo is first unloaded and then all export cargo is loaded before the
next bay is processed. A vessel leaves the berth after all its jobs are processed. An arriving vessel,
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Fig. 2 Containers on a vessel.

if available, is then assigned to the corresponding berth position. Note that a departing vessel may
be replaced by a shorter, arriving vessel at a berth position. This causes some empty space along
the berth. We will see in the numerical simulations in Section 5 that this will not significantly
affect the system’s performance.

Cranes of the same berth remain in a fixed sequence because they move on a common rail track.
We index the cranes from 1 to n in the forward direction. Cranes i − 1 and i + 1 are called the
predecessor and successor, respectively, of crane i. Define the left-most point of the berth as the
origin. Let B be the berth’s length and zi be the location of crane i along the berth. Both B and
zi are expressed in number of bays. Due to safety reasons, each crane must maintain a minimum
distance d from its immediate neighbors. As a result, the condition zj ≥ zi +d must hold if crane j
is on the right of crane i along the berth. Since the cranes cannot be too close to each other, each
job is processed by at most one crane at any time.

Each quay crane handles (unloads or loads) one container at a time. Each crane i processes jobs
with a constant rate µi (in number of containers per unit time), which is a parameter. We assume
the processing rate of a crane is determined by the number of internal trucks supporting the crane.
According to port executives, this assumption holds for congested ports such as Singapore because
the time to unload or load a container at the berth is generally shorter than the time for the next
internal truck to return from the congested yard. For simplicity, we assume the turnover time for
an internal truck to travel from the berth to the yard and then back to the berth is a constant,
which we define as a unit time. Based on the above assumptions, we can control the processing
rate of a crane by assigning an appropriate number of internal trucks to it. For example, a crane
with a rate of 5 containers per unit time means five internal trucks are assigned to the crane. The
capacity of the system is the sum of all the cranes’ processing rates.

Let α denote the average time for a crane to travel a bay along the berth. For example, a heavy
crane moves about 44.4 feet per minute. Assuming a turnover time of 15 minutes and each bay is
40 feet long, we have α = 0.06 unit time. According to port executives in Singapore, α is generally
less than 0.2 unit time (that is, the average time for a crane to travel a bay is less than 20% of the
turnover time of an internal truck).

3.2 Allocation of internal trucks

As mentioned above, we control the cranes’ processing rates by allocating the internal trucks to the
cranes. For example, if we want to set the processing rate of crane i to 3 containers per unit time,
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Fig. 3 A job is to handle containers for a set of adjacent bays on the vessels.

we can allocate three internal trucks to it. If any of these trucks are currently assigned to other
cranes and are engaged in tasks such as carrying containers to the yard or being unloaded at the
berth, then we require the trucks to serve crane i only after they complete their current tasks. We
set different processing rates for different cranes such that some cranes can process their workload,
on average, faster than others. According to port executives in Singapore, the reallocation of trucks
to cranes can be done dynamically in a short time and it does not waste any significant capacity.

For congested ports, one may not be able to increase a berth’s total processing rate by simply
increasing the number of internal trucks. This is because the terminal will be more congested if more
trucks are introduced. The turnover time of an internal truck generally increases as there are more
trucks in the terminal. As a result, given a limited number of internal trucks, port operators strive
to maximize their berths’ efficiency through effective use of the quay cranes and internal trucks
subject to various uncertain factors in terminal operations. We propose an operating protocol to
achieve this in the following section.

3.3 An operating protocol

We initialize the system by assigning n jobs to the n cranes such that the i-th job from the right
end of the berth is assigned to crane n + 1 − i. All cranes process their jobs by serving one bay
after another in the forward direction. Each crane i continues its job until crane n completes a job
and the system resets itself: Crane n moves backward to take over work from crane n − 1, which
moves backward to take over work from crane n − 2 and so on, until crane 1 initiates a new job
immediately on its left. Furthermore, if crane i < n completes its job before its successor takes
over the job, then crane i remains idle until its job is taken over.

When a crane is handling a container, it cannot be preempted by another crane. A crane
can take over a job from its predecessor only after the latter has finished handling its current
container. When the system resets itself we adopt a synchronous reset policy such that all cranes
start moving backward simultaneously, immediately after all of them have finished handling their
current containers. Suppose a reset begins at time s (that is, crane n finishes a job at time s).
Let τi be the time when crane i finishes handling its latest container that is initiated before time
s, for i = 1, . . . , n. By definition, we have τn = s. Note that if crane i < n finishes a job before
time s, then τi < s. Define τ̄ = max1≤i≤n τi. We require each crane i with τi < τ̄ stays idle in the
time interval [τi, τ̄). According to our synchronous reset policy, all cranes start moving backward
simultaneously at time τ̄ . After all the cranes have reached their respective newly assigned jobs,
the reset is completed and the cranes start processing their newly assigned jobs simultaneously. As
a result, each reset is not instantaneous.

The system is in a normal mode if the cranes are indexed sequentially from 1 to n in the forward
direction and there is at least a new job on the left of crane 1. Each crane i follows the dynamic
allocation rules below to handle containers when the system is in a normal mode:
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Process forward:

– If you are crane n, continue to process your job in the forward direction until you complete
it. Then a reset begins and you wait.

– Otherwise, continue to process your job in the forward direction until
1. a reset begins, then finish your current container and wait; or
2. you complete your job, then remain idle until a reset begins and wait.

Wait: Remain idle until all cranes finished their current containers, then move backward.
Move backward: Take over work from your predecessor or initiate a new job immediately on

your left if you are crane 1. When all cranes reach their newly assigned jobs then process
forward.

In each reset crane 1 initiates a new job immediately on its left. What happens when crane 1
reaches the left-most job of the berth and there is no job on the left for crane 1 to initiate? We
may allow crane 1 to be idle while other cranes are processing their respective jobs. Apparently,
this strategy does not fully utilize the capacity of the system. Since there are new vessels arriving
at the right of the berth, we can dispatch some cranes to serve these new vessels while other cranes
continue serving the vessels on the left of the berth. We can achieve this by rotating the crane
indices.

3.4 Rotation of crane indices

Define a rotation function σ(i) = (i mod n) + 1, which performs a cyclic permutation on the crane
indices. For example, if n = 3, σ(1) = 2, σ(2) = 3, and σ(3) = 1. The system resets itself in a
different way whenever crane n finishes a job, while crane 1 is with the left-most job of the berth.
Figure 4 illustrates this type of resets for a system with three cranes (represented by •, ∗, and ◦).
Each rectangle in the graph corresponds to a job, which contains columns representing the job’s
remaining workload.

When crane 3 completes a job while crane 1 is processing or has completed the left-most job
of the berth, the system resets itself by first applying the function σ(i) on all the crane indices.
Thus, crane 1 becomes crane 2, crane 2 becomes crane 3, and crane 3 becomes crane 1. Since the
right-most crane becomes crane 1 after the rotation and its job is already completed, it can be
dispatched to serve the new vessels (if any) arriving at the right of the berth. It immediately moves
forward to initiate a new, right-most job of the berth (if there is no new job available, crane 1
moves to the right-most bay of the berth and remains idle). The reset is completed when crane
1 finishes its travel to the right. After the reset the processing rates of the cranes are adjusted
according to their new indices.

Similarly, when crane 3 completes a job while crane 2 is processing or has completed the left-
most job of the berth, the system resets itself by applying the function σ(i) on all the crane indices.
Immediately after the rotation crane 1 moves forward to initiate a new job immediately on the left
of crane 2, which is now on the right end of the berth (if there is no new job available for crane 1,
it remains idle at the bay immediately on the left of the job of crane 2). The system continues to
rotate the crane indices for each reset until a normal mode is restored. Figure 4 shows a series of
resets based on rotations until the system returns to a normal mode.

In general, when crane n finishes a job while there is a crane i, 1 ≤ i ≤ n, with the left-most job
of the berth (either crane i is still processing or has completed the job) the system resets itself in
the following way: It instantaneously rotates crane indices by applying the function σ(i) on them.
Immediately after the rotation crane 1 moves forward to initiate a new, right-most available job.
Thus, each reset is not instantaneous because it takes some time for crane 1 to travel to its new
job. After each reset, the cranes’ processing rates are adjusted according to their new indices. This
can be achieved by reallocating the internal trucks to the cranes. For example, if the processing
rate of crane 1 after a reset is 4 containers per unit time, then we assign four internal trucks to the
crane indexed as 1 after the reset.

Both types of resets require communication among cranes. Adjusting the cranes’ processing
rates require reallocation of internal trucks to the cranes. All these can be achieved in practice as
modern ports are equipped with integrated computer systems that allow them to coordinate the
cranes and the internal trucks.



A Quay Crane System That Self-Recovers 9

Before 1st

rotation: t1 * 2 d3
After 1st

rotation: t2 * 3 d1
After 2nd

rotation: t3 * 1 d2
After 3rd

rotation: t1 * 2 d3
Fig. 4 Rotating crane indices.

3.5 Dynamics and throughput

We consider ports that are sufficiently congested so that new jobs are always available. This situa-
tion occurs, for example, at the port of Los Angeles, California, which constantly faces a long queue
of vessels waiting to be served. Other major ports in the world such as Shanghai, Singapore, Hong
Kong, and Rotterdam also face a similar situation. Due to long queues of vessels, these ports are
especially keen in improving the operational efficiency of their berths. We will show analytically
that our approach is promising in maximizing the system’s throughput. Specifically, we study the
dynamics and find a lower bound on the long-run average throughput of the system under the
proposed dynamic allocation rules for such congested ports.

Since cranes process jobs in the forward direction along the berth and they must maintain a
minimum distance from their immediate neighbors, a crane i is blocked by its neighboring crane j
on the right when the former finishes processing its current bay and zi = zj − d. In this case, crane
i remains idle until crane j finishes processing a bay. Both cranes then proceed simultaneously in
the forward direction to their next respective bays. Note that blocking may occur regardless of
whether the system is in a normal mode. If the system is not in a normal mode, crane 1 may be on
the right of crane n after a rotation of indices (see Figure 4). We assume a long enough berth such
that crane n will never be blocked by crane 1 in such a situation. Thus, crane n is never blocked
and crane i < n can only be blocked by its successor.

Let xi ∈ [0, 1] denote the fraction of workload completed on the job of crane i. Define x =
(x1, . . . , xn) as the state of the system. The following lemma shows that if the internal trucks are
allocated such that the processing rates of cranes 1 to n are from slowest to fastest (equivalently,
if µ1 ≤ µ2 ≤ · · · ≤ µn), then the cranes will not be blocked after a transient period. Note that we
can always allocate the internal trucks to the cranes such that the condition µ1 ≤ µ2 ≤ · · · ≤ µn

is satisfied, regardless of whether the system is in a normal mode.

Lemma 1 If µ1 ≤ µ2 ≤ · · · ≤ µn, then blocking is transient.

Proof Assume the system starts from an arbitrary state x. We prove by induction. According to
our assumption, crane n is never blocked. If crane n− 1 is blocked by crane n, the former remains
idle until the latter completes its current bay. After that both cranes process their next respective
bays with their processing rates. Since µn−1 ≤ µn and the workload of each bay is uniform, crane
n− 1 will never be blocked by crane n again. Therefore, blocking is transient for crane n− 1.

Assume blocking is transient for crane j + 1. After the transient period, if crane j is blocked
by crane j + 1, the former remains idle until the latter completes its current bay. After that both
cranes process their next respective bays with their processing rates. Since µj ≤ µj+1 and the
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workload of each bay is uniform, crane j will never be blocked by crane j+ 1 again. Thus, blocking
is also transient for crane j. This completes the proof. ut

Although the non-crossing and the minimum separation constraints on the cranes may lead to
blocking, Lemma 1 shows that this waste of system capacity disappears after a transient period if
the internal trucks are assigned to cranes 1 to n such that their processing rates are from slowest
to fastest.

Another type of waste occurs when a crane i completes a job before its successor takes over
the job. According to the dynamic allocation rules, crane i remains idle until its job is taken over.
We will show that this type of waste ceases after a transient period. We say crane i overtakes its
successor if xi > xi+1. The following lemma shows that if the processing rates of cranes 1 to n are
from slowest to fastest, then overtaking is also transient.

Lemma 2 If µ1 ≤ µ2 ≤ · · · ≤ µn, then overtaking will cease after n− 1 resets.

Proof Assume the system starts from an arbitrary state x. Since µ1 ≤ µ2 and the workload of each
job is uniform, crane 1 will never overtake crane 2 after the first reset. Assume there is no overtaking
among cranes 1, 2, . . . , j after the (j − 1)-st reset. Now consider the j-th reset, crane j + 1 takes
over a job from crane j. Since there is no overtaking among cranes 1, 2, . . . , j after the (j − 1)-st
reset, we have xj ≤ xj+1 after the j-th reset. Crane j will not overtake crane j + 1 afterwards
because µj ≤ µj+1 and the workload of each job is uniform. Thus, there is no overtaking among
cranes 1, 2, . . . , j + 1 after the j-th reset. This shows that for a system with n cranes, overtaking
will cease after n− 1 resets. ut

In the proofs of the above lemmas, we assume the system begins from an arbitrary initial state
x. We say the quay crane system attains its efficient form when both blocking and overtaking
cease. Lemmas 1 and 2 imply that if the processing rates of cranes 1 to n are from slowest to
fastest, then independent of its initial state, the system will always attain its efficient form after
a transient period of time. When the system operates on its efficient form, all the cranes will be
constantly busy serving the vessels. We summarize this result as follows.

Corollary 1 If µ1 ≤ µ2 ≤ · · · ≤ µn, then independent of its initial state, the quay crane system
always attains its efficient form after a transient period of time.

After the system attains its efficient form it remains on its efficient form. This is because
the processing rates of cranes 1 to n are from slowest to fastest and the workload is uniformly
distributed. Upon its efficient form the only waste of the system’s capacity occurs during the resets
when the cranes move to their newly assigned jobs. Let m denote the number of containers to be
handled (unloaded and loaded) per bay. The following theorem determines a lower bound on the
average throughput of the system when it operates on its efficient form.

Theorem 1 The average throughput of the quay crane system when it operates on its efficient
form is at least ∑n

i=1 µi

1 + max{1 + (3b− 2)α, (B − nb)α}(
∑n

i=1 µi)/(bm)
.

Proof After the system attains its efficient form, the only waste of system capacity is caused
by non-instantaneous resets. We first calculate the maximum idle time during a reset when the
system is in a normal mode. According to our synchronous policy, after a reset begins at time
s all cranes start moving backward simultaneously at time τ̄ . The idling time τ̄ − s is bounded
by the turnover time of an internal truck (which equals 1 unit time). After all the cranes have
reached their respective newly assigned jobs, which takes at most (2b − 1)α unit time, the reset
is completed and the cranes start processing their newly assigned jobs simultaneously. Thus, the
maximum idling time during a reset is 1+(2b−1)α. Since the system operates in its efficient form,
it handles containers with the system capacity

∑n
i=1 µi. Thus, the time to process a job with bm

containers is bounded by bm/
∑n

i=1 µi + (b− 1)α, where the term (b− 1)α is the maximum crane
travel time along the berth within a job. Thus, the intercompletion time of successive jobs is at
most bm/

∑n
i=1 µi + (b− 1)α+ 1 + (2b− 1)α = bm/

∑n
i=1 µi + 1 + (3b− 2)α.
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When the system is not in a normal mode, the largest distance for a crane to travel along the
berth during a reset is B−nb− (b−1) bays. The intercompletion time of successive jobs is at most
bm/

∑n
i=1 µi + (b− 1)α+ [B − nb− (b− 1)]α = bm/

∑n
i=1 µi + (B − nb)α.

Combining the two cases, the intercompletion time of successive jobs is at most bm/
∑n

i=1 µi +
max{1 + (3b − 2)α, (B − nb)α}. The intercompletion time of successive containers is at most
1/

∑n
i=1 µi + max{1 + (3b − 2)α, (B − nb)α}/(bm). Thus, the average throughput of the system

when it operates on its efficient form is at least

1

1/
∑n

i=1 µi + max{1 + (3b− 2)α, (B − nb)α}/(bm)

=

∑n
i=1 µi

1 + max{1 + (3b− 2)α, (B − nb)α}(
∑n

i=1 µi)/(bm)
.

ut
Let ρ denote the average throughput of the quay crane system. Define percentage efficiency as

(ρ/
∑n

i=1 µi) × 100%. Figure 5(a) shows the lower bound on the percentage efficiency when the
system operates on its efficient form for various m under different total processing rates. We set
B = 40, b = 4, n = 5, and α = 0.06. The results suggest that our approach is promising as the
percentage efficiency is well above 90% for a wide range of m and system capacity. In Figure 5(b)
we set m = 144, b = 4, n = 5, and a system capacity of 15 containers per unit time. It shows that
although the lower bound decreases with both α and B, the system operating on its efficient form
is still highly efficient for small α. For example, for α ≤ 0.06 the percentage efficiency is at least
96%, 91%, and 86% for a berth with 40, 80, and 120 bays respectively. Figure 5 suggests that the
average throughput of the system operating on its efficient form is very close to its full capacity if α
is sufficiently small (if the crane travel time per bay is sufficiently short compared to the turnover
time of an internal truck).

Note that Corollary 1 and Theorem 1 only require relative processing rates of the cranes. All we
need is a proper allocation of internal trucks to the cranes such that the processing rates of cranes
1 to n are from slowest to fastest. For example, consider a berth with 3 cranes that are supported
by 15 internal trucks. Each truck has a processing rate of 1 container per unit time. The berth can
allocate 2, 5, and 8 trucks to cranes 1, 2, and 3 respectively. This allocation ensures the system
to attain its efficient form. Alternatively, one can allocate 4, 4, and 7 trucks to cranes 1, 2, and 3
respectively to achieve the same effect.

Since the cranes jointly serve from one end of a vessel to its other end, one may be concerned
about the vessel’s stability. We believe this should not be an issue under our protocol. This is
because after each crane unloads import containers from a bay on a vessel, it immediately starts
loading export containers to the same bay before it serves another bay.
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Fig. 5 Lower bounds on percentage efficiency of the system operating on its efficient form.



12 Lim, Zhang, Wang

4 Self-recovery from shocks

The above analysis is based on a deterministic setting where the quay crane system starts from an
arbitrary initial state. Without any disruptions, the system attains its efficient form and it remains
on its efficient form. However, the system may lose its efficient form if it is subject to a shock. For
example, a stowage plan could be disrupted, which causes the affected crane to block other cranes.
We study how the system recovers from shocks in this section.

4.1 Self-recovery from a single shock

Suppose the system is subject to a single shock, which drives the system to a state x̃ that leads
to blocking or overtaking. In this situation, the system no longer operates on its efficient form.
Fortunately, Corollary 1 ensures that the system can always spontaneously recover from state x̃ to
its efficient form after another transient period of time. Once the system recovers to its efficient
form, Theorem 1 guarantees that its throughput will restore to a level near the system’s full
capacity. We say the system self-recovers from the shock.

One may argue that a new shock may occur before the system recovers to its efficient form from
a previous shock. Is the self-recovery mechanism robust when the system is subject to a sequence
of shocks? Will the throughput drop significantly when there are multiple shocks? We demonstrate
how the system self-recovers from multiple, random shocks below.

4.2 Self-recovery from multiple shocks

Figure 6(a) shows the percentage efficiency of the system under a sequence of shocks. We set
B = 40, b = 4, m = 108, d = 4, n = 3, and α = 0.06. Each shock delays the service of a random
container, causing its handling duration to be 20 times of the regular handling duration. In practice,
these shocks may represent disrupted stowage plans, which are often caused by misplacements
of containers. Figure 6(a) shows that despite multiple perturbations, the system repeatedly self-
recovers from the shocks and persistently restores its efficiency. Overall, the system maintains at
high efficiency even though it is subject to these random shocks.

The self-recovery mechanism is especially appealing to terminal operators as there are always
disruptions due to uncertainty in their operations. By following the simple protocol, the quay crane
system can absorb the impacts of these random shocks and persistently restores its efficiency.
More importantly, this is accomplished without complex computation and onerous re-planning,
which are required by any traditional optimization-based approach. By totally eliminating these
tedious procedures, the self-recovery mechanism could potentially save significant costs for terminal
operators.

4.3 Responsiveness to longer disruptions

If an internal truck is suddenly and unexpectedly unavailable, for example, due to mechanical break-
down or more urgent assignments, the system’s capacity will drop. Under a traditional optimization-
based approach, this change may cause the original solution (or plan) to be obsolete or infeasible,
which may require re-planning. In contrast, under our approach we only need to ensure that the
processing rates of cranes 1 to n remain from slowest to fastest.

Using the same parameter values as in Figure 6(a), Figure 6(b) shows the impact on throughput
when two trucks are removed from crane 3 at time 0.6× 104: We change (µ1, µ2, µ3) from (1, 5, 9)
to (1, 5, 7) so that the system’s capacity reduces from 15 to 13 containers per unit time. The
system responds to this disruption by rebalancing the workload among the cranes according to the
new truck allocation. After a transient period of time in which the system’s throughput fluctuates
drastically (which gives rise to the first peak in Figure 6(b)), the system recovers to its efficient
form. The average throughput converges to and maintains at a new, lower value. When the two
trucks are returned to crane 3 at about time 1.25×104, the system’s throughput first fluctuates for a
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Fig. 6 Resilience of the quay crane system.

transient period of time (which gives rise to the second peak in Figure 6(b)) before it spontaneously
restores to its original level.

Figure 6 shows that any breakdowns of trucks will affect the crane processing rates but not the
applicability of the operating protocol. However, the protocol could no longer work if a quay crane
breaks down. This is because the movement of (some of) the remaining cranes may be blocked.
In this situation, one can split the system into two subsystems with the remaining cranes and
reallocate the internal trucks to the subsystems according to the position of the crane that is
down. Each subsystem can run the protocol independently.

In practice, the workload of each job is neither constant nor uniformly distributed on the bays.
In this case blocking may persist and the system may never attain its efficient form. However, as
we will see in the next section, the system’s throughput remains near its full capacity as long as
the processing rates of cranes 1 to n are from slowest to fastest.

5 The nonuniform workload case

If workload is not uniformly distributed on the bays, the model is effectively equivalent to the
uniform workload case with frequent shocks. The analysis of the dynamics seems intractable if
different bays have different workload. Thus, we perform simulation studies to investigate the
influence of various parameters on the system’s throughput. We study the impact of job size,
difference in processing rate, crane travel time, variability in truck turnover time, and variability
in number of bays per job.

We consider a berth with B = 100 and n = 6. We set µi = 10 + (i− 3.5)δµ, i = 1, . . . , n, where
δµ represents the difference in processing rate between two successive cranes. The processing rates
of cranes 1 to n are from slowest to fastest. The total processing rate of the system is 60 containers
per unit time. We assume the number of tiers in each stack of containers to be unloaded from (or
to be loaded to) a vessel is an integral random variable uniformly distributed in [0, h], where h
is a parameter. We set d = 4 bays, which is commonly adopted in practice. We observe similar
results for d = 3 and 5 bays and so they are not reported in this paper. We first set α = 0.06. The
simulations are implemented in JAVA programming language and are run on a personal computer
with a 1.8GHz Intel Core 2 Duo CPU and 2GB of memory. Each data point in the figures below
represents the average result of 10 simulation runs. Each run introduces a sequence of vessels with
random sizes ranging from 1 to 6 jobs. The total workload to be processed in each run is kept
at 4,000 bays. Each bay contains 18 rows of containers. Most of the data points can be obtained
within seconds.
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5.1 Impact of job size

Figure 7(a) shows the percentage efficiency for various b (the number of bays per job) under
different combinations of processing rates. We set h = 5. For each combination of processing rates,
the percentage efficiency increases with b. As b increases, each crane handles more containers before
each reset. Thus, the system’s capacity is more utilized and its average throughput increases. Note
that the percentage efficiency is at least 90% and can be as high as 96%. We observe similar results
when we increase h. The system is more efficient when the average job size gets larger. This is
because when each job contains more workload, the cranes spend more time handling containers
rather than idling in resets.

5.2 Impact of difference in processing rate

In Figure 7(a), the percentage efficiency increases as the processing rates of different cranes get
closer. One might expect to attain 100% efficiency by making the cranes homogeneous. Unfortu-
nately, this is not the case. Figure 7(b) shows the percentage efficiency for various δµ under different
values of b. We set h = 5. As δµ increases, the efficiency first increases until it reaches its highest
value before it starts to drop. The efficiency peaks when δµ ∈ [0.4, 0.6]. As δµ → 0, the efficiency
decreases. This is because the cranes are more likely to be blocked if they have similar rates. On
the other side of the peak of efficiency, the system’s throughput decreases with δµ. This is because
during each reset in a normal mode, the cranes generally wait for the final crane, which is often
the slowest crane (crane 1), to finish handling its current container before they can take over jobs
from their predecessors. As δµ increases, crane 1 becomes slower, causing a longer average waiting
time for other cranes in each reset.
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Fig. 7 Impact of job size and of difference in processing rate.

5.3 Impact of crane travel time

Figure 8(a) shows how the efficiency drops as α increases under different combinations of crane
processing rates with b = 4 and h = 5. For each combination of rates, the percentage efficiency
decreases almost linearly with α. We find similar results in Figure 8(b), where we set δµ = 0.5
and use different values of b. Figure 8 suggests that although the efficiency decreases with α, the
system remains highly efficient for a broad range of settings. Even if α = 0.2 (the crane travel time
per bay is 20% of the truck turnover time), the system is still above 76% efficient.
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Fig. 8 Impact of crane travel time.

5.4 Impact of variability in truck turnover time

Recall that the turnover time is the time duration for a truck to travel from the berth to the yard
and then back to the berth. It depends on the storage location in the yard of the container being
carried and the stowage plan in the yard. In practice, the turnover time is hardly constant because
different containers are stored at different locations in the yard and the truck may get stuck in
the traffic along the way. Furthermore, depending on the stowage plan, the loading or unloading
time in the yard is generally not constant and can be uncertain. To see the impact of variability
in turnover time, we assume the turnover time is equal to 1 + ε, where ε is a random variable
uniformly distributed in [−θ, θ]. The variability in turnover time will cause the affected cranes to
block other cranes and will result in lower efficiency. However, as shown in Figure 9(a) with b = 4,
h = 6, and α = 0.06, the system’s performance only drops slightly as the variability (θ) in turnover
time increases. The system remains above 89.5% efficient for a wide range of θ. We have also tried
other distributions of ε with the same support on [−θ, θ], such as a truncated normal distribution
and a beta distribution with two peaks at the boundaries (Beta(1/3, 1/3)). The performance of
the system under these distributions is very similar to that shown in Figure 9(a).

5.5 Impact of variability in number of bays per job

In this section we assume each job occupies a constant number b̄+δb of bays, but among them only
b̄+Xb bays are non-empty, where b̄ represents the mean number of non-empty bays per job and Xb

is a random variable uniformly distributed in [−δb, δb]. Figure 9(b) shows the percentage efficiency
of the system under three different combinations of processing rates. We set h = 6 and α = 0.06.
For each combination of rates, we consider two different levels of variability with δb = 1 and 2. The
results suggest that the system is more efficient if δb is low. The difference in performance between
low and high variability decreases as the rates of different cranes become more different (the gap
between the curves corresponding to the cases with δb = 1 and 2 is the smallest for δµ = 3.5).
The system is less sensitive to the variability in number of bays per job if the cranes have very
different processing rates. Figure 9(b) also suggests that the system becomes more efficient as the
mean number of bays per job b̄ increases. This echoes the results of Section 5.1. Finally, we do not
find any single combination of processing rates that dominates other combinations.

Although we cannot analytically obtain any performance guarantee for the nonuniform workload
model, the numerical studies above demonstrate that by following the simple protocol the system
can absorb the variability in workload, turnover time, and number of bays per job so that it remains
highly efficient.
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Fig. 9 Impact of variability in truck turnover time and of variability in number of bays per job.

6 Conclusion

A key objective of container terminals is to serve arriving vessels swiftly. This requires effective
coordination of quay cranes to maximize the throughput subject to operational constraints. The
problem is further complicated by various types of uncertainty in the terminal operations.

Most of the existing methods try to achieve this objective by solving a quay crane scheduling
problem. Typically, these methods construct a plan for a finite time horizon and they handle
uncertainty by revising or reconstructing the plan when it is affected by shocks. Thus, they can
be quite tedious to implement in practice. To counter this, we propose a new and potentially
applicable operating protocol to coordinate the quay cranes. The protocol is easy to implement
and does not require any complex computation to respond to shocks. Under our approach, the
non-crossing and the minimum separation constraints can be fulfilled naturally and the system can
absorb the impact of random shocks.

To understand the system’s dynamics, we first analyze a model where workload is uniformly
distributed on each bay of a vessel. If the processing rates of cranes 1 to n are from slowest to fastest,
then independent of its initial state, the system always attains its efficient form after a transient
period. This implies that, after a single shock, the system can recover to its efficient form. When
the system operates on its efficient form its average throughput is very near its full capacity if the
crane travel time per bay is relatively short compared to the turnover time of an internal truck
(if α ≤ 0.06). When the system is subject to a sequence of random shocks, it repeatedly recovers
from each shock and persistently restores its throughput. All this can be achieved without complex
computation or onerous re-planning.

If workload is nonuniform, the system may not attain its efficient form because blocking may
persist. However, numerical experiments suggest that our approach remains effective as long as the
processing rates of cranes 1 to n are from slowest to fastest. Specifically, the system attains well
above 90% efficiency for a broad range of system settings if α ≤ 0.06. The average throughput
increases with the job size. We also find that given a fixed capacity, a manager should avoid
adopting crane processing rates that are too similar (δµ is too small) or too different from each
other (δµ is too large) in order to maximize the system’s throughput. The system’s performance
is robust in more general settings where the turnover time of internal trucks is variable and the
number of bays per job is nonuniform.

Our approach is appealing to port operators as it requires neither a system reconfiguration
nor any investment in facility. No sophisticated software is required and thus, maintenance cost is
insignificant. No precise information on vessel arrival and departure times is required because the
system spontaneously reallocates the workload when circumstances change. All we need is to group
containers into jobs and allocate trucks to the cranes such that the processing rates of cranes 1 to
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n are from slowest to fastest. The result is that the system can constantly maintain its throughput
near its full capacity even though it is subject to shocks in the operations.

In this paper, we assume the processing rate of a crane is determined by the number of internal
trucks supporting the crane. This assumption holds mainly for congested ports, such as Singapore,
where the time to unload or load a container at the berth is significantly shorter than the turnover
time of an internal truck. This assumption may not hold in other situations. Furthermore, this paper
assumes the objective is to maximize the long-run average throughput of the entire quay crane
system. For other objectives such as minimizing the service time (makespan) of each individual
vessel, the proposed protocol may not be suitable.
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Oğuz, C., J. Blażewicz, T.C.E. Cheng, M. Machowiak, 2004. Berth allocation as a moldable task
scheduling problem. In: Proceedings of the 9th International Workshop on Project Management
and Scheduling (PMS 2004), Nancy, pp. 201–205.

Park, Y.M., K.H. Kim. 2003. A scheduling method for berth and quay cranes. OR Spectrum 25(1)
1–23.

Peterkofsky, R.I., C.F. Daganzo. 1990. A branch and bound solution method for the crane scheduling
problem. Transport. Res. 24B(3) 139–172.

See, C., M. Sim. 2010. Robust approximation to multi-period inventory management. Oper. Res.
58(3) 583–594.

Theofanis, S., M. Golias, M. Boile. 2007. Berth and quay crane scheduling: a formulation reflecting
service deadlines and productivity agreements. In: Proceedings of the International Conference
on Transport Science and Technology (TRANSTEC 2007), Prague, pp. 124–140.

UNCTAD. 2009. Review of Maritime Transport. United Nations Conference on Trade and Devel-
opment.

Xu, Y., Q. Chen, X. Quan. 2012. Robust berth scheduling with uncertain vessel delay and handling
time. Ann. Oper. Res. 192 123–140.

Zeng, Q., Z. Yang, X. Hu. 2011. Disruption recovery model for berth and quay crane scheduling in
container terminals. Engineering Optimization 43(9) 967–983.

Zhen, L., L.H. Lee, E.P. Chew. 2011. A decision model for berth allocation under uncertainty. Eur.
J. Oper. Res. 212 54–68.

Zhu, Y., A. Lim. 2006. Crane scheduling with non-crossing constraint. J. Oper. Res. Soc. 57(12)
1464–1471.


	Introduction
	Related literature
	The uniform workload case
	Self-recovery from shocks
	The nonuniform workload case
	Conclusion

