Supplementary Materials for "Optimizing (s, S) Policies for Multi-period Inventory Models with Demand Distribution Uncertainty: Robust Dynamic Programming Approaches"

Ruozhen Qiu^{a,*}, Minghe Sun^b, Yun Fong Lim^c

^aSchool of Business Administration, Northeastern University, Shenyang, Liaoning, China

^bDepartment of Management Science and Statistics, University of Texas at San Antonio, Texas, United States ^cLee Kong Chian School of Business, Singapore Management University, Singapore

February 8, 2017

A.1 Proof of Theorem 1

The following two lemmas using the definition of a \mathcal{K} -convex function are used to prove Theorem 1.

Lemma 1. For any t = 1, 2, ..., T, the function $\psi^t(x)$ (7) is continuous with respect to x and $\lim_{|x|\to\infty} \psi^t(x) = \infty$. Specifically, $\psi^t(x)$ is a \mathcal{K} -convex function of x.

Lemma 2. Under Lemma 1, let S_t be a minimum point of $\psi^t(x)$ and s_t be any element of the set

$$\left\{ x \left| x \le S_t, \psi^t(x) = \psi^t(S_t) + \mathcal{K} \right. \right\}$$

$$(37)$$

The following results hold

- (i) $\psi^t(S_t) \leq \psi^t(x)$, for all $x \in R$.
- (ii) $\psi^t(S_t) + \mathcal{K} = \psi^t(s_t) \le \psi^t(x)$, for all $x \le s_t$.
- (iii) $\psi^t(x) \leq \psi^t(y) + \mathcal{K}$, for all x and y with $s_t \leq x \leq y$.

The proof of Lemma 1 follows a similar logic in Scarf (1960). A different \mathcal{K} -convex function from that in Scarf (1960) and mathematical induction are used to complete the proof. First, consider the

last period, i.e., t = T, $\psi^T(x) = c_T x + G^T(x) = c_T x + \max_{p_T} \{C_T(x)' p_T\}$. Obviously, $\psi^T(x)$ is continuous and $\lim_{|x|\to\infty} \psi^T(x) = \infty$. Specifically, $\psi^T(x)$ is convex and, hence, a \mathcal{K} -convex function.

Next, assume $\psi^t(x)$ is continuous, \mathcal{K} -convex and $\lim_{|x|\to\infty} \psi^t(x) = \infty$, then there exist two parameters s_t and S_t with $s_t < S_t$ such that S_t minimizes $\psi^t(x)$ and $\psi^t(s_t) = \psi^t(S_t) + \mathcal{K}$. From the definitions of $G^t(x)$ and $z^t(x)$, $z^t(x) = \psi^t(S_t) + \mathcal{K} - c_t x$ if $x \leq s_t$ and $z^t(x) = \psi^t(x) - c_t x$ otherwise. Since $\psi^t(s_t) = \psi^t(S_t) + \mathcal{K}$, $z^t(x)$ is continuous and \mathcal{K} -convex.

Finally, consider period t-1

$$\psi^{t-1}(x) = c_{t-1}x + G^{t-1}(x)$$

= $c_{t-1}x + \max_{p_{t-1}} \left\{ C_{t-1}(x)' p_{t-1} + \gamma z^t (x - D_{t-1}) \right\}$

Therefore, $\psi^{t-1}(x)$ is continuous. Since $z^t(x)$ is continuous and -convex, according to the properties of the \mathcal{K} -convex functions (Zipkin, 2000, P398), $z^t(x - D_{t-1})$ is -convex and thus $\psi^{t-1}(x)$ is also -convex. Furthermore, $\lim_{|x|\to\infty} \psi^{t-1}(x) = \infty$.

Based on Lemma 1 and the properties of a -convex function, Lemma 2 is straightforward. The proof is omitted and readers are referred to Simchi et al. (2014). Lemmas 1 and 2 then lead to Theorem 1. \Box

A.2 Proof of Theorem 2

Let $(x^*, \delta_T^*, \boldsymbol{\tau}_T^*, \boldsymbol{\nu}_T^*)$ be an optimal solution to Problem (14) with an optimal objective value θ^* . It can be found by comparing the constraints of Problems (13) and (14) that $(\delta_T^*, \boldsymbol{\tau}_T^*, \boldsymbol{\nu}_T^*)$ is also feasible to Problem (13). Given x^* , $\Upsilon^*(x^*) = \underline{\boldsymbol{\xi}}_T \boldsymbol{\tau}_T^* + \overline{\boldsymbol{\xi}}_T \boldsymbol{\nu}_T^*$ by the strong duality of linear programming. If x^* is not optimal to Problem (11), there exists another solution \tilde{x}^* to Problem (11) such that

$$c_T \tilde{x}^* + C_T (\tilde{x}^*)' \bar{\boldsymbol{p}}_T + \Upsilon^* (\tilde{x}^*) \leq c_T x^* + C_T (x^*)' \bar{\boldsymbol{p}}_T + \Upsilon^* (x^*)$$
$$= c_T x^* + C_T (x^*)' \bar{\boldsymbol{p}}_T + \underline{\boldsymbol{\xi}}_T \boldsymbol{\tau}_T^* + \overline{\boldsymbol{\xi}}_T \boldsymbol{\nu}_T^*$$
$$= \theta^*.$$

Given \tilde{x}^* , let $(\tilde{\delta}_T^*, \tilde{\tau}_T^*, \tilde{\boldsymbol{\nu}}_T^*)$ be an optimal solution to Problem (13). By comparing the constraints of Problems (13) and (14), it can be found that $(\tilde{x}^*, \tilde{\delta}_T^*, \tilde{\tau}_T^*, \tilde{\boldsymbol{\nu}}_T^*)$ is also feasible to Problem (14). Similarly, $\Upsilon^*(\tilde{x}^*) = \underline{\xi}_T \tilde{\tau}_T^* + \overline{\xi}_T \tilde{\boldsymbol{\nu}}_T^*$ by the strong duality of linear programming. Therefore, the objective value of Problem (14) at $(\tilde{x}^*, \tilde{\delta}_T^*, \tilde{\tau}_T^*, \tilde{\boldsymbol{\nu}}_T^*)$, denoted by $\tilde{\theta}^*$, is not larger than θ^* , i.e., $\tilde{\theta}^* \leq \theta^*$. This contradicts the assumption that $(x^*, \delta_T^*, \tau_T^*, \nu_T^*)$ is an optimal solution to Problem (14). Hence, x^* is an optimal solution to Problem (11).

Conversely, if \hat{x}^* solves Problem (11), $(\hat{\delta}_T^*, \hat{\tau}_T^*, \hat{\nu}_T^*)$ is an optimal solution to Problem (13) with $x = \hat{x}^*$. If $(\hat{x}^*, \hat{\delta}_T^*, \hat{\tau}_T^*, \hat{\nu}_T^*)$ is not an optimal solution to Problem (14), there exists another solution $(\tilde{x}^*, \tilde{\delta}_T^*, \tilde{\tau}_T^*, \tilde{\nu}_T^*)$ that solves Problem (14). According to the discussion above, \tilde{x}^* is an optimal solution to Problem (11), contradicting the assumption that \hat{x}^* solves Problem (11). Therefore, solving Problem (14) is equivalent to solving Problem (11). \Box

A.3 Proof of Theorem 3

The reorder point s_T can be found by solving

$$\max_{\substack{y \le S_T \\ s.t. \ G^T(y) \le \mathcal{K} + c_T(S_T - y) + G^T(S_T),} G^T(y) \le \mathcal{K} + c_T(S_T - y) + G^T(S_T),$$
(38)

where the optimal value of the variable y is the reorder point s_T , i.e., $s_T = y^*$, and $G^T(y)$ is the optimal objective value of the following problem with variables $(\delta_T, \boldsymbol{\tau}_T, \boldsymbol{\nu}_T) \in R \times R^{K_T} \times R^{K_T}$

$$\min_{\delta_T, \boldsymbol{\tau}_T, \boldsymbol{\nu}_T} C_T(y)' \bar{\boldsymbol{p}}_T + \underline{\boldsymbol{\xi}}_T \boldsymbol{\tau}_T + \overline{\boldsymbol{\xi}}_T \boldsymbol{\nu}_T$$
s.t. $\boldsymbol{e}' \delta_T + \boldsymbol{\tau}_T + \boldsymbol{\nu}_T = C_T(y)$

$$\boldsymbol{\tau}_T < \mathbf{0}, \boldsymbol{\nu}_T > \mathbf{0}.$$
(39)

The constraint in Problem (38) is satisfied at equality at s_T . Therefore, Problem (38) can be rewritten as

$$\max_{y \leq S_T} \min_{\delta_T, \boldsymbol{\tau}_T, \boldsymbol{\nu}_T} \mathcal{K} + c_T (S_T - y) + G^T (S_T)$$
s.t. $\boldsymbol{e}' \delta_T + \boldsymbol{\tau}_T + \boldsymbol{\nu}_T = C_T (y)$
 $\boldsymbol{\tau}_T \leq \boldsymbol{0}, \boldsymbol{\nu}_T \geq \boldsymbol{0}$
 $C_T (y)' \bar{\boldsymbol{p}}_T + \boldsymbol{\xi}_T \boldsymbol{\tau}_T + \bar{\boldsymbol{\xi}}_T \boldsymbol{\nu}_T = \mathcal{K} + c_T (S_T - y) + G^T (S_T)$

In this optimization problem, the objective function is composed of a constant $\mathcal{K} + c_T S_T + G^T(S_T)$ and a linear term $-c_T y$ that are both independent of the variables $(\delta_T, \boldsymbol{\tau}_T, \boldsymbol{\nu}_T)$. Therefore, s_T can be found by solving Problem (16). \Box

A.4 Proof of Theorem 4

Let $(x^*, \lambda_T^*, \rho_T^*, \gamma_T^*)$ and θ^* be an optimal solution and the optimal objective value to Problem (29), respectively. Then x^* is also feasible to Problem (25). Denote by θ_0^* the objective value of Problem (25) at $x = x^*$. If x^* is not optimal to Problem (25), there exists another solution \tilde{x}^* that solves Problem (25) such that $\tilde{\theta}_0^* < \theta_0^*$. Given $x = \tilde{x}^*$, $(\tilde{\lambda}_T^*, \tilde{\rho}_T^*, \tilde{\gamma}_T^*)$ is obtained by solving Problem (28). By the strong duality of the Lagrangian, $\Gamma^*(x^*) = -(\lambda_T^*)'\bar{p}_T - \rho_T^*$ and $\Gamma^*(\tilde{x}^*) = -(\tilde{\lambda}_T^*)'\bar{p}_T - \tilde{\rho}_T^*$. Therefore, $\tilde{\theta} = \tilde{\theta}_0 < \theta_0^* = \theta^*$. Because Problems (28) and (29) have the same set of constraints, $(\tilde{x}^*, \tilde{\lambda}_T^*, \tilde{\rho}_T^*, \tilde{\gamma}_T^*)$ is also feasible to Problem (29). This contradicts the assumption that $(x^*, \lambda_T^*, \rho_T^*, \gamma_T^*)$ is an optimal solution to Problem (29) because $\tilde{\theta}^* < \theta^*$. Thus, x^* is an optimal solution to Problem (25).

Conversely, if \hat{x}^* is an optimal solution to Problem (25), $(\hat{\lambda}_T^*, \hat{\rho}_T^*, \hat{\gamma}_T^*)$ can be obtained by solving Problem (28). Since Problems (28) and (29) have the same set of constraints, $(\hat{x}^*, \hat{\lambda}_T^*, \hat{\rho}_T^*, \hat{\gamma}_T^*)$ is also feasible to Problem (29). If $(\hat{x}^*, \hat{\lambda}_T^*, \hat{\rho}_T^*, \hat{\gamma}_T^*)$ is not an optimal solution to Problem (29), there exists another solution $(\tilde{x}^*, \tilde{\lambda}_T^*, \tilde{\rho}_T^*, \tilde{\gamma}_T^*)$ that solves Problem (29). From the discussion above, \tilde{x}^* is an optimal solution to Problem (25), contradicting the assumption that \hat{x}^* is an optimal solution to Problem (25). Therefore, $(\hat{x}^*, \hat{\lambda}_T^*, \hat{\rho}_T^*, \hat{\gamma}_T^*)$ is an optimal solution to Problem (28). \Box

References

- Scarf, H. E., 1960. The optimality of (s, S) policies in dynamic inventory problems, in: Arrow, K. J. Karlin, S. Suppes, P. (Eds.), Mathematical Methods in the Social Sciences, Stanford University Press, Stanford, CA, 196202.
- Simchi-Levi, D., Chen, X., Bramel, J., 2014. Stochastic Inventory Models. The Logic of Logistics. Springer New York.