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A.1 Proof of Theorem 1

The following two lemmas using the definition of a K-convex function are used to prove Theorem 1.

Lemma 1. For any t = 1, 2, ..., T , the function ψt(x) (7) is continuous with respect to x and lim
|x|→∞

ψt(x)=

∞. Specifically, ψt(x) is a K-convex function of x.

Lemma 2. Under Lemma 1, let St be a minimum point of ψt(x) and st be any element of the set

{
x
∣∣x ≤ St, ψt(x) = ψt(St) +K

}
(37)

The following results hold

(i) ψt(St) ≤ ψt(x), for all x ∈ R.

(ii) ψt(St) +K = ψt(st) ≤ ψt(x), for all x ≤ st.

(iii) ψt(x) ≤ ψt(y) +K, for all x and y with st ≤ x ≤ y.

The proof of Lemma 1 follows a similar logic in Scarf (1960). A different K-convex function from

that in Scarf (1960) and mathematical induction are used to complete the proof. First, consider the
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last period, i.e., t = T , ψT (x) = cTx+GT (x) = cTx+ max
pT
{CT (x)′pT }. Obviously, ψT (x) is continuous

and lim
|x|→∞

ψT (x) =∞. Specifically, ψT (x) is convex and, hence, a K-convex function.

Next, assume ψt(x) is continuous, K-convex and lim
|x|→∞

ψt(x) =∞, then there exist two parameters

st and St with st < St such that St minimizes ψt(x) and ψt(st) = ψt(St) + K. From the definitions

of Gt(x) and zt(x), zt(x) = ψt(St) + K − ctx if x ≤ st and zt(x) = ψt(x) − ctx otherwise. Since

ψt(st) = ψt(St) +K, zt(x) is continuous and K-convex.

Finally, consider period t− 1

ψt−1(x) = ct−1x+Gt−1(x)

= ct−1x+ max
pt−1

{
Ct−1(x)′pt−1 + γzt(x−Dt−1)

}
Therefore, ψt−1(x) is continuous. Since zt(x) is continuous and -convex, according to the properties of

the K-convex functions (Zipkin, 2000, P398), zt(x−Dt−1) is -convex and thus ψt−1(x) is also -convex.

Furthermore, lim
|x|→∞

ψt−1(x) =∞.

Based on Lemma 1 and the properties of a -convex function, Lemma 2 is straightforward. The proof

is omitted and readers are referred to Simchi et al. (2014). Lemmas 1 and 2 then lead to Theorem 1.

A.2 Proof of Theorem 2

Let (x∗, δ∗T , τ
∗
T ,ν

∗
T ) be an optimal solution to Problem (14) with an optimal objective value θ∗. It

can be found by comparing the constraints of Problems (13) and (14) that (δ∗T , τ
∗
T ,ν

∗
T ) is also feasible

to Problem (13). Given x∗, Υ∗(x∗) = ξ
T
τ ∗T + ξTν

∗
T by the strong duality of linear programming. If x∗

is not optimal to Problem (11), there exists another solution x̃∗ to Problem (11) such that

cT x̃
∗ + CT (x̃∗)′p̄T + Υ∗(x̃∗) ≤ cTx∗ + CT (x∗)′p̄T + Υ∗(x∗)

= cTx
∗ + CT (x∗)′p̄T + ξ

T
τ ∗T + ξTν

∗
T

= θ∗.

Given x̃∗, let (δ̃∗T , τ̃
∗
T , ν̃

∗
T ) be an optimal solution to Problem (13). By comparing the constraints of

Problems (13) and (14), it can be found that (x̃∗, δ̃∗T , τ̃
∗
T , ν̃

∗
T ) is also feasible to Problem (14). Similarly,

Υ∗(x̃∗) = ξ
T
τ̃ ∗T + ξT ν̃

∗
T by the strong duality of linear programming. Therefore, the objective value of

Problem (14) at (x̃∗, δ̃∗T , τ̃
∗
T , ν̃

∗
T ), denoted by θ̃∗, is not larger than θ∗, i.e., θ̃∗ ≤ θ∗. This contradicts
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the assumption that (x∗, δ∗T , τ
∗
T ,ν

∗
T ) is an optimal solution to Problem (14). Hence, x∗ is an optimal

solution to Problem (11).

Conversely, if x̂∗ solves Problem (11), (δ̂∗T , τ̂
∗
T , ν̂

∗
T ) is an optimal solution to Problem (13) with

x = x̂∗. If (x̂∗, δ̂∗T , τ̂
∗
T , ν̂

∗
T ) is not an optimal solution to Problem (14), there exists another solution

(˜̂x∗,
˜̂
δ∗T ,

˜̂τ ∗T ,
˜̂ν∗T ) that solves Problem (14). According to the discussion above, ˜̂x∗ is an optimal solution

to Problem (11), contradicting the assumption that x̂∗ solves Problem (11). Therefore, solving Problem

(14) is equivalent to solving Problem (11).

A.3 Proof of Theorem 3

The reorder point sT can be found by solving

max
y≤ST

GT (y)

s.t. GT (y) ≤ K + cT (ST − y) +GT (ST ),
(38)

where the optimal value of the variable y is the reorder point sT , i.e., sT = y∗, and GT (y) is the optimal

objective value of the following problem with variables (δT , τT ,νT ) ∈ R×RKT ×RKT

min
δT ,τT ,νT

CT (y)′p̄T + ξ
T
τT + ξTνT

s.t. e′δT + τT + νT = CT (y)

τT ≤ 0,νT ≥ 0.

(39)

The constraint in Problem (38) is satisfied at equality at sT . Therefore, Problem (38) can be

rewritten as

max
y≤ST

min
δT ,τT ,νT

K + cT (ST − y) +GT (ST )

s.t. e′δT + τT + νT = CT (y)

τT ≤ 0,νT ≥ 0

CT (y)′p̄T + ξ
T
τT + ξTνT = K + cT (ST − y) +GT (ST ).

In this optimization problem, the objective function is composed of a constant K+ cTST +GT (ST )

and a linear term −cT y that are both independent of the variables (δT , τT ,νT ). Therefore, sT can be

found by solving Problem (16).
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A.4 Proof of Theorem 4

Let (x∗,λ∗T , ρ
∗
T , γ

∗
T ) and θ∗ be an optimal solution and the optimal objective value to Problem (29),

respectively. Then x∗ is also feasible to Problem (25). Denote by θ∗0 the objective value of Problem

(25) at x = x∗. If x∗ is not optimal to Problem (25), there exists another solution x̃∗ that solves

Problem (25) such that θ̃∗0 < θ∗0. Given x = x̃∗, (λ̃
∗
T , ρ̃

∗
T , γ̃

∗
T ) is obtained by solving Problem (28). By

the strong duality of the Lagrangian, Γ∗(x∗)=−(λ∗T )′p̄T −ρ∗T and Γ∗(x̃∗) =−(λ̃
∗
T )′p̄T −ρ̃∗T . Therefore,

θ̃ = θ̃0 < θ∗0 = θ∗. Because Problems (28) and (29) have the same set of constraints, (x̃∗, λ̃
∗
T , ρ̃

∗
T , γ̃

∗
T )

is also feasible to Problem (29). This contradicts the assumption that (x∗,λ∗T , ρ
∗
T , γ

∗
T ) is an optimal

solution to Problem (29) because θ̃∗ < θ∗. Thus, x∗ is an optimal solution to Problem (25).

Conversely, if x̂∗ is an optimal solution to Problem (25), (λ̂
∗
T , ρ̂

∗
T , γ̂

∗
T ) can be obtained by solving

Problem (28). Since Problems (28) and (29) have the same set of constraints, (x̂∗, λ̂
∗
T , ρ̂

∗
T , γ̂

∗
T ) is also

feasible to Problem (29). If (x̂∗, λ̂
∗
T , ρ̂

∗
T ,γ̂
∗
T ) is not an optimal solution to Problem (29), there exists

another solution (˜̂x∗,
˜̂
λ∗T ,

˜̂ρ∗T ,
˜̂γ∗T ) that solves Problem (29). From the discussion above, ˜̂x∗ is an optimal

solution to Problem (25), contradicting the assumption that x̂∗ is an optimal solution to Problem (25).

Therefore, (x̂∗, λ̂
∗
T , ρ̂

∗
T ,γ̂
∗
T ) is an optimal solution to Problem (28).
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