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Abstract: When a logistics system is “self-organizing” it can function without significant
intervention by managers, engineers, or software control. The social insects, such as ants or
bees, provide models of self-organizing logistics systems that may be profitably emulated. We
illustrate some of these ideas for the problem of balancing assembly lines.
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1. INTRODUCTION

The term “logistics” in the title has been chosen to suggest
a broad view of manufacturing, in which the final product
is the delivery of the item to the customer, and the entire
supply chain is the assembly line that manufactures this
product.

“Self-organization” is the informal name given to the phe-
nomenon wherein large-scale structure arises with seeming
spontaneity from the myriad interactions of local agents.
We are all familiar with an example that employs thou-
sands of workers, functions at near optimality, and yet
employs no management, no engineers, no consultants,
and no IT department: The social insects, such as ants
or bees. To use ants as an example, no ant is in charge:
The queen is merely an egg-laying machine, and there are
no castes devoted to planning or control. Instead each ant
follows some simple instincts or urges — they must be
simple because an ant’s brain has very few neurons — but
the aggregate result, such as a highly-structured nest or a
seemingly high-organized pattern of food retrieval, seems
to transcend the planning ability of any individual.

2. A MODEL FOR SELF-ORGANIZING LOGISTICS

Self-organization is evident in many of the activities of
social insects that relate to logistics, such as nest-building,
foraging, food-retrieval, and storage. More generally, ants
must solve the problem of task allocation: What ants
should be assigned to what task? There are many tasks
to be performed within an ant colony, including nest
building, nest defense, foraging, food processing (in some
species), food storage, queen care, brood care, and so on.
It is critical that ants get the balance right. Consider,
for example, the so-called “honeypot ant”, the main food
of which is nectar. Some ants of each colony devote
themselves to food storage by serving as living storage
vessels. If too few ants are committed to food storage, then
there is a mismatch between foraging and storage and the

survival of the colony is at risk. Conversely, if too many
ants are devoted to storage, then there is a misallocation
of resources.

Biologists have studied such questions in detail and found
that the social insects solve problems of resource allocation
with near optimality (an excellent description of these
issues may be found in Wilson and Hélldobler (2009)).
In this case, by “solve”, we mean that a nearly optimal
solution emerges from the interactions of many individ-
uals. The successes of self-organization for ants is most
visible in the collection of activities that we might term
logistics because they have this in common with the human
activities of the same name: They are concerned with
the processing, transport, and storage of goods deemed
valuable to the society (Anderson and J. J. Bartholdi
(2000)).

Self-organization is such an appealing way of solving
human logistics problems that it is worth a moment to
itemize the advantages one might expect.

Ease of implementation: Typically one need only es-
tablish the process, without much attention to precision.
The system will subsequently fine-tune itself as it self-
organizes.

Adaptivity: For any logistics system, the main challenge
is to adapt to changes in the environment, such as in-
terrupted schedules, machine failures, unforeseen surges
in demand, and so on. If a system is self-organizing,
then it automatically reacts to events. There is no need
for an external control system, such as management, to
monitor the system and intervene. The control system
is inherent in the operation and does not reside in any
particular individuals.

Minimal data requirements: Self-organization typically
occurs when information is embedded in the timing and
location of interactions among agents. In a sense the
data is “read” directly by the society of interacting
agents and so does not need to be collected or main-
tained.



(NB: It is worth remarking here that self-organization can
be to both good and bad ends. We shall have more to say
about the latter in Section 4.)

3. “BUCKET BRIGADE” ASSEMBLY LINES

One goal of this paper is to convince the reader of the
practical value of the principle of self-organization and
to this end will concentrate on the phenomena of self-
organization with which the author is most familiar: that
which has been given the name bucket-brigades. This is a
variant of a traditional assembly line in that it requires
workers to pass work sequentially from one worker to
another; but unlike a traditional assembly line, there is no
fixed assignment of workers to stations. Instead, workers,
numbered 1,...,n, each follow a simple local rule that
determines what to do next: Carry your work forward
from station to station until you have finished assembly
or else another worker has taken it, in which case walk
back upstream and take over the work of the first worker
of smaller index.

Note that workers are not restricted to any subset of
stations; rather each one carries his work as far toward
completion as possible and then walks back to get more.

All items are identical and so each requires the same total
processing time according to some work standard, which
we normalize to one “time unit”.

The essential model rests on these two assumptions:

Assumption 1. (Characterization Of Workers By Velocity).

Each worker ¢ can be characterized by a work velocity v;
with which he proceeds along the direction of material
flow, and a velocity w; at which he walks back to get more
work.

Assumption 2. (Smoothness And Predictability Of Work).
The work-content of the product is spread continuously
and uniformly along the flow line (the length of which we
normalize to 1).

The Characterization Of Workers By Velocity is likely
to hold in an mass-production environment, where work
has been “de-skilled” so that velocity is based on a single
dimension, such as motivation or eye-hand cooérdination.
(This point is more fully documented in Bartholdi and
Eisenstein (1996b)).

There is clearly some license in the assumption of Smooth-
ness And Predictability Of Work; nevertheless, this as-
sumption is reasonable in many instances, detailed by us
elsewhere Bartholdi and Eisenstein (1996b). This is the
goal towards which management and engineering strive,
so as to enable smooth and continuous flow of work along
the assembly line by removing variance from work and
eliminating bottlenecks.

When the total work-content of a product greatly exceeds
the total time for workers to hand off their work and
walk back to get more, then we may take w; = oo and
the bucket brigade assembly line becomes self-organizing
in a very useful way, as described by Bartholdi and
Eisenstein (1996b); Bartholdi et al. (1999). Their main
results, slightly simplified, are as follows.

e There exists a unique, balanced partition of the effort
wherein worker ¢ performs the interval of work:

i—1

Zj:l Uj (1)
n

Ej:l vy
so that each worker invests the same clock time in
each item produced and both product starts and
completions occur metronomically.

e If the workers are sequenced from slowest to fastest
(v1 < -++ < vy,) then, during the normal operation
of the line, work is spontaneously and constantly
reallocated to reach this balance. Furthermore, even

if no passing is allowed, the production rate converges
to

from to

n
Zvi items per unit time, (2)
i=1
which is the maximum possible for the given set of
workers.

e If the workers are mot sequenced from slowest to
fastest, then the line will “sputter”: that is, it will
produce erratically. If, in addition, faster workers are
not allowed to pass slower workers, then the produc-
tion rate of the assembly line can be suboptimal rate
and the line can behave in counterintuitive ways, such
as production rate decreasing when a worker increases
his velocity.

Details may be found in Bartholdi and Eisenstein (1996b)
and a survey of related results in Bratcu and Dolgui (2005)
(of which this paper may be seen as an update).

Figure 1 shows an example of how the movement of
the workers stabilizes, with the faster workers eventually
allocated more work. This figure was generated by a
simulation of three workers of velocities v; = 1,2,3,
respectively.

This self-balancing seems to be very robust in the sense
that many natural generalizations of the model lead to
essentially the same conclusion: When properly configured
— in this case, when the workers are indexed so that
v; < v;41 — then the assembly line will balance itself
and will, moreover, resist perturbations. This has been
proven to hold when, for example, the work content at each
station is random, as in Bartholdi et al. (2001), or when
the instantaneous speeds of the workers may vary, as in
Bartholdi and Eisenstein (1996b), or when there is worker
learning and consequent speed-up, as in Armbruster et al.
(2007). The simplicity and persistence of this behavior
makes it very useful in practice, for it is easy to implement
and works under a variety of conditions, many documented
in Bartholdi and Eisenstein (1996a).

3.1 Uses

Manufacturing  Bartholdi and Eisenstein (1996a) and
Bratcu and Dolgui (2005) describe a selection of practi-
cal applications in manufacturing and manufacturing-like
environments. One of the main advantages of the self-
organizing ability of bucket brigades is that it makes no
requirements for data. Traditional approaches to balancing
assembly lines require that one define task elements and
estimate the work-content of each. This is unnecessary for
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Fig. 1. A time-expanded view of a bucket brigade produc-
tion line with three workers sequenced from slowest
to fastest. The solid horizontal line represents the
total work content of the product and the solid circles
represent the initial positions of the workers. The
zigzag vertical lines show how these positions change
over time and the rightmost spikes correspond to
completed items.

bucket brigades, and so they have proven attractive when
the enterprise cannot wait to complete task definitions (see
Bartholdi and Eisenstein (2005) for example). Another
reason to use bucket brigades is that the work is sponta-
neously reassigned even as workers learn and increase their
proficiency (in our model, work velocities v;). Case studies
appear in Villalobos et al. (1999), Munoz and Villalobos
(2002), and Bartholdi and Eisenstein (2005). Armbruster
et al. (2007) provides a particularly interesting study of
worker learning during bucket brigades and the effects on
the dynamics of the system.

Production  Imagine Figure 1 turned on its side and the
series of peaks may remind the reader of a graph of inven-
tory level over time when subjected to constant demand.
This was noticed by Eisenstein (2005), who studied a facil-
ity that follows a cyclic schedule to replenish the inventory
of a set of items through production by a shared machine.
FEisenstein’s concern was how to reéstablish an intended
cyclic schedule after disruption. He embedded bucket-
brigade-like logic into standard produce-up-to policies so
that they become self-organizing; that is, the scheduling
policy, which says what product to produce next and
in what quantity, recovers a target cyclic schedule after
disruption. Eisenstein’s scheduling policy is controlled by
a single parameter that is an analogue of the work velocity
of the fastest worker in a bucket brigade; through manip-
ulation of this parameter, his policy can tune recovery to
be aggressive, with frequent setups and small batches, or
methodical, with fewer setups and larger batches.

Distribution  In practice bucket brigades have been most
successful as a way of organizing order-pickers in a dis-
tribution center (DC). In this case the product being
“assembled” is the customer order, which will have been

assigned to a box that an order-picker will carry along an
aisle of shelves, picking the particular items requested. A
typical high-volume DC in the US might have hundreds
of order-pickers. Furthermore, there will be a considerable
range of work-velocities because many workers might be
temporaries, hired in advance of the busy retail shopping
season.

Most DCs use work-content models to define worker
“zones”, which are effectively work stations. A worker will
pick all the items within his zone into a box and then pass
the box to the subsequent zone. But the effort to allocate
work evenly is never and can never be successful in this
case. First, the customer orders are all different and so
the assembly line is, in effect, a mixed-model assembly
line, which is notoriously hard to balance. Furthermore,
the balance is based on time-motion studies, which are
statistical aggregations suggesting the time expected of a
mythical “standard worker”, which may rarely be realized
by actual humans in the DC. Finally, the static assignment
of work to order-pickers is fundamentally unable to adapt
to disruptions, which may be considered normal part of the
working day. Instead, it is typical that a level of manage-
ment be devoted to monitoring the workers and reassigning
work as necessary to correct spot imbalances. Bartholdi
and Eisenstein (1996a) report adoption of bucket brigades
within the DCs of a range of significant companies in the
US, with most reporting increases in productivity of 20—
40%.

4. UNDESIRABLE SELF-ORGANIZATION

Sometimes the end state of a self-organization is not
what one could wish. For example, to return to the
assembly line: We interviewed the operations manager
of a company with thousands of small restaurants that
prepared sandwiches to order. They saw their problem as
one of running a mixed-model assembly line in which the
successive products on the line might differ according to
the request of the customer. In this case the last station
on the line was the cashier and the problem was how
to make use of this worker when the queue of customers
was at the other end of the assembly line. The company
experimented with having the workers circle back from
the cashier’s station to the beginning of the line, but with
the predictable consequence that soon the assembly line
operated at the speed of the slowest worker. In other
words, the system organized itself into the least productive
configuration possible.

The problem in this case was that the system was set
up in a way that seems, after a moment’s consideration,
obviously flawed. A more dramatic example of unfortunate
self-organization may be found among the army ants.
These ants, which are nearly blind, follow the scent of
their nest mates to pour out from the nest along foraging
trails. Occasionally a disruption will leave a subgroup cut
off from the main river of ants, and this subgroup may
reform into a closed loop, a “circular mill”, along which
they continue to follow their predecessors until they die of
exhaustion and starvation (see Couzin and Franks (2003)
and references therein). This is a graphic reminder that
one must understand all the possible modes of behavior of
a system before relying on it.



Consider, for example, a bucket brigade in which each
worker ¢ has a forward velocity v; and a backward velocity
w; that need not be infinite. This bucket brigade scheme is
descriptive of order-picking in a high-service, low-volume
distribution center such as those dispensing service parts.
In such an environment, there may be a relatively large
amount of travel for few picks, in which case the times to
work forward is comparable to the time to walk back. In
such a case the behavior of bucket brigades — if they are
set up incorrectly — can be surprising.

First note that more complicated patterns of movement
are possible

Passing: in which two workers walk past each other.
This can happen only if the worker who is walking
upstream has smaller index than the worker who is
moving downstream (otherwise the bucket brigade rules
would call for a hand off of work).

Overtaking: in which a faster worker overtakes a slower
worker moving in the same direction.

(It should be remarked that some applications, especially
in DCs, overtaking may not possible due to material-
handling considerations. Bucket brigades can still be self-
balancing in these cases.)

If overtaking is allowed then In the long run each worker
must travel as far forward as he does backward and so
worker i has a net production rate of (1/v; + 1/w;)”" and
the long-run average production rate of the n workers
is the sum of their net production rates, and this is
independent of their starting positions.

4.1 Stability

In this section we omit the proofs because they are
generally extensions of those in previous papers, such as
Bartholdi and Eisenstein (1996b); or else the arguments
are too long and may be found in Lim (2005) or Bartholdi
et al. (2009).

It seems natural to guess that convergence to a stable
allocation of work must require indexing the workers by
their net production rates. Surprisingly, this is not so.

Theorem 1. A bucket brigade assembly line will sponta-
neously balance itself if the workers are indexed so that

1 1 1 1
S 3)

U1 w1 Un, Wn,

or, in other words, from most-slowed to least-slowed.

(See Bartholdi et al. (2009).)

In the condition of Theorem 1 the term 1/v; — 1/w; repre-
sents the difference in the encumbered and the unencum-
bered transit times of worker ¢ and so gives the extent to
which he is slowed by work. Therefore the workers should
be indexed according to the extent to which each is slowed
by work.

Note that this may require a worker who is slower in both
directions to be the one who sets the pace for the bucket
brigade. For example, a worker of forward velocity 9 and
backward velocity 20 should be given a higher index than
one of forward velocity 10 and backward velocity 40.

Time

Position (fraction of work content)

Fig. 2. Movement of three workers in a convergent bucket
brigade. During an initial transient period workers
sort themselves by index, after which all passing and
overtaking cease. Eventually workers repeat the same
intervals of work-content on successive products.

When the workers are indexed from most-slowed to least-
slowed, then independently of the initial positions and
directions of movement of the workers, behavior develops
according to this pattern: After a transient period in
which the workers spontaneously sort themselves by index,
workers move so that work is reallocated to approach
perfect balance. Such behavior may be seen in Figure 2.

Under bucket brigades, workers share work-content by
handing off items to successors. The locations at which
hand-offs occur determine how the work is shared. The
bucket brigade assembly line is balanced if each worker
invests the same clock time and repeats the same interval
of work content for each item produced, and, moreover,
those intervals are non-overlapping. Let the balance point
at which worker ¢ hands off work, given as a fraction of
work-content completed, be z}.

The proofs of the next two theorems appear in Bartholdi
et al. (2009).

Theorem 2. For any bucket brigade the point
i -1
o 21 (L/vj 4+ 1/w;)
i = -1
CY (v + 1 wy)

is a fixed point and is, moreover, the unique point of
balance.

for i=1,... n-1. (4)




Theorem 2 establishes the existence of balance, but for
this to be useful in practice, the assembly line must
spontaneously seek balance.

Theorem 3. If workers are sequenced on the assembly line
from most-slowed to least-slowed then z* = (z7,...,z})
is an attractor.

It is important to note that when v; <« w; then the
1 1 1

condition for self-balancing, that Ui - >

i i i41 Wi41
reduces to v; < v;41. In other words, it is sufficient to index
the workers from slowest to fastest. This is the case in all
implementations of which we are aware. If encumbered
velocity is much less than unencumbered velocity then
it is sufficient to index the workers by their encumbered

velocities v;.

4.2 Chaotic behavior

When the condition for self-balancing fails to hold, then
a bucket brigade is capable of chaotic behavior. Bartholdi
et al. (2009) establish this by showing a particular bucket
brigade that emulates a system that is well-known to be
chaotic.

Consider the bucket brigade composed of workers with the
following velocities: v1 = 1, w; = 1/3; v9 = 1, we = 1. This
bucket brigade fails to satisfy the condition of Theorem 1
and it is straightforward to verify that the dynamics
function relating the positions of successive hand-offs is
given by the following, where x* denotes the location of
the k-th hand-off from worker 1 to worker 2.

et =1— (296’C mod 1) . (5)

This is an expanding map; that is, it has slope of absolute
value strictly greater than 1, where defined (it has discon-
tinuities at 1/2 and 1). The point 1/3 is the unique point
of balance, but it is a repelling fixed point, which means
that the system spontaneously avoids balance. The point
2/3 is another repelling fixed point.

This dynamics function is a reflection of the Bernoulli map

2" = 22F mod 1.

While there are several alternative definitions of chaos, all
fairly technical, all agree that the Bernoulli map is chaotic
(see, for example, Martelli (1999), Devaney (1989)). The
reflected Bernoulli map (5) is also chaotic, as may be
seen by considering the values of the z* to be represented
by their binary expansions. Then each iteration of either
map simply shifts digits leftward one position and drops
the integer part. The reflected Bernoulli map (5) then
complements each bit. A consequence is that the two-fold
composition of the Bernoulli map is identical to the two-
fold composition of the reflected Bernoulli map (except at
0,1/4,1/2,3/4, and 1).

Figure 3 shows the transition of a bucket brigade from
convergence to chaos as the velocity of one worker changes.
In this example, the bucket brigade initially satisfies the
condition of Theorem 1, with workers of velocities v; = 0.1,
wy = 1, v9 = 3, and wo = 2. Initially, worker 1 is unusually
slow in the forward direction. Paradoxically, as worker
1 gains experience so that v; increases, then the bucket
brigade changes from convergent to chaotic.

Position

Fig. 3. Transition to chaos as v increases. This bifurcation
diagram plots the long-run locations of hand-offs as
a function of the velocity vy. As v; increases, the
attractor changes from a fixed point to what appears
to be a Cantor set.

We constructed this graph by stepping through values
of v1 € [0.1,10], computing the positions of hand-offs
through 10,000 iterations (presumably long enough for
transients to fade away), and then plotted the positions
of the next 1,000 hand-offs. For v; < 6/5 the self-
balancing condition holds, and as expected, all hand-offs
occurred at a fixed point, the value of which increases
with vy as predicted by Theorem 2. At the threshold
of chaos, v1 = 6/5, the self-balancing condition fails to
hold, and the formerly attracting fixed point appears to
become explosively repelling. Here behavior appears to
be nearly periodic; but on closer examination, each thin
branch may be seen to be composed of two still thinner
branches, and so on through ever finer levels of detail.
In this region of chaos, the asymptotic sets corresponding
to each value of v; appear Cantor-like (Alligood et al.
(1996); Devaney (1992); Martelli (1999)). Another regime
of behavior occurs as vy > 3; Lim (2005) explains much
of the fine structure, including “gaps”, “shadows”, and
“threads”.

4.3 Implications of chaos

There has been some confusion about chaos in the man-
ufacturing literature, as researchers have used the word
informally, claiming “chaos” when they observed patterns
of behavior too complicated to comprehend. This has so
plagued the literature that several papers have been writ-
ten just to debunk such claims (example: Schmitz et al.
(2002)). Chase et al. (1993) formally established chaotic
behavior in a model of continuous manufacturing; ours is,
as far as we know, the first example of deterministic chaos
in a model of discrete manufacturing.

The most notable external implication of chaotic hand-
offs is that the intercompletion times of products will
appear to be random. This is worth emphasizing: The
chaotic assembly line will appear to complete products
at random even though it is fully deterministic. This
is illustrated in Figure 4, which plots the cumulative
distribution of intercompletion times of the bucket brigade
that corresponds to the reflected Bernoulli shift. One-third



Cumulative Percentage
4

Intercompletion Time

Fig. 4. Cumulative plot of intercompletion times. With probability
1/3 the intercompletion time assumes value 2; with probability
2/3 the intercompletion time is uniformly distributed in the
interval (0,2). To avoid spurious results, the simulation was
based on the java.math.BigDecimal class of the programming
language Java, with precision of 10,000 decimal digits (more
than 33,000 bits), and was terminated before exceeding the
precision.

of the time the intercompletion times will assume the value
2, and two-thirds of the time intercompletion times will
be uniformly distributed between 0 and 2. Figure 4 was
generated by simulation, but its correctness is confirmed
by the following informal argument: Some intercompletion
times will have value 2. These occur when worker 2
takes work from worker 1 somewhere in [1/2, 1], completes
the item, overtakes worker 1, starts a new item, passes
worker 1, and completes another item. The remaining
intercompletion times arise when worker 2 takes over work
from worker 1 at some position in (0,1/2). The average
intercompletion time with value less than 2 must be 1
because hand-offs are uniformly distributed (the natural
distribution of the reflected Bernoulli map). The long run
average production rate of this bucket brigade is 3/4 and
so the average intercompletion time is 4/3. If fraction y
of intercompletion times assume value 2, the remaining
(1 —y) assume values averaging 1. Therefore it must be
that 2y + 1 (1 —y) = 4/3, from which it follows that the
intercompletion times of value 2 comprise one-third of the
total and the others, which are uniformly distributed in
[0,2) comprise the remaining two-thirds.

A downstream observer of this assembly line might rec-
ognize a shadow of a pattern (intercompletion times of
value 2); but this pattern would be interrupted frequently
and unpredictably. Erratic completions would interfere
with subsequent downstream processes, such as further
assembly, checking, packing, or shipping.

Product starts would be similarly erratic and so consump-
tion of parts would also appear significantly random, which
would, in turn, undermine just-in-time production and
would inflate requirements for safety stock. The apparent
randomness of starts may be seen by observing that every
bucket brigade assembly line has a sort of dual “disassem-
bly” line that is moving in the opposite direction. In this
interpretation, the work content to assemble an item is
identical to the work content to disassemble it. Imagine
that, when worker ¢ completes an item, he immediately
begins disassembling it at rate w;. Similarly when a worker
1 completes disassembly of an item, he immediately begins
to re-assemble it at rate v;. When worker ¢ < j working
forward meets worker j working back, worker i exchanges

his item being assembled for the item being disassembled
by worker j. At all times there are n items in process—
some being assembled and some disassembled.

If the i-th worker in the bucket brigade has forward veloc-
ity v; and backward velocity w; then in the dual bucket
brigade the i-th worker has forward velocity w,_;+1 and
backward velocity v,—;4+1. This change in perspective is
useful because the bucket brigade and its dual are equiv-
alent in some important ways. For example, any position
x in one bucket brigade corresponds to the position 1 — x
in the other. More importantly, if one is balanced then the
other is as well. (Indeed, the condition of Theorem 1 is
invariant under this transformation.) Similarly, if one is
chaotic then the other is too.

5. BACK TO THE SOCIAL INSECTS

Reyes and Ferndndez-Haegar (1999) report that the ant
species Messor barbarus employs bucket brigades in re-
turning seeds to the nest: Slower ants pick up seeds from
the ground and run back along the foraging trail until
encountering a faster any, which takes the seed and contin-
ues toward the nest. Reyes and Ferndndez-Haegar (1999)
report bucket brigades of three to six ants successively
passing off a seed, always to a faster ant.

This phenomenon is analyzed in Anderson et al. (2002),
which suggests how bucket brigades arise among Messor
barbarus and what benefits they might derive. The key
insight is that the larger the ant, the less slowed she is by
carrying a seed. Now this fact is sufficient to generate a
bucket brigade if each ant operates according to a simple
impulse: Run out along the foraging trail and take the first
seed you can, even if it must be wrested from another ant.

Consider the largest ant in the colony. As soon as it
encounters an ant bringing back a seed, it can take that
seed — because it is the biggest ant! It carries the seed
back to the nest and then goes back out along the foraging
path, where it can be expected to repeat this process.
Consequently the largest (and least slowed) ant will work
at the end of the foraging path (assembly line). On the
other hand, the smallest ant is unable to take a seed from
any other ant and must travel to the end of the foraging
path to pick up a seed from the ground. As it travels back
to the nest, it must relinquish its seed to the first ant
it encounters. It then returns to the end of the foraging
trail to pick up another seed. Thus the smallest (most-
slowed) ant ends up working at the start of the assembly
line. The bucket brigade protocol has emerged from two
simple facts about ants. Thereafter, the ant bucket brigade
is configured to satisfy the condition of Theorem 1, which
tends to produce a smooth, regular flow of seeds into the
nest.

This has several obvious advantages to the colony of ants.
First, by smoothing the flow of seeds into the nest, there is
reduced chance of congestion, exactly as in a human supply
chain. Moreover, there is a certain economic rationality in
the flow of seeds. Each seed may be imagined to increase
in value as it gets closer to the nest, where its caloric
contribution is closer to being realized. And as the seed
increases in value, it accelerates towards the nest and
is, moreover, carried by ever larger ants. This provides



increased protection from other insects who might rob an
ant of its seed or predate the ant itself.

6. CONCLUSIONS

Bucket brigades are an example of an idea from the
social insects that translates naturally to human supply
chain activities, and with notable beneficial results (see,
for example, those reported in Bartholdi and Eisenstein
(19964a)). Biologists are very actively exploring the logistics
systems of social insects and there are sure to be additional
ideas to emulate. Wilson and Holldobler (2009) is an
especially useful reference in this regard.

However useful self-organization can be, care must be
taken to avoid forms of self-organization that can be un-
expected, undesirable, or even disastrous. For example, as
we have seen, ill-conditioned bucket brigades are capable of
chaotic behavior, and this should sound a cautionary note
for the management of manufacturing systems. A central
goal of manufacturing systems control is the reduction
of variability, such as results from machine breakdowns,
vagaries in the positioning of work and in task execution,
human inconsistency, and so on. But for a chaotic assembly
line, even if every traditional source of variability has
somehow been eliminated so that the system is purely
deterministic, the product starts and completions can
nevertheless appear irreducibly random. Such apparent
randomness is inherent in the system and is resistant to
the traditional tools of manufacturing control.

The possibility of chaotic behavior also has implications
for study of the manufacturing systems. Most immediately,
one must be extremely careful in simulating a system that
may be chaotic. The chaotic bucket brigade we devised
provides a vivid example, for almost all starting points
of the workers lead to chaotic behavior; yet none of these
would be seen in a simulation on a finite precision machine.
In our chaotic bucket brigade, any simulation on a finite
precision machine must always result in periodic behavior,
so the chaos is effectively hidden from simulation, a tradi-
tional way of searching for problems in advance of building
a real system.
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