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Abstract We study a two-item two-warehouse periodic review inventory model that allows transship-

ment between warehouses and emergency orders. The model helps to determine two decisions: (i) the

order up to levels for the two items at the two warehouses, and (ii) whether to accept a transshipment

request from the other warehouse. The acceptance of a transshipment request in a warehouse depends

on the time until the next review epoch and the inventory level of the warehouse. We propose a search

procedure, which is a combination of greedy heuristics and a Lagrangian relaxation method, to minimize

the total operating cost of the system. Numerical experiments suggest that optimality can be achieved

using the proposed procedure. The time threshold to accept a transshipment request in a warehouse

increases with the emergency shipment cost. In addition, the more inventory available in the warehouse

the more likely for a transshipment request to be accepted.

Keywords Multi-item inventory · Transshipment · Pooling · Markov decision models · Lagrangian

relaxation

1 Introduction

We consider a problem faced by an online retailer of pet food described in Miller et al. (2006). This

online retailer has multiple warehouses at strategic locations in order to serve her customers. When a
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customer’s order cannot be fulfilled completely from a single warehouse due to shortage, the company

usually tries to deliver the order from multiple warehouses directly to the customer. Miller et al. (2006)

and Xu et al. (2009) call this split deliveries. According to Miller et al. (2006), customer satisfaction

is low when they receive their orders in split deliveries. The online retailer in their study was concerned

about this issue. So, in that paper, the authors develop heuristics to determine appropriate bundles of

products that each warehouse should carry so that the total number of split orders is minimized. In their

model the authors assume a bulk factor that depends on the order quantity and safety stock for an item.

In spite of the flexibility that a multi-item multi-warehouse system offers, timely deliveries still depend

on stock availability at the warehouses. One way to avoid split deliveries is to assemble a customer’s

order in a warehouse near the customer by making lateral shipments of items from other warehouses,

and then perform a single delivery to the customer. As highlighted by Miller et al. (2006), customer

satisfaction is high in spite of the higher cost that is usually passed on to the customers.

Motivated by the above real-life observation, we aim to find an optimal inventory policy given the

bundles of items carried by the warehouses. We assume that the company has an option to use trans-

shipment between warehouses to avoid split deliveries. It is appealing to use transshipment in practice

as it reduces the number of split orders, which simplifies the handling of final assembly and product

returns. In addition, it is also well known that transshipment helps companies to pool inventory, and

allows them to carry a larger number of items in their catalogs.

There exists a lot of work in the literature on inventory models with transshipment. It is also common

in many industries for companies to use a periodic review policy to manage their inventory. However,

according to Paterson et al. (2011), the study of transshipment in periodic review inventory models is

limited to mainly single-item models. In their concluding remarks, the authors mention that research in

multi-item inventory models is lacking and point out that this is an area worth pursuing. Specifically,

joint optimization on multiple items over multiple warehouses with transshipment has not received much

attention.

One paper by Archibald et al. (1997) derives formulas for a single-item two-warehouse periodic review

inventory model, which permits transshipment and emergency shipments. The authors also propose a

heuristic to find solutions for a two-item two-warehouse model. However, we do not find any expression

of the objective function for the two-item two-warehouse model in that paper. The authors also admit

that the proposed heuristic is not successful for certain problem instances.

Our objective in this paper is to propose a heuristic that provides solutions for the two-item two-

warehouse periodic review inventory model. Specifically, we consider a system with two items and two

capacitated warehouses where transshipment between warehouses is permitted. Similar to Miller et al.

(2006), we assume items could be bundles of products. Each warehouse carries both bundles with the

objective to minimize the total operating cost, which comprises the variable ordering cost, the holding

cost at the warehouses, the cost of transshipment between warehouses, and the cost of emergency orders

if transshipment is not possible. We formulate the problem as an infinite horizon dynamic program.

We propose a search procedure, which is a combination of greedy heuristics and a Lagrangian re-

laxation method, to solve the problem. Numerical experiments suggest that the proposed procedure

can reach optimality. Furthermore, we also identify conditions where an emergency order is preferred

over transshipment. We emphasize that our solution approach is different from that by Archibald et al.
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(1997). Our approach can also be extended to the multi-item two-warehouse case in a straightforward

manner.

This paper is structured as follows. Section 2 reviews the literature and highlights the lack of work

on periodic review inventory models with transshipment. In Section 3 we present the formulation of

the two-item two-warehouse periodic review inventory model with transshipment. Section 4 presents a

search procedure for solving the model. The procedure consists of three heuristics used in succession.

Section 5 demonstrates the applicability of our approach through numerical experiments. The last section

concludes the paper with a summary of findings.

2 Literature review

A comprehensive review of the literature on inventory models with lateral shipments is provided by

Paterson et al. (2011). To avoid repetition, we confine here to a very brief review of research related to

our work in particular. Tables 3 and 4 of Paterson et al. (2011) reveal that only four papers analyze

a multi-item inventory model with transshipment. We provide an extract of this information in Table

1 wherein we have also included our work in the last row. Of the five papers listed, only two discuss

periodic review models and both of them use an order up to policy in a multi-item two-warehouse system.

Author(s) Continuous or Policy # of # of Transshipment
periodic review? considered warehouses items Type Pooling

Archibald et al. (1997) Periodic Order up to 2 m Reactive Partial
Kranenburg et al. (2009) Continuous (S − 1, S) n m Reactive Partial

Wong et al. (2005) Continuous (S − 1, S) n m Reactive Complete
Wong et al. (2006) Continuous (S − 1, S) 2 m Reactive Complete

Our paper Periodic Order up to 2 m Reactive Partial

Table 1 Inventory models with transshipment.

Transshipment facilitates pooling of inventory. In the literature we find two types of pooling strate-

gies. In complete pooling of inventory a transshipment location shares all of its inventory in case of a

transshipment request. In partial pooling a transshipment location shares only a fraction of its inven-

tory, keeping the rest to meet its own demand. A further classification of the models is on the type of

transshipment used. In a proactive model transshipment can be effected only at fixed points in time,

while transshipment can occur at any time in a reactive model. In the literature we find predominantly

reactive transshipment policies (see Paterson et al. (2011)).

Wong et al. (2006) classify the multi-item multi-warehouse models according to the level at which

the solutions are found and analyzed. The analysis could be at the item level or at the system level.

In the item-level approach, optimization is performed item wise (by considering the problem as a set

of independent single-item cases). The system-level approach as proposed by Sherbrooke (2004) resorts

to system optimization by considering all items jointly. Obviously, system optimization is more cost

effective. However, the bulk of the literature involving transshipment uses only the item-level approach.

Papers that use the system-level approach include Archibald et al. (1997) and Wong et al. (2006).

Among the papers on inventory models with transshipment, the most relevant to our work is that of

Archibald et al. (1997). The authors mainly analyze an order up to inventory policy with transshipment,
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and develop expressions of order quantities for a two-item one-warehouse problem. They also propose a

heuristic to solve the two-item two-warehouse problem. However, the proposed heuristic is based on some

restrictive assumptions, and it also fails to find solutions in certain circumstances. Wong et al. (2006)

propose a Lagrangian relaxation based heuristic to solve a multi-item continuous review inventory model

with waiting time constraints.

As indicated above, little work has been done on using the system-level approach to solve periodic

review inventory models with transshipment. In addition, capacitated warehouses are also not widely

considered. In this paper, we propose a heuristic to solve a periodic review capacitated inventory model

for the two-item two-warehouse system. The approach can easily be extended to the multi-item two-

warehouse case.

3 Model and analysis

We consider an online retailer with two capacitated warehouses as depicted in Figure 1. Each of these

warehouses serves a geographical region. For simplicity, we assume that the warehouses carry only two

items. The retailer uses a periodic review inventory policy. Without loss of generality, we assume that the

length of each period is 1. Demand for item j in warehouse k occurs according to a Poisson process with

rate λkj , j, k = 1, 2. The Poisson processes are independent. Each warehouse makes joint replenishment

orders for both items to a central warehouse. If a demand occurs during a stockout at a warehouse, that

demand can be satisfied by either a transshipment from the other warehouse or by an emergency order

placed to the central warehouse. Obviously, this results in extra costs.

The transshipment policy employed by the system is reactive with partial pooling of inventory. That

is, in the event of a transshipment request, the decision to accept it by the other warehouse is dependent

on the time still remaining until the next period (or the next order) and the stock availability at the

point in time. For example, consider just one of the two items (say item j) which is held in both

warehouses. The inventory behaviour is depicted in Figure 2. At time 1− t a demand for item j occurs

at warehouse 1 during a stockout while at the warehouse 2 we find i2j (> 0) units available. So, a

transshipment request from warehouse 1 to warehouse 2 is sent instantly. But, warehouse 2 honours this

request only if the remaining time to the next order, i.e., t time units is less than a threshold time of

τ22j (a decision variable) which is dependent on i2j . Otherwise, the transshipment request is rejected in

which case warehouse 1 makes an emergency order. This is very natural as the other warehouse would

not want to risk a stock out occurring in its own warehouse before the next period.

We also assume as in Archibald et al. (1997) that the unsold inventory at the end of the period

can be returned to the central warehouse for a full refund and then a new order is placed and received

at the warehouses at the start of the next period. Without loss of generality we assume that the skus

(stock keeping units) are in units of pallets and hence their bulk factors are the same. Consequently, the

storage space required by any sku in the warehouse is the same.

We assume instantaneous replenishment of orders from the central warehouse. The ordering of stocks

and its instantaneous delivery occurs at the start of the review period for all the items. The review period

is also assumed to be the same for both the items (and for both warehouses) and hence all orders and

their receipts occur simultaneously and jointly at the same time.
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Central Warehouse

Warehouse 1
(S1j , τ

1
ij |c1j , h1j ,m1)

Warehouse 2
(S2j , τ

2
ij |c2j , h2j ,m2)

Emergency shipment

at $E per unit

Regular shipment

at $c1j per unit

Regular shipment

at $c2j per unit

Transshipment

at $Tkk′ per

unit from k to k′Demand ∼
Poisson(λ1j)

Demand ∼
Poisson(λ2j)

Fig. 1 A two-item two-warehouse model with transshipment where j = 1, 2.

We note that there are two decision problems in this model. The first is the decision to choose

between an emergency order or a transshipment at an instant within a review period when a demand

occurs at a warehouse for a stocked out item. The second problem is the reordering decision at a review

epoch. Archibald et al. (1997) have performed an excellent analysis of these by using a finite horizon

continuous time Markov decision process for the first problem and an infinite horizon discounted Markov

decision process for the second. We adapt their results for our model. The underlying stochastic process

is the inventory level process at the warehouses given by {(S1(t),S2(t)), t ≥ 0} with the state space given

by E = {(s1, s2)} where the vectors sk = (sk1, sk2) with 0 ≤ sk1 + sk2 ≤ mk and mk is the capacity of

the warehouse k, k = 1, 2. The objective is to minimize the system-wide total cost which comprises of

the variable ordering cost, holding and transshipment costs. We assume that there is no fixed ordering

cost. Specifically, we use the notation as given in Table 2.

3.1 The main optimization problem

In order to formulate our main optimization problem, we first derive our objective function which is the

expected discounted cost for the infinite horizon. We recall our assumption that we return the unsold

items just prior to the start of the next period at no cost and with full refund for the returned items. We

then make the order for the next period. Since, there is no fixed order cost in the model and the variable

order cost is linear, the ordering decision at the start of any period is independent of the stock level just

before the review. Hence, it is enough to consider only one state of the system at a review epoch.

For convenience, as in Archibald et al. (1997), we take for the system, this state to be (0, 0) for each

item j = 1, 2. Consequently, at any ordering instant, the system will not have any items in the warehouse.
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10 1− t

0

Time

Time1

S1j

i2j

S2j

t (≤ τ2ij ?)

Fig. 2 Decision time within a period in a one-item two-warehouse model when a stockout occurs at 1 − t in
warehouse 1 and the stock in warehouse 2 is i2j(> 0) units.

So, the decision problem is to know how many units to have at the start of any period. Let us assume

that at the start of every period after returning the unsold items, we will order for skj units of item j for

warehouse k, with k, j = 1, 2. Let W1(s1, s2) be the one-period cost for maintaining the inventory and

for satisfying the demand from stock or from transshipment or by emergency order. Then, it is very easy

to see that, if V (0,0) is the infinite horizon minimum expected total discounted cost for this system of

two warehouses, then the optimal value function satisfies the following optimality equation:

V (0,0) = min
sk1+sk2≤mk,k=1,2


2∑
j=1

{
c1js1j + c2js2j

}
+ β(W1(s1, s2) + V (0,0)

 , (1)
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β Discount factor
ckj Cost of regular order per unit for item j in warehouse k
E Emergency order cost per unit

f(λ, n, t) = e−λt (λt)
n

n!

F (λ, n, t) =
∑n
i=0 e

−λt (λt)i
i!

λk Demand rate at warehouse k
mk Capacity of warehouse k

pk, 1− pk Probability of a demand for items 1 and 2, respectively, at warehouse k
skj Stock level of item j in warehouse k
Skj Order up to level of item j in warehouse k
Tkk′ Transshipment cost from warehouse k to warehouse k′

τkij The threshold time until the next period for accepting a transshipment

request at warehouse k holding inventory of i units of item j
at the instant of the transshipment request (a decision variable)

Vj(0, 0) Infinite horizon discounted total cost due to item j
V (0,0) Infinite horizon discounted total cost of the system

wEt (s1j , s2j) The minimum expected total cost until the next review epoch, given that
the time to the next review epoch is t and there is an unmet demand
for item j with stock (s1j , s2j) that is satisfied with an emergency order

wTt (s1j , s2j) The minimum expected total cost until the next review epoch, given that
the time to the next review epoch is t and there is an unmet demand
for item j with stock (s1j , s2j) that is satisfied with a transshipment

W1(s1j , s2j) The minimum expected total cost per period to satisfy demand for item j
by transshipment or emergency orders

W1(s1, s2) The minimum expected total cost per period to satisfy demand
by transshipment or emergency orders

Table 2 Notation used in this paper.

where β is the discounting factor. It is now clear that as this a single state Markov decision process,

the optimal policy is the order up to level policy (see Archibald et al. (1997)). Note that V (0,0) is a

function of (s1, s2).

A moment of reflection on the value function for the finite horizon Markov Decision process (MDP)

will reveal the complexity involved in considering the events that occur in the evolution of the inventory

level stochastic process. Hence, as a first level of approximation, we propose to consider the two-item

two-warehouse model to be two separate one-item two-warehouse models. The two separate models are

then inter-related through the capacity constraints.

So, if we consider each item independently and assume that Vj(0, 0) to be the infinite horizon value

function corresponding to only item j, j = 1, 2 in both warehouses, then we can just borrow single-item

two-warehouse results of Archibald et al. (1997). For easy reference, these results are surveyed in the

Appendix at the end of this paper. Then, we have

Vj(0, 0) = min
sk1+sk2≤mk,k=1,2

{
c1js1j + c2js2j + β(W1(s1j , s2j) + Vj(0, 0)

}
. (2)

Now, W1(s1j , s2j) remains to be found. By conditioning on the instant of the occurrence of the first

unmet demand, W1(s1j , s2j) can easily be derived as in Archibald et al. (1997) which is given in (16).

Thus, for two-item two-warehouse capacitated model we have the following optimization problem.
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P0:

min V (0,0) =
∑2
j=1 Vj(0, 0) (3)

subject to

s11 + s12 ≤ m1;

s21 + s22 ≤ m2;

where m1,m2 are the capacities of warehouses 1 and 2 respectively and Vj(0, 0) are given by (2).

The solution of the problem is the vector of order up to levels, S = (S1,S2) with S1 = (S11, S12)

and S2 = (S21, S22) which minimizes the total cost of the problem for the given capacity constraints.

Let the associate total cost be C(S). Let C∗ be the optimal cost corresponding to optimal solution S∗

for problem P0.

It is clear that the problem is a non-linear integer programming problem with linear constraints. The

model is in a suitable format for the application of Lagrangian relaxation (see Fisher (1985)).

3.2 The Lagrangian relaxation problem

Let the vector µ = (µ1, µ2)T ε<2 with µj ≥ 0, j = 1, 2 be the Lagrange multipliers. Now, by relaxing

the capacity constraints in problem P0 we obtain the following relaxed problem.

P1:

min

2∑
j=1

Vj(0, 0) + µ1(

2∑
j=1

s1j −m1) + µ2(

2∑
j=1

s2j −m2)

=

2∑
j=1

(Vj(0, 0) + µ1s1j + µ2s2j) + µ1m1 + µ2m2. (4)

As the constant term µ1m1 + µ2m2 can be ignored during the optimization process, it is clear that

the Lagrangian relaxation problem P1 is separable in item and so the optimal solution to P1 can be

obtained by solving the following problem for each j = 1, 2.

P1j :

minVj(0, 0) + µ1s1j + µ2s2j . (5)

Let C1
µ(S) be the optimal cost of problem P1, for given set of µ’s. Then the capacity used at the

warehouse k for this ordering policy S is, Mk = Sk1 + Sk2. We now have the following result (see Wong

et al. (2006)).

Property 1 From the formulation in P1 we have the following properties:

(i) C∗ ≥ C1
µ(S) for all (µ1, µ2) ≥ (0, 0).

(ii) C∗ ≥ maxµ C
1
µ(S).

(iii) If for some (µ1, µ2) ≥ (0, 0) the optimal solution for problem P1 is S1∗ and Mk ≤ mk, k = 1, 2 then

S1∗ is feasible for problem P0 and C(S1∗)− C∗ ≤ µ1(m1 −M1) + µ2(m2 −M2).
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(iv) If for some (µ1, µ2) ≥ (0, 0) the optimal solution for problem P1 is S1∗ and for k = 1, 2, Mk = mk,

if µk > 0; Mk ≤ mk if µk = 0, then S1∗ is the optimal ordering policy for problem P0.

Proof

(i) The result easily follows from the observation that any optimal solution to problem P0 is a feasible

solution for problem P1 for any given (µ1, µ2) ≥ (0, 0). In turn, any feasible solution to problem P1

should yield an objective value that is more than or equal to its optimal objective value.

(ii) This can easily be inferred from property (i) above.

(iii) The first part is the consequence of definition of problem P0 while the second part follows from (i).

(iv) This follows from (iii). One can refer to Everett (1963) from which also the result follows. ut

The properties above are useful in our search for the optimal solution to problem P0. First, we

note that Property (i) above provides us with a lower bound for the optimal objective function value of

problem P0. The next property (ii) indeed provides us with the best such lower bound. Further, from

(iii) we have an upper bound for the gap between the objective function value for any feasible solution to

P0 and its optimal objective value. The final result indicates that the relaxed solution can be optimal to

problem P0 and if so the capacity of a warehouse will be fully utilized when the corresponding multiplier

is positive and not fully utilized when the multiplier is zero.

Thus, to develop the algorithm, we first need the optimal solution to the relaxed problem for given

set of Lagrange multipliers which would give us a lower bound. Then, we need to get the tightest lower

bound for which we should find the best Lagrange multipliers. The approaches for finding these are

presented below.

It is known (see Archibald et al. (1997)) that the functions in involved in (5) are convex with respect

to the inventory levels and sub-modular (see Topkis (1978)) in time and inventory level variables. So,

these separated problems can be solved independently using the algorithm of Archibald et al. (1997)

(please refer to the Appendix). But, we note that to apply this procedure we need the values of the

multipliers µ1 and µ2. From the property above, for a given set of (µ1, µ2), the solution to the separated

problems yields a lower bound for the optimal objective value of problem P0. The best possible lower

bound can be obtained by optimizing over µ1 and µ2. As the problem is a non-linear integer programming

problem, it is not differentiable and so we cannot apply methods like steepest ascent. For such situations,

the approach usually employed is the subgradient optimization method (Bazaraa et al. (1993)) which

could be considered similar to steepest ascent method with the subgradient based direction replacing the

gradient direction. We refer the readers to Fisher (1985) for an excellent exposition of this procedure.

We employ this procedure to our problem to find the optimal values of (µ1, µ2).

Thus, our task is now to obtain the tightest lower bound and the associated best Lagrange multipliers

(µ∗1, µ
∗
2) for C1

µ(S). The method is to first solve Problem P1j given in (5) by taking some initial values for

(µ1, µ2) and then iteratively updating (µ1, µ2) using the subgradient optimization until the best lower

bound is obtained. We now describe these two procedures below.

Initial values for the multipliers

To apply the subgradient procedure, we need to initialize (µ1, µ2). Usually, (0, 0) is chosen as the initial

values for the µs but a more efficient procedure to choose the initial values for (µ1, µ2) is proposed by
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Wong et al. (2006). The algorithm first finds three possible initial values for (µ1, µ2) and then chooses

the best among the three.

Algorithm 1 Finding Initial Multipliers

1: First set: Let µ1 = 0. Find the smallest value of µ2 for which the capacity constraints of problem

P0 are satisfied.

2: Second set: Let µ2 = 0. Find the smallest value of µ1 for which the capacity constraints of problem

P0 are satisfied.

3: Third set: Let now µ1 = µ2. Find the smallest value of both µ1 and µ2 for which the capacity

constraints of problem P0 are satisfied.

4: Of the three above, choose the one with the largest objective function value for Problem P1 as the

initial set of µs for the subgradient procedure.

5: END

We also note that the optimal solution corresponding to the selected set of multipliers is a feasible

solution for problem P0. This now provides an initial value for the upper bound (call it Ĉ) that is

required in the subgradient procedure. We now describe this procedure below.

Subgradient optimization

The procedure involves updating (µ1, µ2) at each iteration using the subgradient direction calculated in

that iteration. If at the n-th iteration, µn = (µn1 , µ
n
2 ) are the Lagrangian multipliers and if Mn

k be the

total capacity used in warehouse k, the subgradient direction at iteration n is given by

γnk = Mn
k −mk. (6)

The Lagrange multipliers are updated as follows:

µn+1
k = max(0, µnk − t

nγnk ). (7)

In the above, tn is the step size which also needs updating at every iteration. The most commonly used

updating procedure is the one proposed and justified by Held et al. (1974). The updating formula is

tn = sn
C1
µn − Ĉ

(γn1 )2 + (γn2 )2
, (8)

where Ĉ is the best known upper bound for problem P0 and sn is a scalar between 0 and 2. If after a

specified number of iterations, there is no improvement in the value of the objective function, the step

size is updated by halving the value of sn.

Having prepared the ground for solving our problem to optimality, we now propose in the next

section the procedure to obtain the optimal solution. For more details on our experience which led to

this solution procedure, we refer the readers to Koushik (2010).
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4 Solution procedure

As described in the previous section, our optimization problem which is a non-linear integer programming

problem can only be solved numerically. To this end, we described in the last section the Lagrangian

relaxation based procedure supported by subgradient optimization.. We ran the procedure for some

example problems, verifying the solution through the use of brute force. Our experience revealed that

the convergence of the procedure and also the quality of the final solution depended very much on the

initial value chosen for S, the order levels. The usual choice of S = (0,0) appeared to be a very poor for

the procedure. Thus, choosing a good initial feasible S became important. For this purpose, we propose

a greedy heuristic. This heuristic starts at an infeasible solution S = (m1e, m2e), where e = (1, 1). That

is, we ignore the capacity constraints and proceed iteratively to find a good initial feasible solution. One

other noteworthy observation is that in many of the example problems we solved, the solution from the

greedy heuristic itself turned out to be optimal as confirmed during the application of the Lagrangian

relaxation approach.

The next step is to use the Lagrangian relaxation approach supported by the subgradient optimization

procedure to update (µ1, µ2). As we explained in the previous section, we also needed a good initial

(µ1, µ2) for which we resorted to the procedure proposed by Wong et al. (2006). It is known that the

Lagrangian relaxation approach does not always lead to the optimal solution to the original problem.

Thus, we propose a local neighbourhood procedure to improve the solution provided by Lagrangian

relaxation approach. Algorithm 2 summarizes the procedure to solve the problem.

Algorithm 2 Solution Procedure

1: Use the greedy heuristic to find an initial feasible solution.

2: Use the Lagrangian relaxation method supported by the subgradient procedure to test whether the

initial solution is optimal. If not, find iteratively a better solution. If optimality cannot be reached

then go to the next step.

3: Use the improvement heuristic to find a better solution to the one found in Step 2.

4: End

We note that in the above procedure, to solve the item-wise separated optimization problems, we

use the procedure of Archibald et al. (1997). To evaluate the performance of our procedure, we indeed

compared the solution from the above procedure to the optimal solution obtained using brute force. It

is heartening to note that our procedure indeed performed better. We now describe each of the steps in

our main procedure given above.

4.1 Initial greedy heuristic

As explained above, our initial greedy heuristic starts with an infeasible solution, ignoring the capacity

constraints. To move towards feasibility, the technique then removes one unit of either product from the

current solution and calculates the difference in the value of cost before and after the removal. The item

that produces the least of the differences is removed from the current solution. This removal procedure

is repeated until a feasible solution is reached. It should be noted that the i-th unit of product j is a
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candidate for removal only if the (i− 1)-th unit of product j had already been removed. That is, at any

iteration only one unit is removed. This heuristic is based on the observation that the function Vj(0, 0)

is convex with respect to (s1j , s2j) and so 4Vj(0, 0) increases with increase in either s1j or s2j . Hence

removal of one unit is certainly cheaper than removal of the subsequent unit. Algorithm 3 describes the

initial greedy heuristic.

Algorithm 3 Initial Greedy Heuristic

1: (s11, s12, s21, s22)← (m1,m1,m2,m2)

2: S1 ← s11 + s12 and S2 ← s21 + s22
3: repeat

4: if s11 = 0 then

5: s12 ← s12 − 1

6: else if s12 = 0 then

7: s11 ← s11 − 1.

8: else

9: d1 ← V1(s11 − 1, s21)− V1(s11, s21), d2 ← V2(s12 − 1, s22)− V2(s12, s22)

10: if d1 < d2 then

11: s11 ← s11 − 1

12: else

13: s12 ← s12 − 1

14: S1 ← s11 + s12
15: end if

16: end if

17: until S1 ≤ m1

18: repeat

19: if s21 = 0 then

20: s22 ← s22 − 1

21: else if s22 = 0 then

22: s21 ← s21 − 1

23: else

24: d3 ← V1(s11, s21 − 2)− V1(s11, s21), d4 ← V2(s12, s22 − 1)− V2(s12, s22)

25: if d3 < d4 then

26: s21 ← s21 − 1

27: else

28: s22 ← s22 − 1

29: S2 ← s21 + s22
30: end if

31: end if

32: until S2 ≤ m2

33: END

It is very clear that if the problem is unconstrained, this heuristic itself will converge to the optimal

solution. In the capacity constrained case, the method would follow the steepest descent till the invento-

ries satisfy the capacity constraints. For discrete convex optimization such as this problem, this greedy

procedure does not guarantee convergence to global optimality. Hence, we limit the use of the greedy

heuristic only to obtain an initial feasible solution. However, the Lagrangian relaxation procedure can

test its optimality in all cases. We now describe the Lagrangian relaxation method.
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4.2 Lagrangian relaxation method

We fist recall the Lagrangian relaxation problem (P1) formulated in (5). Note that each separate item-

wise problem in it is a single-item two-warehouse problem which can be solved using the procedure of

Archibald et al. (1997). Algorithm 4 describes the Lagrangian heuristic.

Algorithm 4 Lagrangian Heuristic

1: Choose a value for the scalar sε(0, 2).

2: Get the initial solution S and its associated cost C from Algorithm 3

3: Get the initial values for µ1 and µ2 from Algorithm 1 in section 3.2.

4: Solve the problem P1 with µ1 and µ2 obtained in the last step. Let the corresponding solution be

Sµ and the total cost be Cµ
5: if Sµ is feasible and Cµ ≤ C then

6: S← Sµ and C ← Cµ
7: end if

8: if | C − Cµ |∼ 0 then

9: go to step 14

10: else if S is the same as any solution obtained in previous iterations then

11: scalar s← s/2.

12: end if

13: Update the values of µ1, µ2 as follows and go to step 4

– γ1 ← s11 + s12 −m1

– γ2 ← s21 + s22 −m2

– t← s(Cµ−C)

(γ1)2+(γ2)2

– µ1 ← max(0, µ1 − tγ1)

– µ2 ← max(0, µ2 − tγ2)

14: End

4.3 Improvement heuristic

In spite of using good initial solution and good Lagrangian multipliers, we found instances when the

procedure did not converge to the optimal solution. To improve this and to also explore the feasible

region for a better solution, we propose a neighborhood search heuristic. We describe this improvement

heuristic as follows.

From the value of Vj(0, 0) obtained as the current upper bound in the Lagrangian relaxation proce-

dure we identify the feasible neighbors of sj = (s1j , s2j) for product j = 1, 2. Combinations of neighbors

from the two sets are checked for satisfying the capacity constraints, discarding those combinations that

violate these constraints. The feasible neighbour yielding the minimum cost replaces the solution giving

the current upper bound. The process is repeated till the current upper bound solution did not change.

Algorithm 5 describes the improvement heuristic. Here, ei is the unit row vector with 1 in the i-th place

and e = (1, 1).
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Algorithm 5 Improvement Heuristic

1: Get the solution S` and its associated cost C` from Algorithm 4

2: S0 ← S` and C0 ← C`
3: Get the feasible neighborhood set N(S0) = {(s01 ± ei, s

0
2 ± ej) : (s01 ± ei)e

T ≤ m1, (s
0
2 ± ej)e

T ≤
m2; i, j = 1, 2}

4: Find S′ = arg min
SεN(S0)

V (0,0) and the corresponding VS′ , the value of the value function at S′

5: if VS′ 6= C0 then

6: S0 ← S′

7: C0 ← C′

8: GO TO 3

9: else

10: STOP

11: end if

12: End

The Improvement procedure is used only in cases when the Lagrangian relaxation fails to reach

optimality. The Lagrangian heuristic is useful because the solution provided by it is based on the inputs

such as good initial solution and Lagrangian multipliers. So, if the Lagrangian heuristic fails then with

the solution from it, the improvement heuristic would be able to find a better local minimum. Now, to

illustrate our procedure and to analyse its effectiveness we ran some numerical experiments. In the next

section, we describe this aspect of our work.

5 Numerical experiments

This section performs numerical experiments based on realistic settings to study the proposed solution

procedure. We focus on convergence to optimality of the heuristics and sensitivity analysis with respect

to changes in parameters.

5.1 Experiment settings

We have selected a range of values for the parameters that are realistic for the e-fulfillment industry.

Further we have pegged the arrival rates to the capacities of the warehouses so as to ensure that an

unreasonable arrival rate is not generated for a specific capacity. We have considered the book e-tailing

industry as a source for the parameters used in the experiments. A set of 288 experiments for the two-item

two-warehouse problem was run with various combinations of parameters as listed in Table 3.

We recall our basic assumption that the demands at the warehouses occur according to Poisson

processes. We use Poisson splitting of demands at each warehouses, i.e. if λk is the overall demand rate

at warehouse k, then the demand rate for item 1 is λkpk and for item 2 is λk(1−pk). In real life situations,

the inventory allocated to the warehouse and the capacity of the warehouse are usually inter-related. A

serious mismatch of the capacity of the warehouse and inventory intended for the warehouse provides us

with a capacity planning problem rather than an inventory allocation one. Hence the arrival rates are

derived from the capacities of the warehouses through solving the following formulas. We assume that
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Parameters Units # of Instances Values

m1 sku 3 20, 40, 60

m2 sku 1 60

z-value from N(0, 1) – 2 2.57583, 1.95996

p1 % 2 25%, 50%

p2 % 2 25%, 50%

h $/sku-yr 3 0.01, 0.03, 0.05

c1j $/sku 1 20

c2j $/sku 1 20

E $/sku 2 50, 60

Tkk′ $/sku 2 30, 40

Total number of settings 288

Table 3 Values for the input parameters used in the numerical experiments.

the warehouses employ a simple service level based safety stock policy given by the well-known formula

λ+zα
√
λ where λ is the mean demand and zα is the value of the standard normal variate corresponding

to a service level of 1− α. Thus, we have,

λ1 + z
√
λ1 −m1 = 0 (9)

λ2 + z
√
λ2 −m2 = 0 (10)

Solving these equations (9 and 10) for λ1(> 0) and λ2(> 0), we get the total arrival rates for each

warehouses. Then, using Poisson splitting, we get the demand rates for each of the products at each

warehouse as follows:

λ11 = p1r1 (11)

λ12 = (1− p1)r1 (12)

λ21 = p2r2 (13)

λ22 = (1− p2)r2 (14)

Three specific holding cost rates 0.01, 0.03, 0.05 were used. The insights from the 288 experiments are

described below.

5.2 Sensitivity analysis

At the outset, we would like to highlight that for many of the instances the initial greedy heuristic itself

converged to optimality. Of course, we could verify this only during the application of the Lagrangian

heuristic. We also encountered some instances outside of this experiment for which the initial greedy

heuristic failed to converge but the Lagrangian heuristic was able to converge to the optimal solution.

Sensitivity analysis with respect to capacities

We note that at the optimal solution, either one or all of the µ’s may be zero. If any of the µ’s is

zero, then the corresponding capacity constraint becomes tight and so irrelevant. In all our experiments,
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Fig. 3 Order up to level and capacity of warehouse 1.

the optimal solutions filled the warehouses to their capacities. This is also an observation and a crucial

assumption for Archibald et al. (1997)’s algorithm for the two-warehouse case to work. We point out

that in our case this assumption is not necessary. In Figure 3, as capacity of warehouse changes from 20

to 60, the optimal order level for the respective item in the warehouse increases proportionally. This is

possibly due to the way we have pegged capacity to demand rates.

Sensitivity analysis with respect to costs

We have considered for the experiment two values each of emergency and transshipment costs and 3

values of holding costs. The solution was not sensitive to the changes in these costs. Since the solution

fills the inventories to the capacity, the extra cost does not change the solution. However, ‘τkij ’ the time

instant which determines the choice between transshipment and emergency in case of transshipment

requests due to stock outs, changes. For increase in holding cost, the values of the time limit τkij are

unaffected and remain the same. But, τkij appears to be sensitive to emergency cost as shown in Figure

4. The figure clearly reveals the transshipment decision policy for warehouse 2, given an emergency cost

E. The curves demarcate the regions over which the decision on transshipment request changes from

acceptance to rejection. The decision depends on two variables - the time till the next review epoch and

the inventory present in the other warehouse. It is interesting to note that for E = 60, the demarcation

curve is a straight line while for E = 50, it is a curve. Clearly, as the emergency cost increases, the region

in which emergency shipments are preferred (i.e. rejection of transshipment requests) shrinks. Further,

the diagram reveals some conservatism that if at a transshipment request the review is further away

then the algorithm recommends emergency shipment, especially so in the case of lower E.

6 Conclusions

In this paper we consider a two-item two-warehouse periodic review inventory model that permits trans-

shipment and emergency orders in the event of a stockout at a warehouse. We develop a procedure

to solve the problem with greedy and Lagrangian relaxation based heuristics. The procedure helps to

determine two decisions: (i) the order up to levels for the two items at the two warehouses, and (ii)
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Fig. 4 Transshipment acceptance and rejection regions for warehouse 2.

whether to accept a transshipment request from the other warehouse. When a warehouse is requested

for transshipment, the decision depends on two factors – the time until the next review epoch and the

inventory level of the warehouse.

Our numerical experiments provide the following insights:

1. The initial greedy heuristic is itself quite good in terms of the number of times it converges to an

optimal solution.

2. The initial greedy heuristic provides a feasible solution for the Lagrangian relaxation method. The

latter converges to an optimal solution or provides bounds on the optimal solution.

3. The time threshold to accept a transshipment request in a warehouse increases with the emergency

shipment cost. In addition, the more inventory available in the warehouse the more likely for a

transshipment request to be accepted.

4. The decision to use an emergency shipment depends on the inventory level of the other warehouse.

We highlight that the Lagrangian relaxation method results in a separable optimization problem,

which can be exploited to solve the multi-item two-warehouse problem. Interested readers may refer to

Koushik (2010) for analysis of such a system. A natural extension to the problem discussed in this paper

is to study the multi-item multi-warehouse problem.
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7 Appendix

In this appendix, we survey the results of Archibald et al. (1997) pertaining to the single-item two-

warehouse system that is used in our Lagrangian relaxation method. For the sake of clarity, we retain

the notation of that paper.

Lemma 1 (Archibald et al. (1997)) Let wEt (s1j , s2j) and wTt (s1j , s2j), j = 1, 2, denote the minimum

expected total costs until the next review epoch given that the time to the next review epoch is t when the

system is in state (s1j , s2j) and there is an unmet demand at one of the warehouses for item j, which is

satisfied by an emergency order and a transshipment respectively. Then

wEt (s1j , 0) = E +

∫ t

0

λ2jf(λ2j , s2j , u)


s1j∑
i1j

f(λ1j , i1j , u)wt−u(s1j − i1j , 0)

+

∞∑
i1j=s1j+1

f(λ1j , i1j , u)
(
(i1j − s1j)E + wt−u(0, 0)

) du

+ f(λ2j , 0, t)


s1j∑
i1j

f(λ1j , i1j , u)W0(s1j − i1j , 0)

+

∞∑
i1j=s1j+1

f(λ1j , i1j , u)
(
(i1j − s1j)E +W0(0, 0)

) du

and

wTt (s1j , 0) = T1,2 − E + wEt (s1j − 1, 0) (15)

for 0 < s1j ≤ m1. In the above equations, the functions wt(s1j , 0) and wt(s1j , 0) are given as

wt(s1j , 0) = min{wEt (s1j , 0), wTt (s1j , 0)} for 0 < s1j ≤ m1

and

wt(0, s2j) = min{wEt (0, s2j), w
T
t (0, s2j)} for 0 < s2j ≤ m2.

Further,

W0(s1j , s2j) = h1js1j + h2js2j − c1js1j − c2js2j .

Proof Conditioning on the time at which the next demand at warehouse 2 occurs yields the above result.

ut

Theorem 1 (Archibald et al. (1997)) For the finite horizon Markov decision process, the optimal

value function satisfies the following: For j = 1, 2, the minimum expected total cost per period to satisfy
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the demands is

W1(s1j , s2j) =

∫ 1

0

λ1jf(λ1j , s1j , t)

s2j∑
i2j=0

f(λ2j , s2j , t)w1−t(0, s2j − i2j)dt (16)

+

∫ 1

0

λ2jf(λ2j , s2j , t)

s1j∑
i1j=0

f(λ1j , s1j , t)w1−t(s1j − i1j , 0)dt

+

s1j∑
i1j=0

s2j∑
i2j=0

f(λ1j , s1j , t)f(λ2j , s2j , t)W0(s1j − i1j , s2j − i2j)

and

wt(0, 0) = E[1 + λ1j + λ2j)t] +W0(0, 0) (17)

Proof Usual probabilistic conditioning arguments on the instant of the occurrence of the first unmet

demand, the above theorem can easily be proved. See also Archibald et al. (1997). ut

The expected discounted cost for the infinite horizon problem can now be derived. We recall the assump-

tion that the unsold items will be returned just prior to the start of the next period at no cost and with

full refund. We then make the order for the next period. Since, there is no fixed order cost in the model

and the variable order cost is linear, the ordering decision at the start of any period is independent of

the stock level just before the review. Hence, it is enough to consider only one state of the system at a

review epoch. For convenience, that state is taken to be (0, 0) for each item j = 1, 2. Consequently, at

any ordering instant, the system will not have any items in the warehouse. So, the decision problem is

to know how many units to have at the start of any period. As per the definition, if we decide to have

skj units of item j in warehouse k, with k, j = 1, 2, then the minimum expected total cost of satisfying

the demands during the next period is W1(s1j , s2j) given by (16). We now have the following theorem:

Theorem 2 (Archibald et al. (1997)) If Vj(0, 0) is the infinite horizon minimum expected total

discounted cost for item j in the two warehouses, then the optimal value function satisfies the following

optimality equation.

Vj(0, 0) = min
{
cs1j + cs2j + β(W1(s1j , s2j) + Vj(0, 0)

}
(18)

where β is the discounting factor for future costs.

Proof The proof is omitted as it is straightforward. ut

As explained by Archibald et al. (1997), the finite horizon MDP is a single state MDP and hence there

is only one decision to make, viz the order up to levels. This decision is clearly the order up to levels

(S1j , S2j) that minimize the RHS of (18). It is also known (Archibald et al. (1997)) that the functions

involved are convex with respect to the inventory levels and sub-modular (see Topkis (1978)) in time

and inventory level variables. Thus, the following theorem characterizes the optimal policy:
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Theorem 3 For j = 1, 2, there exist non-negative integers S1j and S2j such that the optimal reorder

policy is to order up to level S1j at warehouse 1 and to order up to level S2j at warehouse 2.

Using value iteration, Archibald et al. also prove the following structural results.

Theorem 4 (Archibald et al. (1997)) For j = 1, 2, there exist real values τ11j ≤ τ12j ≤ · · · ≤ τ1m1j

such that the minimising action in state (i, 0) when there is an unmet demand at warehouse 2 for item j

and t time units to go until the next review epoch is to transfer an item from warehouse 1 to warehouse

2 if t < τ1ij and to place an emergency order otherwise. Similar result exists for the other warehouse.
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