
Annals of Mathematics and Artificial Intelligence 40: 283–301, 2004.
 2004 Kluwer Academic Publishers. Printed in the Netherlands.

Solving hierarchical constraints over finite domains
with local search

Martin Henz a, Roland H.C. Yap a, Yun Fong Lim b, Seet Chong Lua a,
J. Paul Walser c and Xiao Ping Shi d

a School of Computing, National University of Singapore
E-mail: {henz, ryap, luasc}@comp.nus.edu.sg

b School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta,
GA 30332-0205, USA

E-mail: yflim@isye.gatech.edu
c i2 Technologies, Munich, Germany

E-mail: walser@i2.com
d Motorola, Singapore

E-mail: xiaoping.shi@motorola.com

Many real world problems have requirements and constraints which conflict with each
other. One approach for dealing with such over-constrained problems is with constraint hier-
archies. In the constraint hierarchy framework, constraints are classified into ranks, and appro-
priate solutions are selected using a comparator which takes into account the constraints and
their ranks. In this paper, we present a local search solution to solving hierarchical constraint
problems over finite domains (HCPs). This is an extension of local search for over-constrained
integer programs WSAT(OIP) to constraint hierarchies and general finite domain constraints.

The motivation for this work arose from solving large airport gate allocation prob-
lems. We show how gate allocation problems can be formulated as HCPs using typi-
cal gate allocation constraints. Using the gate allocation benchmarks, we investigate how
constraint heirarchy selection strategies and the problem formulation using two models: a
0–1 linear constraint hierarchy model and a nonlinear finite domain constraint hierarchy
model.

Keywords: hierarchical constraints, finite domain constraints, over-constrained problems, air-
port gate allocation

1. Introduction

The goal in solving constraint satisfaction problems (CSPs) is to find a solution
which satisfies all given constraints. Approaches to CSPs such as constraint program-
ming have proven successful for a wide range of problems. However, many real world
problems cannot be represented directly as CSPs, because there may either be conflict-
ing constraints, or there may be difficulties in defining the problem constraints precisely
to allow direct solution. Problems with such features are typically over-constrained, and
hence by definition it is not possible to satisfy all given constraints.

284 M. Henz et al. / Solving hierarchical constraints

There are two general approaches to dealing with over-constrained problems. Con-
straint hierarchies [2] (HCLP [14] exemplifies this approach) addresses the over-con-
strainedness by resolving the conflict using preferences on the importance of some
constraints and particular solutions. The other approach exemplified by PCSP (Par-
tial CSP) [4] is to relax the problem definition so that it is consistent. Some even more
general approaches are semiring-based CSPs and valued CSPs [1] which are beyond the
scope of this paper. A good collection of papers on approaches for over-constrained
problems can be found in [7].

The work here was motivated by a project on airport passenger gate allocation,
where we were confronted with user-specified constraint ranks as the underlying intu-
itive model used by the human experts. Thus we focused on solving the gate allocation
problem using constraint hierarchies.

Section 2 presents the framework for constraint hierarchies that is used through-
out this paper. The size of the gate allocation problems makes it impossible to reach
globally optimal solutions using complete search techniques (both finite domain search
as well as integer optimization are intractable, see section 4 for a discussion). Thus we
worked on local search as a more computationaly feasible approach. The local search
algorithm WSAT(OIP) [11,13] is a walk search algorithm designed for solving over-
constrained linear integer programs and provides a good starting point for this work.
In section 3, we extend WSAT(OIP) in two directions. Firstly, we allow arbitrary fi-
nite domain constraints as opposed to linear ones. Secondly, we exploit the structure of
constraint hierarchies during the search. We propose several variants of the algorithm
to handle constraint hierarchies. Section 4 describes the airport gate allocation prob-
lem. This is the experimental benchmark which we use to investigate hierarchical local
search. We evaluate the performance of the local search algorithm on two models for
gate allocation: a 0/1 model that uses only linear constraints and a finite domain model
that in addition to arithmetic constraints some other symbolic constraints. We then in-
vestigate several variations of the local search algorithm.

2. Constraint hierarchies

In this section, we describe the framework of constraint hierarchies following [2].
Let X be a set of variables. Each variable x ∈ X ranges over a set Dx which

denotes the finite set of values that x can take. A k-ary constraint c over variables
x1, . . . , xk is a relation over Dx1 × · · · × Dxk

. The constraints are organized in a vector
CH of the form 〈C0, C1, . . . , Cn〉, where for each i, 0 � i � n, Ci is a multiset containing
constraints of rank i.

Each constraint rank represents the importance of that multiset of constraints, Ci .
Constraints in rank 0, C0, are distinguished as they denote required constraints (or hard
constraints), which must be satisfied. The constraints in C1, C2, . . . , Cn denote prefer-
ential constraints (or soft constraints), which need not necessarily be all satisfied. These
soft constraints range from the strongest rank C1 to the weakest rank Cn.

M. Henz et al. / Solving hierarchical constraints 285

A valuation θ is a function that maps the all variables in X to elements in the
domain D. The set of solutions S0 = {θ | ∀c ∈ C0, cθ holds} are those valua-
tions that satisfy the required constraints, i.e. for every constraint c over x1, . . . , xk ,
(x1θ, . . . , xkθ) ∈ c. In order to take into account the other constraints in the hierar-
chy, a partial ordering better, which is called a comparator, is used. The comparator
better(σ, θ, CH) is true when valuation σ is preferred to θ in the context of the constraint
hierarchy CH . The solution set for the constraint hierarchy, CH , which is denoted as
Sbetter is defined as those solutions that are optimal respect to better as follows:

Sbetter = {
θ ∈ S0 | ∀σ ∈ S0.¬better(σ, θ, CH)

}
.

There are many suitable choices for comparators in a constraint hierarchy (see [2]).
In this paper, we concentrate on the following weighted-sum-better comparator which
is the most relevant to the gate allocation problem described in section 4. However, the
local search techniques here should be applicable to other comparators.

Since a constraint need not be satisfied, the result of a valuation cθ can be describe
in terms of an error function e(c, θ) which returns a non-negative real number indicating
the degree of violation of constraint c under the valuation θ . We require that the error
function e has the property that e(c, θ) = 0 iff c, θ holds, and e(c, θ) > 0 otherwise.
Where it is clear, we will sometimes denote the error function simply as e(c). A triv-
ial error function returns 0 when θ satisfies c and 1 if not. The weighted-sum-better
comparator can be defined as follows:

weighted-sum-better(θ, σ) ≡ ∃k. 1 � k � n such that

∀i ∈ {1, . . . , k − 1}. weighted-sum(θ, Ci) = weighted-sum(σ, Ci)

∧weighted-sum(θ, Ck) < weighted-sum(σ, Ck).

The function weighted-sum requires for each constraint c the definition of a
weight w(c), a positive real number. Using weights for constraints, the function
weighted-sum combines the error values of constraints in a given rank into a single num-
ber as follows.

weighted-sum(θ, Ci) ≡
∑

c∈Ci

w(c)e(cθ).

Given a constraint hierarchy defined by the tuple 〈X , CH , e,w〉, the goal is to find
solutions in Sweighted-sum-better, where weighted-sum-better uses the given error function e

and weight function w. We will mostly be using nontrivial error functions in the bench-
mark applications.

3. Hierarchical local search

While constraint hierarchies provide an expressive framework for defining over-
constrained problems, applying it directly to large combinatorial problems would be

286 M. Henz et al. / Solving hierarchical constraints

computationally very expensive. Preliminary experiments with finite domain solvers in-
dicated that for the airport gate allocation problem that it was only feasible to solve small
problems. We are also not aware of any application where constraint heirarchies are used
to solve large combinatorial problems. Thus we turned to investigate local search. Local
search techniques such as randomized search, simulated annealing, genetic algorithms,
artificial neural networks, etc. have shown to be quite effective in solving large combi-
natorial problems.

One local search technique which has shown to be effective for finite domain prob-
lems is WSAT(OIP) [11,13]. OIP here refers to overconstrained integer programs.
WSAT(OIP) focuses on OIPs consisting of hard and soft linear inequality constraints
which can be defined as

Ax � b, Dx � e(soft), x ∈ D,

where A and D are m × n matrices, b and e are m vectors and x = (x1, . . . , xn) is the
variable vector and each xi ranges over a positive finite domain Di . The OIP problem is
to minimize those constraints using the following objective function:

min
{‖Dx − e‖: Ax � b, x ∈ D

}
, where ‖v‖ =

∑

i

max(0, vi).

WSAT(OIP) uses a Walksat like strategy [8,10] to solve such OIP minimization prob-
lems.

Here we extend WSAT(OIP) in two ways. The first is to extend soft constraints to
hierarchies. The second is to allow arbitrary finite domain constraints, not just arithmetic
ones.

3.1. The WalkSearch algorithm

We assume that the constraint hierarchy problem is specified as a tuple of the form
〈X , CH , e,w〉. The WalkSearch algorithm is given in figure 1 as a generalization of
WSAT(OIP) so that the form of constraints is not specified. The algorithm is parame-
terized by Max_moves, Max_tries and various probabilities. WalkSearch always works
with a full assignment for all the variables X . It begins with an initial not necessarily
feasible solution, for example, a random assignment. The inner loop starts a local search
by selecting a constraint c with select-unsatisfied-constraint. The current assignment is
then perturbed using select-partial-repair which changes the value of one variable in c.
Local search continues until Max_moves local repairs have been made or some solution
stopping criteria is met. To escape from being stuck in local minima, the outer loop
restarts the local search Max_tries times. WalkSearch returns the best solution found,
and this is determined using improve(θ, θbest, CH). With a hierarchy this is simply the
better comparator which is used to determine whether solution θ is preferred over the
previously found θbest.

M. Henz et al. / Solving hierarchical constraints 287

Figure 1. Basic WalkSearch algorithm.

WalkSearch leaves unspecified the three procedures improve, select-unsatisfied-
constraint and select-partial-repair. We now look at the extensions which exploit the
constraint hierarchies.

3.2. Constraint selection schemes

With WSAT(OIP) there were only two kinds of constraints: hard and soft. Thus
constraint selection is to decide only whether a hard or soft constraint is chosen. A hier-
archy provides for more classes of constraints. We present four reasonable variations for
selecting a violated constraint (i.e. e(c) > 0) with select-unsatisfied-constraint(CH ,X , θ)

from the different hierarchy ranks. The difference between the various strategies lies in
the emphasis placed on differentiating constraints between ranks, and how greedy is the
selection with respect to the hierarchy. These selection schemes are evaluated experi-
mentally in section 4.

HardOrSoft Constraint Selection If all hard constraints are satisfied, randomly se-
lect a violated soft constraint from C1, . . . , Cn. Otherwise, choose a violated hard
constraint from C0 with probability Phard, and with probability 1 − Phard a soft con-
straint from C1, . . . , Cn. This selection scheme is a direct extension of that used in
WSAT(OIP) to hierarchies. HardOrSoft does not distinguish between soft constraints
in different ranks.

TopOrRest Constraint Selection This is similar to HardOrSoft, however instead of the
choice between hard and soft, the choice is between the top most unsatisfied constraint
rank and the rest of the ranks. Choose the smallest i such that Ci contains unsatisfied
constraints, call this rank Top. The unsatisfied constraints in the remaining ranks

288 M. Henz et al. / Solving hierarchical constraints

Ci+1, . . . , Cn are denoted by Rest. If Rest is empty, choose a constraint randomly
from Top, otherwise with probability PTop, choose a constraint randomly from Top
and with probability 1 − PTop from Rest.

RankProb Constraint Selection RankProb chooses the violated constraint based on its
rank. Each constraint rank Ci , where i ∈ {0, . . . , n}, is associated with a probability
Pi . First, a rank i is selected with probability Pi . Then a violated constraints in rank Ci

are randomly selected. If there is no violated constraint in Ci , then randomly choose
a violated constraint in rank Ci+1, . . . , Cn. If there are no violated constraints in rank
Ci+1, . . . , Cn, then randomly choose a violated constraint in rank C0, . . . , Ci−1.

ConsProb Constraint Selection Using RankProb, a probability is associated with each
rank. In constrast to RankProb, the probability of a constraint in a rank to be selected
by ConsProb is influenced dynamically by the number of unsatisfied constraints at
each rank. Each constraint rank Ci , where i ∈ {0, . . . , n}, is associated with a prob-
ability Pi . The probability (which changes dynamically) of selecting a rank Ci at
runtime is defined as

Pi |Ci|violated∑
j∈{0,...,n} Pj |Cj |violated

,

where |Ci|violated is the number of violated constraints in Ci . Thus, the probability of
choosing a particular rank changes depending on the number of violated constraints
as the local search progresses.

3.3. Partial repair and heuristics

After select-unsatisfied-constraint picks a violated constraint c, select-partial-
repair(C,X , c, θ) returns the choice of change in the valuation with a variable value
pair to modify. In WSAT which deals with SAT problems in clausal form, making a
single change by flipping a single variable will change the clause/constraint to being
satisfied. In the more general case, of any finite domain constraint, it is less clear what
strategy should be used. We adopt the same strategy as WSAT(OIP), namely, first try
to make the constraint c more satisfied, that is compute the set of variable value pairs
which differ by one value

Improve = {
(x, v) | ∀x ∈ X ,∀v ∈ Dx. e(c, θ\x �→ v) < e(c, θ)

}
.

The notation θ\x �→ v denotes the valuation θ is used but the substitution for x is v

instead of its value in θ .
The hierarchy is then taken into account using the better comparator. Select one

variable value pair to return from the set {(x, v) | ¬better(θ\x′ �→ v′, θ\x �→ v, CH)

such that (x, v), (x′, v′) ∈ Improve} of best local moves with respect to the comparator.
It may be possible that no such pair exists, in which case the local move is not made and
some variable value pair from θ is returned to give a null move. This constraint repair
strategy is based on the expectation that checking a solution in the whole constraint
hierarchy is much more expensive than checking it for that single violated constraint

M. Henz et al. / Solving hierarchical constraints 289

alone. Similarly it is cheaper to find the set of local moves which makes one constraint
less violated than to do it for the whole constraint hierarchy. Other strategies are also
possible, for example, one greedy strategy is optimize first to minimize local error and
then optimize for the hierarchy.

Further heuristics from WSAT(OIP) are tabu list with aspiration which allows tabu
moves if the solution is improved and a noise factor to allow moves which decrease the
quality of the solution.

4. Airport gate allocation

The problem of allocating gates to arriving and departing aircraft is an integral
aspect of airport operations. It can have a decisive impact the quality of service of an
airport. Most work in operations research (see [5] for further references) concentrates
on the minimization of passenger walking distance, one particular aspect of quality of
service. Yu Cheng [3] addresses a more general problem using knowledge representa-
tion techniques and simulation. Optimal gate allocation is a hard problem. Even with
rigorous simplification of the problem, only unrealistically small problems can be solved
optimally with reasonable computational effort [3,5]. Thus heuristic solutions such as
local search on hierarchical constraints are indispensable.

4.1. Gate allocation problems

In practice, gate allocation is subject to numerous operational constraints. Natural
hard constraints include, for example:

– No two aircraft can be allocated to the same gate simultaneously.

– Particular gates can be restricted to admit only certain aircraft types.

– An aircraft leaving a gate (“push-back”) will restrict other operations in close tempo-
ral or spatial vicinity.

Typical soft constraints include:

– Airlines and ground handlers prefer to use particular gates or terminals.

– Passengers prefer to walk short distances to reach the exit or their connecting gate.

– Passengers prefer gates connected to terminal buildings rather than remotely located
gates.

The users find it hard to quantify the cost of violations of soft constraints. They
prefer instead to state that some soft constraints are absolutely more important compared
to the others. Hence, the use of constraint hierarchies to group the constraints into ranks
of importance is a natural way to express the quality of solutions. In collaboration with
the Civil Aviation Authority of Singapore, we identified 25 classes of constraints, which
we organized in a constraint hierarchy with four ranks, according to their relative impor-
tance as judged by the users. The highest rank is reserved for hard constraints which are
the operational requirements.

290 M. Henz et al. / Solving hierarchical constraints

4.2. Gate allocation models

The main operational parameters for a gate allocation problem are: (i) the number
of aircraft arriving within a time interval; and (ii) the number of available gates during
that time interval. In what follows, we consider problems consisting of m aircraft and
n gates.

We experiment with the following two gate allocation models:

– A 0/1 model with only binary variables, the decision variables are m · n variables
denoted as yik where 1 � i � m and 1 � k � n. These variables express whether
aircraft i uses gate k.

– A finite domain model where variables range from 1 to m. The value of variable xi

gives the gate used by aircraft i.

In the 0/1 model, all 25 constraint classes are expressed in the form of linear in-
equalities. For the finite domain model, it was necessary to introduce three new sym-
bolic constraints besides the usual linear constraints in order to express the 25 constraint
classes in this model. These are alldiff for the non-overlapping ground time constraint,
airline preference constraint and walking distance constraint.

4.2.1. Constraint formulations
The formulation of some of the constraints used in both the finite domain and 0/1

hierarchical constraint models are now described. The full details and formulation of the
gate allocation problem is beyond the scope of this paper. Here we are concerned with
investigating the behavior of the hierarchical local search solver.

In the sample constraints below, the non-overlapping ground time constraint is a
hard constraint. The other two, airline preference and walking distance, are soft con-
straints which are placed at a user specified level in the constraint hierarchy.

Non-overlapping ground time constraint. The non-overlap constraint states that no
two aircraft with overlapping ground times can be allocated to the same gate. In the 0/1
model, it is formulated as follows: for each gate k and each pair of aircraft i and j with
overlapping ground times, the constraint yi,k + yj,k � 1 must hold. In the finite domain
model, the formulation is the following: for each maximal set of aircraft S whose ground
time overlaps, we introduce a constraint alldiff (S). The alldiff constraint is the usual all-
different constraint, as in many finite domain solvers, which constrains the variables in S

to have different values.

Airline preference constraint. This preference constraint states the preferences for
certain airlines to have aircraft be parked at particular sets of gates. A preference value
APa,k is assigned for each airline a and gate k which is a natural number giving the de-
gree of in-compatibility of the airline a for the gate k. Bigger values indicate increasing
gate incompatability and the value zero indicates perfect match.

In the 0/1 model, the constraints are formulated as follows: for each aircraft i

and each gate k, a constraint APa,k · Yi,k � 0 is added as a soft constraint at some

M. Henz et al. / Solving hierarchical constraints 291

particular level. In the finite domanin model, the formulation is the following: for
each aircraft i, the soft unary constraint APa(xi) is used. The error function for
APa(xi) is defined as e(APa(xi)) = APa,xi

. Thus the value of xi is used as the index
for AP.

Walking distance constraint. This preference constraint aims to minimize the total
walking distance for transfering passenger. Let Pi,j be the number of passengers that
transfer from flight i to flight j and Dk,l is the walking distance between gate k and gate l.
In the 0/1 model, the constraints are formulated as follows: for each pair of passenger
transfers (i, j), for each pair of gates (k, l), a soft constraint Pi,j · Dk,l · (xi,k + xj,l) � 1
is added.

In the finite domain model, the formulation is the following: for each pair of pas-
senger transfers (i, j), a soft binary constraint WD(xi, xj) is created. The error function
for for WD(xi, xj) is defined as

e
(
WD(xi, xj)

) = Pi,j · Dxi,xj
.

Thus both AP and WD are symbolic finite domain constraints rather than the usual arith-
metic ones.

4.3. Benchmark data

We focus on the following goals for this experimental study:

– evaluation of hierarchical local search for realistic gate allocation problems,

– a comparison of the performance of the two models, and

– a comparison the performance of the four constraint selection schemes.

The dataset used for gate allocation consists of historical flight data set spanning
24 hours at Changi Airport with 257 flights and 104 gates available in total. This dataset
was chosen to be fairly typical of daily operations.

We used a number of different problem sizes where for a given number of flights,
the problem difficulty in varied by changing the number of gates, table 1 lists the prob-
lems and their sizes which is defined by the number of flights and gates. Problem sets
P1 to P6 are small problems with up to 30 flights. The other problem sets P7 to P15 are
larger data sets going all the way up to the maximum of 257 flights. For each problem,
we created two models, a finite domain (FD) model and a 0/1 model. Table 2 gives the
resulting hierarchical constraint problems together with the number of variables and con-
straints in each hierarchy level for each model. The FD model being more expressive has
much less variables and constraints than the 0/1 model. For the smaller benchmarks P1
to P4, the optimal solutions are known and were obtained by running the corresponding
integer program.

292 M. Henz et al. / Solving hierarchical constraints

Table 1
Specifications of the data sets.

Problem No. of flights No. of gates

P1 10 10
P2 20 20
P3 20 19
P4 20 17
P5 30 30
P6 30 26
P7 50 50
P8 50 46
P9 50 40
P10 100 100
P11 100 90
P12 100 80
P13 257 104
P14 257 94
P15 257 84

4.4. Experimental setup

All experiments were run on a Pentium II PC running Linux. The performance of
the local search algorithm depends very much on the noise level and on the probabilities
used in constraint selection. The best setting of these parameters depends on the cho-
sen model, selection scheme and constraints. In order to gauge the performance of the
models and selection schemes, we tried different parameter settings for each benchmark
problem.

For all combinations of problem models, problem sets and constraint selection
schemes, we used 11 different noise probabilities (0.0, 0.1, . . . , 1.0). In most of our
benchmarks, a small noise level (about 0.1) works best for the 0/1 model, while a higher
noise level (about 0.4) works best for the FD model. One explanation is that the FD
model has more possible values to try hence a higher noise level can be used to achieve
better coverage of non-improving moves.

For the best constraint selection schemes found, ConsProb and RankProb, we tried
five probability distributions. As expected, the probability distributions that emphasize
the more important ranks work best. In our benchmarks, we found that the probabil-
ity ratio of 1000 : 100 : 10 : 1 worked for most of the test cases. However, sometimes
inversions of probability ratios such as 8 : 0.5 : 0.5 : 1 did perform better.

In all figures given in the next section, the best noise level and probability distrib-
ution for each model, problem set and constraint selection scheme was used, in order to
ensure a fair comparison.

For the smaller problems (P1 through P4) it was possible using the 0/1 model to
obtain the optimal solutions using integer programming with the CPLEX solver. The
conversion from the 0/1 model to an integer program with linear optimization function
is adapted from [12]. Hierarchies are expressed by multiplying each error value with a

M. Henz et al. / Solving hierarchical constraints 293

Table 2
Specifications of the data sets.

Problem Model Variables |C0| |C1| |C2| |C3|
P1 FD 10 52 8 15 11

01 42 86 6 5 11
P2 FD 20 95 17 40 19

01 137 223 17 27 19
P3 FD 20 95 17 40 19

01 132 216 17 27 19
P4 FD 20 95 17 40 19

01 121 202 17 27 19
P5 FD 30 140 24 69 27

01 380 702 24 192 27
P6 FD 30 140 24 69 27

01 313 594 24 169 27
P7 FD 50 231 41 194 49

01 1097 2038 41 1545 1293
P8 FD 50 231 41 194 49

01 1021 1892 41 1488 1155
P9 FD 50 231 41 194 49

01 885 1646 41 1274 864
P10 FD 100 461 82 571 114

01 4426 7887 82 16022 15183
P11 FD 100 361 82 571 114

01 4023 7320 82 11739 12091
P12 FD 100 361 82 571 114

01 3533 6514 82 9628 9049
P13 FD 257 953 217 2057 303

01 12956 25926 217 65523 45576
P14 FD 257 1210 217 2057 303

01 10827 21866 217 44676 27655
P15 FD 257 953 217 2057 303

01 9709 19626 217 36688 21805

factor computed using the weight of the constraint, its rank and the number of constraints
in the rank. Using the CPLEX solver on the converted 0/1 model, optimal solutions for
problem sizes of up to around 25 flights could be found. This was useful since it allows
us to judge the performance of local search on the smaller problems.

4.5. Experimental results

For the largest problem, the 24 hour P15 problem, local search was able to find
good solutions within 6 minutes of cpu time using either model. Here “good” solu-
tions means those solutions which significantly improve the (also computer-generated)
schedules currently used by the airport. This comparison is with respect to the same
weighted-sum-better hierarchy.

294 M. Henz et al. / Solving hierarchical constraints

Figure 2. Performance of finite domain vs. 0/1 model using best constraint selection scheme.

We now examine the solution quality of the two models. Figure 2 gives the num-
ber of times the best solution found was obtained using the best constraint selection
scheme for both models. For the smaller problems (P1 through P4), where we know the
optimum, local search also succeeds in finding optimum solutions. For the other two
problems P5 and P6, both models found the same best solutions with different random
seeds.

In the small problems, the best solution is found more than once. As such, we use
the frequency of the best solution reached among 20 runs to compare the performance
the two problem models. We found that the finite domain model obtains the best solution
more often than the 0/1 model.

In the larger problems P7 to P15, the true optimum solution is not known and thus
we do not have an absolute measure of comparision. Hence, we only compare the solu-
tions found against each other. With the larger problems, within the time limits usually
only one best solution is found for one model. The comparison of solution quality then
for problems P7 to P15 is which model found the better solution. In all cases, with the
exception of P7 and P9, the finite domain model was better. Thus overall it appears that a
more general finite domain constraint model is better suited for this problem. It is a little
surprising that the finite domain model does so much better than the 0/1 model since
being a more compact model there is less opportunities for local search to exploit ran-
domness when exploring the solution neighbourhood. One possible explaination is that
the finite domain constraint has more information about the application constraint and
thus can be more goal directed. For example, consider an airline preference constraint
on aircraft i. In the finite domain constraint model, this becomes one constraint APa(xi).
While in the 0/1 model, it is expressed as n constraints of the form APa,k · yi,k � 0
where k ∈ {1, . . . , n}. So the 0/1 model allows for some kind of partial satisfaction
of the airline preference for one aircraft since not all the n constraints need be satisfied
or unsatisfied. This possibility is disallowed by the symbolic finite domain constraint
AP since there is only one value for xi . For gate allocation, we believe that stronger
constraints are more important for solution quality.

M. Henz et al. / Solving hierarchical constraints 295

Figure 3. Comparison of solving time.

Next we look at the time required for the best solution for each model which is
given in figure 3. Here both models behave similarly for the small problems. When the
problems start becoming large, the finite domain model is significantly more expensive.
Our implementation does not have a highly optimized solver for the finite domain case.
The 0/1 model thus being simpler is significantly cheaper since the improve and select-
partial-repair operations are much more efficient with a binary choice. Furthermore as
our implementation is unoptimized, the runtime memory requirements for problems P13
to P15 was observed to be very large in the finite domain model, and the sharp knee is
also caused by increased memory paging.

We will now compare the performance of the various proposed constraint selection
schemes. Figure 4 shows the quality of the best solution found using the four constraint
selection schemes using the finite domain model for small problems and figure 5 does the
same for the larger problems. Similarly for the 0/1 model, figure 6 is for the small prob-
lems and figure 7 is for the large problems. The graphs show that the performance of the
different schemes do vary significantly and it is not so clear which schemes are clearly
better. The results show that in most cases, choosing either RankProb or ConsProb, both
of which make explicit use of the hierarchy in constraint selection, is better than the
other two strategies. Thus exploiting the hierarchy does seem to be effective to a lim-
ited extent but the actual performance of the various constraint schemes is complicated
without a clear winner.

In all the gate allocation benchmarks, the aspect of finding an optimum solution
dominanted the aspect of finding a solution satisfying the hard constraints. Here, it was
almost always easy to find feasible solutions and most of the computation time was spent
on optimizing the fulfillment of soft constraints.

296 M. Henz et al. / Solving hierarchical constraints

Figure 4. Performance of different constraint selection scheme on FD model.

Figure 5. Performance of different constraint selection scheme on FD model for bigger test cases.

Figure 6. Performance of different constraint selection scheme on 0/1 model.

M. Henz et al. / Solving hierarchical constraints 297

Figure 7. Performance of different constraint selection scheme on 0/1 model for bigger test cases.

5. Nonhierarchical solver performance

The final experimental result is to evaluate the performance of our solver simply
as a local search 0/1 solver. For this purpose, we choose the sports scheduling of the
Atlantic Coast Competition in basketball (ACC benchmarks). The ACC benchmarks
which has been solved using a mix of integer programming and explicit enumeration
by Nemhauser and Trick [9], finite domain constraint programming by Henz [6] and
WSAT(OIP) by Walser [13].

We choose as a reference benchmark the WSAT(OIP) solver which has been shown
to be effective for this problem and also many other problems. The same constraint
model was used for both solvers – this is the ACC problem description written in
AMPL [13]. The solver parameters and heuristics were chosen to be as similar as pos-
sible. However it is not possible to reproduce exact behavior simply because of the
random nature of local search given the different implementations. The purpose of this
benchmark is simply to compare our hierarchical local solver which supports general
finite domain constraints against the optimized WSAT(OIP) implementation which is
specifically optimized for 0/1 OIPs.

Figures 8 and 9 compare the number of moves needed to reach a solution given
various random seeds for our solver and WSAT(OIP). Where no solution is found within
20,000,000 moves, it is indicated as a zero height bar. We see here that the pattern for
the two solvers is not dissimilar but our solver seems to be a little more effective here in
that the optimum is found more often.

To compare solver efficiency, figures 10 and 11 give the runtimes for the same runs.
Our solver is not as efficient as WSAT(OIP) and is several times slower. However given
that it is not an optimized implementation, the purpose of this benchmark is to show
that our solver for hierarchical general finite domain constraints remains effective as a
nonhierarchical solver for OIP.

298 M. Henz et al. / Solving hierarchical constraints

Figure 8. Number of moves to solve ACC using 0/1 solver.

Figure 9. Number of moves to solve ACC using WSAT(OIP).

6. Conclusion

In this paper we present a local search solver based on a Walksat strategy which
solves finite domain constraints in a constraint hierarchy setting. We believe that many
real world problems are applicable in such a framework since there are usually many

M. Henz et al. / Solving hierarchical constraints 299

Figure 10. CPU time taken to solve ACC problem using 0/1 solver.

Figure 11. CPU time taken to solve ACC problem using WSAT(OIP).

conflicting constraints and it is easy for users to state the importance of various con-
straints in terms of a hierarchy. Furthermore, many of these problems share a similar
characteristic to our driving airport gate allocation application in that obtaining satisfy-
ing solutions is easy and the main computation problem is in optimizing the conflicting
constraints.

300 M. Henz et al. / Solving hierarchical constraints

We show that it is easy to incorporate general hierarchical finite domain constraints
into a Walksat based local search solver. Various strategies for constraint selection and
solution repair which take into account constraint hierarchies are presented.

As our motivation for this work came from the need to solve a difficult gate alloca-
tion problem expressed in terms of hierarchies, this was a natural benchmark to evaluate
our solver. There are also no other benchmark of substantial difficulty where finite do-
main constraints and hierarchies are used, hence this is a key benchmark. We go into
some problem detail of the gate allocation problem. We compare a 0/1 linear constraint
model with a finite domain one and show that the richer models available with general
finite domain constraints produces better solutions for gate allocation with local search.
The choice of model and the increased possibilities offered by symbolic finite domain
constraints with local search is an interesting avenue for further work. While there is
substantial work with comparing different models in the linear/integer programming lit-
erature and with finite domain based consistency solvers together with search, this is not
the case for local search techniques.

The local search solver for gate allocation gives optimum solutions for small prob-
lems and solutions better than the existing constraint programming based application
used for gate allocation. Among the various strategies for constraint selection, we found
that for gate allocation, ConsProb and RankProb which take advantage of the hierar-
chy performed better. Finally we show that our solver is also competitive as a non-
hierarchical solver.

Acknowledgements

This work was supported by the Singapore Government through a grant from the
National Science and Technology Board. We thank the Civil Aviation Authority of Sin-
gapore and the Kent Ridge Digital Laboratories for providing documents and test data
sets on the gate allocation of Changi airport.

References

[1] S. Bistarelli, H. Fargier, U. Montanari, F. Rossi, T. Schies and G. Verfaille, Semiring-based CSPs and
valued CSPs: Basic properties and comparison, in: [7] pp. 111–150.

[2] A. Borning, B. Freeman-Benson and M. Wilson, Constraint hierarchies, Lisp and Symbolic Compu-
tation 5 (1992) 223–270.

[3] Y. Cheng, A rule-based reactive model for the simulation of aircraft on airport gates, Knowledge-
Based Systems 10(4) (1998) 225–236.

[4] E. Freuder and R. Wallace, Partial constraint satisfaction, in: [7] pp. 63–110.
[5] A. Haghani and M.-C. Chen, Optimizing gate assignments at airport terminals, Transportation Re-

search 32(6) (1998) 437–454.
[6] M. Henz, Scheduling a major college basketball conference (revisited), Operations Research 49(1)

(2001).
[7] M. Jampel, E. Freuder and M. Maher (eds.), Over-Constrained Systems, Lecture Notes in Computer

Science, Vol. 1106 (Springer, 1996).

M. Henz et al. / Solving hierarchical constraints 301

[8] D. McAllester, B. Selman and H. Kautz, Evidence for invariants in local search, in: Proceedings
Fourteenth National Conference on Artificial Intelligence (AAAI-97) (1997).

[9] G.L. Nemhauser and M.A. Trick, Scheduling a major college basketball conference, Operations Re-
search 46(1) (1998) 1–8.

[10] B. Selman, H. Kautz and B. Cohen, Noise strategies for improving local search, in: Proceedings of
AAAI-94 (1994) pp. 337–343.

[11] J.P. Walser, Solving linear pseudo-Boolean constraint problems with local search, in: Proceedings of
the 14th National Conference on Artificial Intelligence and 9th Innovative Applications of Artificial
Intelligence Conference (AAAI-97/IAAI-97) (AAAI Press, Providence, RI, 1997) pp. 269–274.

[12] J.P. Walser, Domain-independent local search for linear integer optimization, Ph.D. Thesis, Univer-
sität des Saarlandes, Saarbrücken, Germany (1998).

[13] J.P. Walser, Integer Optimization by Local Search, a Domain-Independent Approach, Lecture Notes
in Artificial Intelligence, Vol. 1637 (Springer, 1999).

[14] M. Wilson and A. Borning, Hierarchical constraint logic programming, Journal of Logic Program-
ming 16(3/4) (1993) 277–319.

