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Abstract—A guest virtual machine in a cloud platform may
fall “sick” when its kernel encounters a fatal low-level bug or
is subverted by an adversary. The VM owner is hence likely to
lose her control over it due to a kernel hang or being denied
of remote accesses. While the VM can be rebooted with the
assistance from the cloud server, the owner not only faces service
disruption but also is left with no opportunity to make an in-
depth diagnosis and forensics on the spot, not to mention a live
rectification. Currently, the cloud service provider has neither
incentive nor the technology to assist owners to resuscitate their
falling VMs. In this paper, we propose a new cloud service
termed VMCare-As-A-Service (VaaS) with the vision that the
owner of a sick VM applies her tools running on a special VM
to repair it. VaaS demands innovative cloud technologies for the
unique infrastructure support as well as new software security
techniques for attacks neutralization and runtime rectification
upon a running and corrupted kernel. We examine the ensuing
research challenges and present several preliminary approaches
to kindle the interests from the community.

I. INTRODUCTION

According to a recent report from Gartner1, the worldwide
market for public Infrastructure-As-A-Service (IaaS) Cloud
will reach more than $150 billion in 2023. The surge of IaaS
subscription is unsurprisingly companied with the growth of
attacks against guest VMs. A sophisticated attack can subvert
and control the victim’s kernel. As a result, neither the guest
owner’s programs in the VM nor commands sent to the VM
can be properly executed as expected. Even without attacks,
the guest kernel may hang or crash due to fatal bugs triggered
during its execution. In both cases, the guest VM with kernel
failure or compromise becomes undependable.

A straightforward and seemingly effective solution to an
undependable VM is just to restart it. Unfortunately, this
approach is not desirable in many scenarios because it does
not eradicate the root cause of VM failure. The attacker may
leave malicious code persistently in files so that the subsequent
launch, even with a new kernel image, is still susceptible to
kernel compromise. If the failure is due to kernel bugs, there is
no guarantee whether the bug will not be triggered any longer.
For tenants using the VM to host servers, the termination-
restart method incurs service disruption. Furthermore, the
reset obliterates the important runtime data, which hinders
kernel bug troubleshooting and live forensics for attack traces.
Thus, an ideal solution is not to kill the the undependable
virtual machine but to resuscitate it with dependability and
trustworthiness.

In the rest of the paper, we first explain the hurdles
encountered by VM owners and CSPs when coping with an

1Gartner Forecasts Worldwide Public Cloud End-User Spending to Reach
Nearly $600 Billion in 2023, https://www.gartner.com/en/newsroom/, Oct 31
2022

undependable VM. We then propose a new type of cloud
service and show that existing cloud security techniques are in-
sufficient to enable it. Next, we present the research challenges
from three angles. Lastly, we explore different parameters
when designing solutions to overcome those challenges.

II. A NEW CLOUD SERVICE

To explain the demand for a new cloud service, we shed
light on the difficulty of handling an undependable VM
through the lens of the owner and the CSP, respectively, and
remark that neither of them can resolve the problem alone.

A. A Tale of Two Predicaments

VM Owner. When an on-premise computer becomes unde-
pendable, its owner may use special hardware devices or Intel
Management Engine (IME) to gain a foothold in it and carry
out the necessary tasks. In contrast, for an undependable VM
hosted in the cloud, its owner does not have that foothold. The
sole way for the owner to access the VM is via the network
channel which often becomes unreliable/unavailable when the
VM kernel fails. Hence, it is infeasible for the owner to revive
the VM without the CSP’s assistance.
Cloud Service Provider. To rectify an undependable VM is
obviously beyond the conventional service scope of IaaS. With
the privilege of managing all hardware resources in the cloud,
the Virtual Machine Monitor (VMM) can directly read/write
the VM’s physical memory and disk files. Nonetheless, its
capability is crippled by the absence the semantics of the
kernel and applications running inside the VM. As noted by
Jain et al. [1], how to bridge the semantic gap is the key
challenge in out-of-VM2 introspection schemes [4], [5], [6],
[7]. Even if the semantic gap challenge was overcome, existing
VMI techniques only collect data and help to diagnose the
VM. They are incapable of neutralizing attacks or amending
the VM runtime. Besides the technical challenge, any CSP
based rectification, if technically feasible, unavoidably intrudes
the owner’s VM which may result in legal and privacy related
implications.

B. VMCare-As-A-Service

Since the existing cloud services cannot resolve the issue,
we propose a new cloud service termed VMCare-as-a-Service
or VaaS. Under this computing paradigm, the CSP provisions
the hardware infrastructure for an authorized agent (e.g., the
VM owner or a third party hired by the owner) to run its
chosen software against the undependable VM. In specific,

2Those in-VM introspection schemes [2], [3] are infeasible as their security
relies on the guest kernel.



the CSP sets up a special virtual machine (denoted as the
Responder VM) and the agent runs the diagnose and repairing
tools of her own choice inside the Responder VM. The key
feature of the Responder VM is that the agent tools therein are
empowered by the VMM to introspect and modify any virtual
memory in the target VM as if they run inside the target’s
kernel. Figure 1 below illustrates the vision of VaaS.

The VaaS model resolves the aforementioned predicaments
of the VM owner and the CSP. On the one hand, the owner
is accessible to a wide range of toolkits to rectify her un-
dependable VM, which could turn out to be more flexible
and versatile than handling an on-premise computer using a
hardware tool. On the other hand, the CSP’s service remains
agnostic and non-intrusive to its tenants VMs as it still centers
around resource management and access control.
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Fig. 1. Illustration of VMCare-As-A-Service. The target VM is undependable
due to attacks subverting the kernel.

Analogously, the Responder VM is the “operation theatre”
that provides the needed facility and equipments to save a
sick VM whereas the agent is the “surgeon” who undertakes a
surgical operations by using his VMCare tools deployed inside
the facility.

III. RESEARCH CHALLENGES

Enabling and supporting VaaS requires innovations of sys-
tem and software technologies for the CSP and for the VM
owners to overcome the following challenges.

A. The Architecture of Responder VM

The primary goal of the Responder VM is to provide
the desired system support to the VMCare tools, so that
tool developers only focus on their software functionalities.
Different from a normal program, the tool is expected to
make native virtual memory accesses to processes of the target
VM. Hence, the Responder VM needs to satisfy the following
requirements.

• Its page tables should not only define the tool’s virtual
memory, but also embody the same address mappings as
those used in the target VM. This requirement is to allow
for native target memory accesses.

• It should resist attacks launched by the adversary in the
target VM. In other words, the tool’s security should not
be undermined because of execution in the Responder
VM (except its own software vulnerability exploited by
the target’s data).

• It should not give either the (malicious) tool or the
adversary in the target any higher advantage to jeopardize

the VMM or other VMs over attacks from a regular guest
VM. This requirement is to rule out possible undesirable
security side-effects of VaaS.

B. Capability of VMCare Tools

Although there are techniques proposed for forensics, guest
kernel object extraction (e.g., [8], [9]) and kernel live patch or
update [10], [11], [12], their capabilities are not sufficient for
VaaS due to the environment mismatch. We envisage a suite of
tools with various capabilities running in the Responder VM.

• Attack Termination We need tools to recognize and
terminate ongoing attacks. While traditional anti-virus or
intrusion detection systems are able to do so within the
affected system, the tools for the VaaS are expected to
achieve the same from the outside.

• State Cleansing We need tools capable of correctly
identifying and gracefully cleansing the corrupted parts
of the target kernel. It is more challenging to design such
tools than for forensics and VMI. Besides the demand
for fine-grained knowledge of code and data semantics,
no existing techniques is universal enough to remove an
arbitrary chunk of instructions and/or data during kernel
execution without breaking its consistent state.

• Repairing We need tools capable of live updating or
patching the kernel. For the target VM to resume nor-
malcy, it is necessary to fix the vulnerability. Most exist-
ing kernel patching techniques [10] are only applicable
to kernels which are not compromised yet. While Kshot
[12] addresses this issue using SGX, it does not match
the VaaS setting in the cloud.

C. Privacy Protection

The VaaS service may tigger entangled privacy concerns
among the CSP, the VM owner, and the entity providing and/or
operating VMCare tools. From the VM owner’s perspective,
the service exacerbate her privacy concern against the CSP.
Although a rogue CSP can always peek at the VM memory,
it faces the difficulty of locating critical data and extracting
its semantics. Nonetheless, the problem is made easier to
overcome when the CSP observes the operations made the
VMCare tools. Hence, one privacy challenge is how to prevent
the CSP from gaining advantages of invading tenant privacy
from the VaaS service. Moreover, the VMCare tools may
enclose proprietary techniques from their vendors. A rogue
CSP may attempt to infringe on their copyrights by copying
them, observing their activities or even hacking them. Hence,
the second privacy challenge is how to protect the VMCare
tools’ copyright against various attacks from the CSP.

In short, the VaaS service gives rise to challenges in system
architecture design, automated software repairing and privacy
protection. Although similar ones have been studied in other
system and application settings and some may even have
mature solutions, the VaaS introduces these research problems
with unique demands and constraints.



IV. DESIGN PARAMETERS

In the following, we examine a few preliminary approaches
that address the aforementioned challenges from different
angles. These approaches apply different design parameters
with respective pros and cons. We do not claim that they
satisfactorily answer the aforementioned research problems.
Instead, they serves as teasers that are expected to inspire
deeper studies leading to innovative solutions.

A. Live VM vs. Frozen VM

A critical design parameter is whether to keep the VM alive
or pause it when the VMCare tool in the Responder VM
conducts its diagnosis and repairing work. The former means
that all or most of the threads in the target VM continue their
executions whereas the latter means that no thread in the target
VM is active and all CPU cores are trapped to the VMM.

Keeping the VM full or partially alive can be an application
demand from the VM owner. For instance, the VM may
host a heavy computation workload (e.g., machine learning
model training). It is against the owner’s interests to terminate
or even temporarily pause the execution. From the security
perspective, the benefit can be a revealing of adversarial
activities to a fuller extent, which contributes to more effective
attack analysis and evidence collection. Clearly, it is difficult
to fulfill the requirement because the incurred transparency,
race-condition, data consistency issues, to name a few.

It is much easier to deal with a paused VM. The tool in this
approach works with static memory data and CPU context of
the target. There is no concerns regarding transparency or race
conditions. Nonetheless, we emphasize that it still required to
preserve the target VM’s ability to resume execution after the
repairing work. In an ideal scenario, the VaaS empowers the
tools to flexibly control the target VM in the pause-resume
cycles.

B. Remapping vs. Reusing

There are two approaches to realizing the paging hierarchy
for the Responder VM. Note that the objective is to provide the
mappings for the VMCare tools to access the target kernel’s
virtual memory.

One approach is to leverage LibVMI [13], a software-based
address translation, as used in out-of-VM introspection. The
VMM allocates for the Responder VM an additional GPA
region with the same size as the target VM’s physical memory.
It then creates the Extended Page Tables (EPTs) to map the
GPA region to the target VM physical memory. When the
tool needs to reference of a virtual address of a target process,
LibVMI parses the target’s page tables, locates the physical
page, and remaps it to the tool’s virtual address space. The
main benefit of this method is its universal applicability for
all architectures. Its drawback is its lower speed than native
memory access. Hence, it suits scenarios involving a frozen
VM since the captured target memory is not updated during
analysis. Figure 2(a) illustrates the remapping approach.

The other approach is to reuse the CR3 as proposed in
OASIS [14]. OASIS builds a special execution environment
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Fig. 2. Illustration of two difference methods of providing target mappings
to the tool in the Responder VM.

inside which a user space program can executes within the
target kernel’s virtual memory. The VMCare tool can directly
reference a target VA with the MMU traversing the paging
tables. In view of its native speed support and consistent
mapping assurance, this approach is suitable for live VM
repairing. However, the technique of CR3 reusing is only
applicable for x86-64 guest VMs and the environment requires
an update when the tool changes its target from one thread
to another. More importantly, OASIS launches the tool as a
regular application in the host OS (i.e., the VMM), instead
of a guest VM. This unfortunately conflicts with the rationale
behind the VaaS service because the VMM is directly involved
and exposed to the tool. Figure 2(b) illustrates the paging
hierarchy reusing approach.

A combination of the two approaches seems more appeal-
ing. The former can be applied for read-only memory in the
target while the latter is applied for a specific thread for the
tool to make fine-grained and more calibrated operations.

C. External Execution vs. Injected Execution

Another dimension of design is whether a VMCare tool
or a fraction of its code is injected to the target kernel and
executes therein. Running the tool strictly inside the Responder
VM is surely a safe approach as threads in the target VM
does not have the paging support to access the Responder
VM memory. Nonetheless, its capability is constricted by the
imposed system setting. For instance, the tool can not change
the CPU contexts (including MSRs) of the target’s vCPU cores
which may affect the I/O handling and low-level system states.
Another issue is related to caches especially translation caches
as they could be different from the corresponding page table
entries. Keeping the tool outside of the target VM cannot
satisfactorily deal with these issues.

An injected execution resembles the kernel’s exception
handling which heals itself to some extent. It can in the form
of an interrupt handler or a hook on a kernel function. In
the extreme case, it can be a self-contained kernel thread in
the target VM. The obvious benefit is its effectiveness since
it is equipped with sufficient system and software semantics
and directly operates on the target. Equally oblivious is its
limitation, i.e., the insecurity of tool execution inside the
ailing target VM contaminated by malware. That said, it
is not entirely infeasible to secure the tool’s execution by
exploring virtualization-based isolation techniques [15], [16],



[17]. Nonetheless, these isolation techniques require the VMM
involvement at runtime, which does not appear appealing to
the CSP. Hence, the feasibility of an injected execution largely
hinges on the feasibility of an isolation mechanism controlled
by one VM upon another VM.

D. Hardened Application vs. Hardened VM

Existing hardware based TEE technologies include Intel
Software Guard Extension (SGX), AMD Secure Encrypted
Virtualization (SEV) and ARM TrustZone, with Intel Trust
Domain Extensions (TDX) [18] and ARM Confidential Com-
pute Architecture (CCA) emerging on the horizon. The pop-
ularity of TEE are largely attributed to the growing privacy
concern in cloud services. It is thus compelling to explore the
TEEs to tackle privacy challenges in VaaS.

a) Enclave: SGX enclaves isolate a virtual address space
segment of an application against all system software accesses,
including the VMM. A VMCare tool vendor can shield its
proprietary code and data using an enclave while use its non-
proprietary code outside the enclave to read and/or write the
target’s memory pages. Since instructions inside an enclave
are in user-mode only, they cannot directly reference code or
data pages under the target kernel’s mappings. Thus, it cannot
execute on top of OASIS in harmony. While it may overcome
the privilege barrier by proactively inducing context switches
with software interrupts, the incurred overhead especially due
to exiting from the clave and re-entering it is prohibitively
high. Nonetheless, the enclave approach works well with the
page remapping approach, since target kernel pages can be
remapped to the non-supervisor pages. Note that enclave code
accesses VA regions outside of the enclave in the same as
regular memory operations.

b) Secure VM: Since enclaves are application centric, it
is inconvenient for a VM responding services who may use
legacy tools that can not be hardened using enclaves. The
hardware based secure VM technology such as Intel TDX
and AMD SEV offers a more deployable alternative. Since the
Responder VM is protected as a whole by the hardware, the
respondent can upload any tool at its disposal without making
efforts to harden it individually. In Intel TDX, a Trust Domain
(TD) accesses to its private memory protected under Intel’s
multi-key, total-memory-encryption (MKTME) technology as
well as its shared memory in plaintext. With LibVMI, the
target VM memory can be mapped to the shared memory of a
TD holding the Responder VM for the tools to read and write.
Nonetheless, it is unclear whether the CR3 reusing technique
in OASIS is compatible with TDX.

E. Direct Access vs. Oblivious Access

The hardware TEE techniques, be it for an application
or for an entire VM, only thwart direct accessing from the
rogue VMM. The adversary can find out which target page
is modified and use cache side channels to determine which
page is read. With the patten, the adversary can possibly
infer the algorithm or objectives of the VMCare tool. As
mentioned earlier, the attack also helps the adversary to have

an easier semantic extraction from the target memory. It is
hence desirable to stall information leakage from the pattens
when accessing the target memory.

Oblivious RAM (ORAM) [19] and its derivatives such as
Path ORAM [20] are the well-known cryptographic tech-
niques dealing with access patten privacy. Those algorithms
can potentially be applied in tandem with a TEE-hardened
Responder VM or VMCare tool. Only the accesses to the target
VM memory follow the ORAM-style algorithm to generate a
randomized patten.

Despite of recent improvement on efficiency, ORAM algo-
rithms still take a heavy performance toll due to its inherent
working mechanism (i.e., to pad an intended access with
random-looking accesses to make it appear in a uniform
distribution). To reduce the overhead, the VMCare tool may
apply ORAM for a pool of pages (e.g., kernel objects) instead
of the entire target VM. We also note that the algorithms incur
frequent write-access to the target memory. Hence, it is more
suitable for scenarios using frozen VMs.

V. SUMMARY

To summarize, we envision a new cloud service named as
VMCare-as-a-Service (VaaS) to cope with situations where a
guest virtual machine hosted in a cloud environment encoun-
ters fatal system failures due to attacks or kernel crashes. The
spirit of VaaS is for the CSP to provision the infrastructure in
the form of a Responder VM and for a third-party VMCare
service provider or the VM owner to run their own tools to
attend to the concerned virtual machine. This role-splitting
approach suits the interests of all stakeholders.

We identify the challenges related to the VaaS service from
the system, software and privacy perspectives, and discuss an
array of design parameters with preliminary analysis upon the
pros and cons. In general, it is a research area with abundant
exciting problems. While some of them are related to known
problems, they do present fresh demands due to the unique
system setting in VaaS.

We also note that the VaaS model can be generalized for
other applications. For instance, the technology can be used
by law enforcement to carry out forensics against VM-based
vice and crime. It can also be applied to personal computers,
phones, and servers since modern commodity operating sys-
tems such as Windows 11, Linux and Android 13 have built-in
VMM functionality. The VaaS approach could be more flexible
and versatile than existing hardware based tool chains.
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