
Embellishing Text Search Queries To Protect User Privacy

HweeHwa Pang Xuhua Ding
School of Information Systems

Singapore Management University

{hhpang, xhding}@smu.edu.sg

Xiaokui Xiao
School of Computer Engineering
Nanyang Technological University

xkxiao@ntu.edu.sg

ABSTRACT
Users of text search engines are increasingly wary that their ac-
tivities may disclose confidential information about their business
or personal profiles. It would be desirable for a search engine to
perform document retrieval for users while protecting their intent.
In this paper, we identify the privacy risks arising from semanti-
cally related search terms within a query, and from recurring high-
specificity query terms in a search session. To counter the risks,
we propose a solution for a similarity text retrieval system to offer
anonymity and plausible deniability for the query terms, and hence
the user intent, without degrading the system’s precision-recall per-
formance. The solution comprises a mechanism that embellishes
each user query with decoy terms that exhibit similar specificity
spread as the genuine terms, but point to plausible alternative top-
ics. We also provide an accompanying retrieval scheme that en-
ables the search engine to compute the encrypted document rele-
vance scores from only the genuine search terms, yet remain obliv-
ious to their distinction from the decoys. Empirical evaluation re-
sults are presented to substantiate the effectiveness of our solution.

1. INTRODUCTION
Today’s text retrieval systems must have access to the queries

and the index structures that facilitate document retrieval, and be
trusted to not abuse the privilege. This arrangement is not always
desirable. In a potent demonstration of the associated privacy risk,
AOL recently released its Web log data, only to withdraw it soon
after when it was shown that detailed user profiles could be con-
structed from the data [3]. Many users are thus justifiably wary that
their queries could disclose personal or confidential information to
the search engine, such as their interests or preferences.

Privacy in text search is a hard problem though. Most mod-
ern text search engines implement similarity retrieval, where result
documents are ranked by their relevance to the user query. Similar-
ity retrieval has been found to be more effective for general users
than the Boolean model that finds only the documents containing
all the search terms, with no relative ranking among the result doc-
uments [29]. To avoid computing the relevance of every document,
search engines maintain an inverted list for each term, which con-
tains its impact value in each document. This allows the result of

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘10, September 13-17, 2010, Singapore
Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

a query to be composed from the inverted lists of the search terms,
hence skipping the documents that do not contain any query term.

The need to compute document relevance from inverted lists
rules out encryption techniques that allow only Boolean match-
ing, like those in [5], [10], [6] and [26]. Instead, query privacy
is achieved through anonymization, as advocated in [12]. This ap-
proach was investigated systematically in [19], which proposed to
formulate static sets of queries that cover diverse topics, and to re-
place each user query q with a query set S containing the query q̃
that best approximates q. q̃ serves as a surrogate that (hopefully)
retrieves most of the result documents for q, while the remaining
queries in S act as decoys. The scheme impacts precision-recall
performance, because the result for q̃ is not necessarily a superset
of q’s result. Moreover, in practice only a small number of the ex-
ponentially increasing term combinations can be materialized, so
the scheme is not designed for long queries that occur in general
text search (e.g., TREC topics [27]) or query expansion [23, 28].

Problem formulation: Our objective is to deter a similarity-based
text search engine from identifying the user intent from his query
terms, without compromising precision-recall performance. In-
stead of hiding user queries among cover queries, we achieve higher
anonymization by injecting decoy terms directly into each user query.
At one extreme, the genuine and decoy terms in a query could span
the entire dictionary. That offers complete privacy since the search
engine has no idea which terms are being queried, but the concomi-
tant overheads are too high. To be practical, we aim instead for
anonymity and plausible deniability for the user intent, by expand-
ing each query with a small subset of the dictionary terms that serve
as decoys. This requires us to manage privacy risks from:

• Semantically related search terms. A query is likely to include
multiple words that may be individually innocuous, but collec-
tively point to a common topic. Such terms are easily distin-
guishable from random decoy terms. For instance, given the
query {‘accelerated’, ‘threadmill’, ‘radiation’, ‘flooding’, ‘sat-
urn’, ‘therapy’}, the user is probably looking up ‘accelerated ra-
diation therapy’ for some cancer, and the other terms are merely
decoys. Another example of semantically related keywords is
{‘water’, ‘soaked’, ‘tissues’}, in the context of plant diseases.
• Recurring high-specificity search terms. In a search session, a

user is likely to issue a series of related queries around some spe-
cific keywords. For example, a query “osteosarcoma symptoms”
may be followed by another query “osteosarcoma therapy”. With
a large dictionary, the search term ‘osteosarcoma” is unlikely to
have been picked repeatedly as decoy by chance, so it is proba-
bly genuine. Since the term has a high specificity, i.e., it has a
very specific meaning, its presence betrays the user’s interest.

Contributions: To limit any inferences that the search engine may

draw from the search terms in a query, it is ineffective to throw de-
coy terms into it randomly. Instead, we counter the threat posed
by semantically related search terms (e.g., ‘accelerated’, ‘radia-
tion’, ’therapy’) by adding, to each query, decoy terms that relate
to plausible alternative topics (e.g., ‘water’, ‘soaked’, ‘tissues’).
As to the risk from recurring high-specificity search terms (e.g.,
‘osteosarcoma’) in successive queries within a search session, our
approach is to ensure that they also share decoys that are sim-
ilarly specific (e.g., ‘amaranthaceae’); consequently, intersecting
the queries would yield diverse high-specificity terms.

After injecting decoys, all the genuine and decoy terms in the
query are permuted randomly, to prevent the search engine from re-
inforcing its belief in the genuineness of a particular high-specificity
term through the presence of other terms that are individually in-
nocuous, but collectively relate to the same topic. For example, if
a query contains both ‘amaranthaceae’ and ‘hypocapnia’, it is not
obvious which is more plausible in light of other general or polyse-
mous terms in the query like ‘water’, ‘soaked’ and ‘tissues’.

When an embellished query arrives at the search engine, its query
processing has to involve both the genuine and decoy terms since it
cannot tell them apart. At the same time, the relevance of the query
result cannot be compromised. To prevent the decoy terms in the
embellished query from interfering with the documents’ relevance
scores, we present a secure retrieval scheme for the search engine
to derive query results from only the genuine search terms, without
discerning their distinction from the decoys.

The rest of the paper is organized as follows: Section 2 surveys
related work, and defines the similarity text retrieval model. Our
decoy injection mechanism is introduced in Section 3, while Sec-
tion 4 presents the accompanying secure retrieval scheme. An em-
pirical evaluation of our solution is reported in Section 5. Finally,
Section 6 concludes the paper.

2. BACKGROUND

2.1 Related Work
Query privacy for Boolean text retrieval has been studied exten-

sively. In that model, a query takes the form of a Boolean expres-
sion of search terms. Only documents that satisfy the Boolean ex-
pression qualify for the query result, and there is no ranking among
the result documents. Query privacy is achieved by matching the
encrypted or hashed keywords in place of their plaintext counter-
parts. Previous studies like [5], [10], [6] and [26] have proposed
such schemes in public key and symmetric key settings. However,
the Boolean model has been found wanting for general users; it is
similarity retrieval which forms the basis of most modern document
retrieval systems and Web search engines. Appendix B explains the
distinction between Boolean and similarity retrieval models.

[22] proposes to project the documents and user queries from the
original term space into a synthetic factor space formed with latent
semantic indexing (LSI). As query processing involves similarity
matching in the factor space, the server is oblivious of the actual
term composition of the queries and result documents. However,
LSI is known to perform well only for small homogeneous corpora
[13], and is not suitable for large document collections that span
multiple subject domains. Hence there is still a need for a privacy-
preserving scheme that works with the conventional similarity re-
trieval mechanism involving an inverted index implementation.

TrackMeNot [12] protects user queries from search engines by
hiding them among randomly generated ‘ghost’ queries. The au-
thors conceded that the ghost queries often can be ruled out easily
because their term combinations are not meaningful.

In [19], Murugesan and Clifton proposed to construct static groups

of canonical queries, such that the queries in each group cover di-
verse topics. At runtime, a user query is substituted by the closest
canonical query, while the other queries in the same group serve as
cover queries to mask the user intent. The query groups are con-
structed by (a) mapping the dictionary terms into a 30-factor space
with LSI; (b) forming canonical queries from terms that are in close
proximity of each other in the factor space using a kd-tree nearest
neighbor retrieval; and (c) selecting canonical queries with similar
popularity from different parts of the factor space.

Our solution improves upon Murugesan and Clifton’s scheme in
several ways. First, in practice only a very small subset of term
combinations can be materialized as canonical queries. This may
be fine for Web search where queries are generally short, but not so
for general text search. For example, the ad-hoc queries in TREC-2
and TREC-3 [27] contain up to 20 terms, and query expansion [23,
28] can produce even longer queries. In contrast, our approach of
injecting decoy terms into each query does not suffer that restric-
tion, as demonstrated in Section 5. Second, LSI exploits the heuris-
tic that related terms tend to co-occur in documents; the strength of
that heuristic depends on the corpus, and is not likely to capture all
possible word relations. Moreover, LSI works best with 200 to 350
factors [9], whereas multi-dimensional index trees for finding near-
est neighbors do not scale much beyond 10 dimensions [15]. We
avoid these pitfalls by building instead on the WordNet database.
Finally, substituting the user query with a canonical query affects
precision-recall performance, as demonstrated in [19]. In contrast,
our solution preserves the quality of the query results.

2.2 System Model
A search engine on a text corpusD typically employs an inverted

index to process queries. The inverted index comprises a dictionary
T of search terms, together with an inverted list for each term. The
inverted list Li for a term ti ∈ T contains a sequence of 〈dj , pij〉
pairs, where pij ∈ R is the impact of ti in document dj ∈ D. If ti
appears in dj , then pij > 0; otherwise pij = 0. For compactness,
the documents dj for which pij = 0 are not listed in Li explicitly.
In other words, if a dj does not have an entry in Li, then pij = 0.
Appendix B elaborates on the index, including the derivation of pij .

For a query q with search terms {ti}, the relevance of a document
dj is Sdj ,q =

∑
ti∈q pi,j . Consequently, only documents that ap-

pear in the inverted lists Li’s can accumulate a positive score, and
be deemed relevant to the query. This means that query processing
involves exactly the inverted lists for the search terms.

The inverted lists are assumed to be stored in plaintext on the
search engine. We decided against encrypting the inverted lists be-
cause that would prevent the search engine from computing the rel-
evance score of the documents, thus pushing the query processing
function to the user. In any case, encryption would be ineffective
here, because there are many clues that the search engine may ex-
ploit to map the encrypted inverted lists to their plaintext counter-
parts, including the varying length and access frequency of the lists.

We adopt the notation in Table 1 through the rest of the paper.
The symbols are explained as they are used.

3. EMBELLISHING USER QUERIES WITH
DECOY TERMS

This paper studies the problem of safeguarding the privacy of
user queries in a similarity text search engine, so that an adversary
is not able to observe or deduce the topic that is being searched
on. We focus on protecting against the search engine, which con-
stitutes the most powerful potential adversary because it possesses
the most information – it hosts the data structures, and it executes

Symbol Meaning
N # terms in the dictionary
ti The i-th term in the dictionary
Li The inverted list for ti
dj The j-th document in the corpus

scorej Relevance score of dj
#Bkts # buckets to map the dictionary terms to
BktSz # terms per bucket
SegSz # terms per segment
E(.) Benaloh additively homomorphic encryption [4]

KeyLen Length of cryptographic key for E(.) (# bits)

Table 1: Notation

amaranthaceae
osteosarcoma
moustille
hypocapnia

water
accelerated
active
residual

soaked
radiation
dry
nitrogen

tissues
therapy
yeast
time

Bucket 37 Bucket 174 Bucket 879 Bucket 912… … …

Figure 1: Illustration of Bucket Organization

the query evaluation algorithms. We exclude tampering concerns,
which have been addressed extensively in the context of query re-
sult authentication, e.g., [21]. Our problem is also orthogonal to
user identity related privacy, which may be mitigated through query
log anonymization [1], or by letting users connect to the search en-
gine through an anonymous network such as mix-net [7] or Tor [8].

Conceptually, we aim to group the inverted lists of the dictio-
nary terms in buckets, such that: (i) The terms within the same
bucket are approximately equal in specificity, but differ signifi-
cantly in meaning. For example, the terms in bucket 37 of Fig-
ure 1 are all very specific, whereas bucket 174 contains general
terms. (ii) Given any two buckets, the semantic distance between
the pair of terms in every slot i of the buckets are similar. Re-
ferring to the example in Figure 1, the distances between the cor-
responding terms in buckets 37 and 879 (i.e., {‘amaranthaceae’,
‘soaked’}, {‘osteosarcoma’, ’radiation’}, {‘moustille’, ‘dry’}, and
{‘hypocapnia’, ‘nitrogen’}) are roughly the same.

Given a query, all the terms that share the same bucket as any of
the search terms are added as decoys. Therefore a high-specificity
search term will always bring in the same set of decoy terms that are
also specific, and a pair of semantically related search terms will at-
tract pairs of decoy terms that are themselves semantically related.
The net result is to cover the genuine search terms with decoy terms
on other plausible topics. Referring to our running example in
Figure 1 again, the user query ‘osteosarcoma accelerated radiation
therapy’ relating to bone cancer would ideally be expanded with the
decoy phrases ‘amaranthacease water soaked tissues’, ‘moustille
active dry yeast’ and ‘hypocapnia residual nitrogen time’, cover-
ing plant diseases, wine making and diving, respectively. After
expansion, the terms in the query are permuted randomly, to raise
the difficulty of isolating the genuine terms. Consequently, there is
anonymity and plausible deniability for the user intent.

Obviously, constructing a bucket organization like the one in Fig-
ure 1 requires knowledge of term semantics and associations. As
a realistic dictionary could easily exceed a hundred thousand dis-
tinct terms, organizing the buckets manually from scratch would
be extremely tedious. In this work, we exploit the database of term
associations in WordNet [18]. We could augment the database with
relations extracted from text corpora [11] or the Web [25]; that is
discussed briefly in Appendix C, and left for future work.

We begin by analyzing the rationale for our query embellishment
approach in Section 3.1. Section 3.2 then gives a brief description

of the WordNet database and the determination of term specificity.
Following that, we propose a method for sequencing the dictionary
in Section 3.3. The word sequence is then used in Section 3.4 to
generate the buckets. The effectiveness of our bucket organization
is evaluated in Section 5.1. For general corpora, it suffices to deploy
the generated buckets directly; for sensitive applications where pri-
vacy is paramount, the buckets could be finetuned manually.

3.1 Rationale for Query Embellishment
Let s = 〈q1, q2, . . . , qn〉 be a sequence of n search queries is-

sued by the user. Assume that qi (i ∈ [1, n]) contains mi key-
words, i.e., qi = {ti1, ti2, . . . , timi}. Our approach replaces each
genuine term tij with a set (bucket)Bij of terms, such that (i) tij ∈
Bij , and (ii) ∀tij = txy, Bij = Bxy (each search term always
brings in the same bucket). Upon observingBi1, . . . , Bimi , the ad-
versary knows that qi must be in the setQi = {{t′i1, t′i2, . . . , t′imi

}
| ∀j ∈ [1,mi], t

′
ij ∈ Bij}. Let S denote the set of possible query

sequences that can be formed by the queries inQ1×Q2×. . .×Qn,
i.e., S = {〈q′1, q′2, . . . , q′n〉 | ∀i ∈ [1, n], q′i ∈ Qi}. For any se-
quence s′ ∈ S, let α(s′) denote the adversary’s prior belief in the
event that s′ is the sequence of queries issued by the user. Then,
the adversary’s posterior belief β(s′) in the same event is

β(s′) =
α(s′)∑

s∗∈S α(s
∗)
. (1)

If the adversary is deciding which query sequence in S is the one
issued by the user, he/she would pick s′ with β(s′) probability. Ac-
cordingly, we may quantify the privacy risk risk ({Bij}) posed by
our bucket organization {Bij} as the expected similarity between
the sequence picked by the adversary and the genuine sequence s.
That is,

risk ({Bij}) =
∑
s′∈S

β(s′) · sim(s′, s), (2)

where sim(s′, s) is a measure of the semantic similarity between
s′ and s, i.e., sim(s′, s) is large when s′ and s are similar.

Ideally, we should construct {Bij} in a way that minimizes
risk ({Bij}). The computation of risk ({Bij}), however, is prac-
tically difficult (if not impossible) due to two reasons. First, risk ({Bij})
depends on the adversary’s prior beliefs α(s′) for all s′ ∈ S, but
α(s′) is not known in advance and may vary among different ad-
versaries. Second, although there exist standard methods for calcu-
lating the semantic distance between two queries (e.g., Formula 3
in Appendix B), quantifying the semantic similarity between two
query sequences is an open problem, due to the complex correla-
tions among the terms across queries.

Nonetheless, from Equation 2 we can make two important ob-
servations on how to lower risk ({Bij}). First, risk ({Bij}) de-
creases with sim(s′, s) for any query sequence q′ in S \ {s}. In
other words, risk ({Bij}) is reduced if S encompasses a large
number of query sequences with significant semantic differences
from s. Intuitively, this can be achieved if each Bij contains a
semantically diverse set of terms, in which case the combinations
of those terms lead to queries with drastically different meanings,
thus decreasing the similarly among the query sequences in S. Sec-
ond, risk ({Bij}) is small when β(s′) is large for those sequences
s′ ∈ S that are not similar to s. That is, we should ensure that the
“camouflage” query sequences in S look as realistic as possible to
the adversary. This, as explained in Section 1, may be attained only
if the each embellished query contains terms that are as specific as
those in the genuine query. The above analysis justifies our solution
approach to construct buckets in such a way that each Bij contains
terms with similar specificity but semantically different meanings.

3.2 Deriving Term Specificity from WordNet
Our starting point for bucket organization is WordNet [18]. In

this well-known lexical database, every term is tagged with one or
more senses or meanings. Each sense has a corresponding synset
which tracks the terms that share the meaning, and also its relation-
ship with other synsets. For example, the term ‘privacy’ has two
senses, one synonymous with ‘seclusion’, the other with ‘secrecy’
and ‘concealment’. Relationships between synsets include:

• hypernym and hyponym, roughly corresponding to generaliza-
tion and specialization;
• holonym and meronym, roughly corresponding to containment

versus part-of; and
• topic and usage domain-membership.

In addition, antonyms and derivational relationships (e.g. ‘man’
and ‘manhood’) are identified.

The relationships in WordNet offer a basis for determining term
specificity: The most general are those belonging to synsets that
have no hypernyms. The more specific a term, the larger its number
of levels of hypernyms. We represent the specificity of a term as a
non-negative integer, determined as the length of the shortest path
from the term’s synset to a root in its hypernym hierarchy.

We focus on the part of the WordNet database involving nouns.
(The other parts contain verbs, adjectives, and adverbs.) There are
altogether 117,798 nouns that map to 82,115 synsets. As summa-
rized in Figure 2, the specificity ranges from 0 to 18, with about
one-third of the terms having a specificity value of 7. There is actu-
ally one synset with a specificity value of 0, and another 4 synsets
with specificity of 1, although the corresponding bars are too short
to notice in the figure.

0 4 8 12 16
0

10

20

30

Specificity

C
ou

nt
 (

×
10

00
)

Figure 2: Distribution of Term Specificity

Another common approximation for term specificity is docu-
ment frequency, defined as the percentage of documents in a cor-
pus that contain that term. Studies such as [14] have reported a
high correlation between the two methods. We adopt the hypernym
method in this paper, because it has the advantage of being corpus-
independent. If so desired, our bucket generation scheme will also
work with the document frequency method.

3.3 Sequencing the Dictionary
From the WordNet database, we first produce term sequences in

which related terms are clustered near each other. The procedure
is detailed in Algorithm 1. We process the synsets generally in
decreasing number of relationships. The synsets with high connec-
tivity (with other synsets) contain terms that are semantically rich.
These synsets are used as seeds to pull related terms into the se-
quences. (The algorithm does not assume the existence of a root in
the synset relation graph, from which we can initiate a depth-first
or breadth-first traversal.)

For each synset, if the terms within it span multiple existing se-
quences, they are amalgamated into a longer sequence. If none of
the terms in the synset have been encountered before, a new se-
quence is created. After adding the new terms from the current
synset to the sequence, we go on to process its related synsets in

Algorithm 1 Sequence the terms in the dictionary
ProcessSynset(synset ss)

1: if the terms in ss appear in multiple existing sequences then
2: Concatenate these sequences.
3: Let sq denote the concatenated sequence.
4: else if none of the terms in ss is in an existing sequence then
5: Start a new sequence sq.
6: else one of the terms in ss is in an existing sequence
7: Let sq be that existing sequence.
8: Append the unprocessed terms in ss to sq.
9: Mark all the terms in ss as processed.

10: Mark ss as processed.
11: Return the sequence sq.

SequenceVocab(WordNet wndb)
12: Order the synsets in decreasing number of relationships.
13: Mark all the synsets as unprocessed.
14: Mark all the terms as unprocessed.
15: Let SeqSet = ∅.
16: for all unprocessed synset ss do
17: Let sq = ProcessSynset(ss); insert sq into SeqSet.
18: for all related synsets ss′ in the order of derivational

relations, antonyms, hyponyms, hypernyms, meronyms and
holonyms do

19: Append any of the terms t in ss′ to sq.
20: Mark t as processed.
21: Let sq = ProcessSynset(ss′); insert sq into SeqSet.
22: Return all the term sequences in SeqSet.

order of closeness. This pulls in the derivationally related terms,
antonyms, hyponyms, hypernyms, meronyms, followed by holonyms.
We skip the topic and usage domain memberships because these
word associations tend to be less direct. The procedure is repeated
until all the synsets, and hence all the terms, have been processed.

Running on WordNet, the algorithm groups all the 117,798 nouns
into one long sequence, as they ultimately generalize to the same
word – ‘entity’. Below are a few snippets of the sequence:

• . . . ‘family tetragoniaceae’, ‘carpetweed family’, ‘amaranthaceae’,
‘family amaranthaceae’, ‘amaranth family’, ‘batidaceae’, . . .
• . . . ‘myosarcoma’, ‘neurosarcoma’, ‘malignant neuroma’, ‘os-

teosarcoma’, ‘osteogenic sarcoma’, ‘rhabdomyosarcoma’, ‘rhab-
dosarcoma’, . . .
• . . . ‘hypercapnia’, ‘hypercarbia’, ‘hypocapnia’, ‘acapnia’, ‘as-

phyxia’, ‘oxygen debt’, ‘hyperthermia’, ‘hyperthermy’, . . .
• . . . ‘foreign terrorist organization’, ‘terrorism’, ‘act of terrorism’,

‘terrorist act’, ‘abu hafs al-masri brigades’, ‘abu sayyaf’, ‘bearer
of the sword’, ‘aksa martyrs brigades’, . . .

Evidently, the algorithm is effective in clustering related terms.

3.4 Bucket Formation
Next, we concatenate the term sequences generated by Algo-

rithm 1 into one long sequence, and systematically assign its terms
into buckets. Algorithm 2 gives the bucket formation procedure.

Suppose we want a bucket size BktSz, for some input parameter
1 ≤ BktSz ≤ N/2 where N is the total number of terms in the
dictionary. The number of buckets #Bkts = N /BktSz. Since the
terms within a bucket are meant to provide cover for each other, we
can simply assign the terms at positions 1, #Bkts+1, 2×#Bkts+1,
. . ., (BktSz-1)×#Bkts+1, in the sequence to slots 1, 2, . . ., BktSz
of bucket 1, respectively; then populate bucket 2 with the terms at
positions 2, #Bkts+2, 2×#Bkts+2, . . ., (BktSz-1)×#Bkts+2; and
so on. Figure 3 illustrates the procedure. It has the advantage of

Algorithm 2 Form buckets from the sequenced dictionary terms
GenerateBuckets(TermSequences {sq}, BktSz, SegSz)

1: Concatenate the input sequences into one long term sequence.
2: Let N = length of the concatenated sequence.
3: Set #Seg = N /SegSz.
4: Split the term sequence into equal segments,
S1, S2, . . . , S#Seg .

5: Sort the terms within each segment in decreasing specificity.
6: for i=1 to N/(BktSz×SegSz) do
7: ActiveSeg = ∅.
8: for j=1 to BktSz do
9: Register S(j−1)N/(BktSz×SegSz)+i in ActiveSeg.

10: for j=1 to SegSz do
11: Create a new bucket B.
12: Insert into B the term at position j of each segment in

ActiveSeg.
13: Output bucket B.

t1 t2 t3 t4 … t501 t502 t503 t504 …
term

sequence

t1 t501

bucket1

t2 t502

bucket2

t3 t503

bucket3

t4 t504

bucket4

…

Figure 3: Bucket Formation – 1st Try (N = 1000, BktSz=2)

maximizing the semantic diversity within each bucket. In addition,
for any two buckets, the distance (and hence semantic difference)
between the terms in their i-th slot is constant for 1 ≤ i ≤ BktSz.
However, the terms within a bucket could vary widely in specificity,
which is not desirable as explained at the beginning of this section.

To moderate the term specificity within buckets, we allow neigh-
boring buckets to exchange the terms in their respective ith slots,
on the condition that terms with the same specificity retain their
original relative order. This is illustrated in Figure 4. As imple-
mented by lines 3 to 5 of Algorithm 2, the procedure effectively al-
lows term swapping among every batch of 1 ≤ SegSz ≤ N/BktSz
consecutive buckets. In particular, we split the term sequence into
#Seg=N /SegSz segments, order the terms by their specificity val-
ues (determined in Section 3.2), before populating each bucket with
BktSz terms that are equally spaced in the modulated sequence.
The result is that the initial buckets in each batch get the more spe-
cific terms, whereas the general terms gravitate to the later buckets.

To illustrate, below are a few of the buckets generated with Bk-
tSz=4 and SegSz=512; the numbers in parenthesis indicate the speci-
ficity of the corresponding terms.

• Bucket 1419: ‘sir thomas wyatt’ (7), ‘hypocapnia’ (6), ‘ecto-
zoon’ (7), ‘fool’s gold’ (6).
• Bucket 2076: ‘love knot’ (10), ‘mainspring’ (9), ‘osteosarcoma’

(14), ‘yellow-breasted bunting’ (14).
• Bucket 7927: ‘huntsville’ (9), ‘pigeon loft’ (7), ‘brama’ (7), ‘ter-

rorism’ (9).
• Bucket 8106: ‘smyrna’ (7), ‘lut desert’ (6), ‘acipenser’ (7), ‘abu

sayyaf’ (7).
• Bucket 14114: ‘sign of the zodiac’ (5), ‘amaranthaceae’ (8),

‘american chestnut’ (11), ‘family eschrichtiidae’ (7).

Thus, for example, a user query on {‘abu sayyaf’, ‘terrorism’}
would be embellished with the other terms from buckets 8106 and
7927. Even if the adversary manages to group the terms in the
embellished query correctly – a nontrivial task in general – he is
still faced with the combinations of {‘smyrna’, ‘huntsville’}, {‘lut

t3 t1 t2 t4 … t504 t501 t503 t502 …
modulated
sequence

t3 t504

bucket1

t1 t501

bucket2

t2 t503

bucket3

t4 t502

bucket4

…

t1 t2 t3 t4 … t501 t502 t503 t504 …
term

sequence

sort by inverted
list length

Figure 4: Final Bucket Formation (N=1000,BktSz=2,SegSz=4)

desert’, ‘pigeon loft’}, and {‘acipenser’, ‘brama’}, all of which
are also plausible topics that explain the user’s interest. Of course,
our bucket organization does not guarantee that all combinations of
decoy terms are equally meaningful; indeed, that is probably im-
possible. Realistically, we can only aim to mask the user interest
with as many meaningful decoys as possible. We will empirically
measure the effectiveness of our proposed solution in Section 5.

Finally, our bucket formation algorithm requires two input pa-
rameters. The first, SegSz, balances between the two privacy risks:
On one hand, a high SegSz leads to larger segments that provide
flexibility to even out the specificity of the terms within each bucket.
This reduces the risk from recurring high-specificity search terms
in a query sequence. On the other hand, with finer segments the
semantic distance between the terms occupying the same slot i in
two buckets are likely to be similar across 1 ≤ i ≤ BktSz. The sec-
ond parameter BktSz determines the bucket size. Since the search
engine retrieves all the terms residing in the same bucket as any
of the search terms, a larger bucket increases the number of decoy
terms and thus privacy protection, at the expense of a heavier per-
formance penalty. The impact of SegSz and BktSz on our bucket
formation will also be investigated through experiments.

4. PRIVATE RETRIEVAL SCHEME
In this section, we introduce our private retrieval scheme for the

search engine to compute the correct document relevance scores
from the genuine search terms, without interference from the decoy
terms in the query. The scheme comprises three procedures, for
query formulation, server processing, and post filtering.

Algorithm 3 User masks the genuine terms in the search query
Input: A set of genuine search terms ti’s.
Output: Embellished query q.

1: Let q = ∅.
2: for all genuine search terms ti do
3: Let Bkt be the host bucket for ti.
4: for all tj ∈ Bkt do
5: if tj == ti then let uj = 1
6: else let uj = 0.
7: Let E(uj) = gujµr mod m.
8: Insert 〈tj , E(uj)〉 into q.

The query formulation procedure is given in Algorithm 3. From
each bucket containing a genuine search term, the user (client soft-
ware) injects all the other terms in that bucket into the query as
decoys. The query q is a set of 〈tj , E(uj)〉 pairs where uj = 1 if
tj is a genuine term, and uj = 0 for decoy term tj . E(uj) =
gujµr mod m is Benaloh’s additively homomorphic encryption
function [4], with suitably chosen parameters m, g, r, and random
µ ∈ Z∗m; a detailed definition of the encryption function is given in
Appendix A. The embellished q is then submitted to the server.

Algorithm 4 Query processing by the search engine
Input: Embellished query q.
Output: A set R of candidate result documents, with their en-
crypted relevance scores.

1: Let R = ∅.
2: for all 〈ti, E(ui)〉 ∈ q do
3: for all 〈dj , pij〉 ∈ Li do
4: if ∃〈dj , E(scorej)〉 ∈ R then
5: E(scorej) = E(scorej)× E(ui)

pij .
6: else
7: Insert 〈dj , E(ui)

pij 〉 into R.

Algorithm 4 gives the query processing procedure that is exe-
cuted by the search engine. The algorithm iterates through the
(genuine and decoy) terms in the embellished query q. For each
term ti, the associated inverted list Li contains the candidate re-
sult documents. For each such document dj , its encrypted rel-
evance score E(scorej) is incremented by E(ui)

pij or, equiva-
lently, E(ui × pij) as E(.) is additively homomorphic.1 For de-
coy terms ti, ui = 0 so E(ui)

pij changes only the ciphertext
E(scorej) but not the actual scorej . Consequently, scorej ac-
cumulates only the impact values pij of the genuine terms ti in q.
The candidate result R is returned to the user.

As all the terms in the same bucket as any query term are injected
into the query in Algorithm 3, the search engine should store the in-
verted lists for the terms of a bucket in common disk block(s). This
allows Algorithm 4 to fetch the inverted lists of an entire bucket’s
worth of terms in one operation, thus lowering I/O costs.

Algorithm 5 Post filtering by the user
Input: A set R of candidate result documents, with their en-
crypted relevance scores.
Output: An ordered list of result documents.

1: for all 〈dj , E(scorej)〉 ∈ R do
2: Decrypt E(scorej) to recover scorej .
3: Sort the entries in R in decreasing relevance scorej .
4: Return the dj of the top entries.

Upon receiving the result R, the user decrypts the relevance
score of the candidate documents, and identifies those with the
highest scores as result documents for the query. The procedure
is given in Algorithm 5.

CLAIM 1. Our retrieval scheme does not interfere with the rel-
evance ranking of the search engine.

Rationale Consider a result document dj . As explained in Sec-
tion 2.2, dj must appear in the inverted list Li of some genuine
search term ti. Since Algorithm 4 processes the inverted list of ev-
ery term in the embellished query q, including Li, the procedure is
guaranteed to find dj . With ui = 1 for genuine term ti and ui = 0
for decoy term ti, the score E(scorej) =

∑
ti∈q ui × pij is accu-

mulated from the genuine terms. Therefore the user can determine
correctly dj’s ranking with respect to the other documents. 2

Alternate Retrieval Method: For retrieving the buckets that con-
tain the search terms, we will benchmark our retrieval scheme against
the Private Information Retrieval (PIR) method from [16]; the pro-
tocol is described briefly in Appendix A. With this method, each
bucket Bkt is treated as a private “database”, and the inverted lists
within a bucket must be padded to exactly the same length. The
1The cryptographic operation is defined only for non-negative in-
tegers pij . We assume that the impact values pij’s are discretized
so that pij ∈ N

⋃
{0}, as explained in [29].

database is treated as a matrix, with the columns corresponding to
the inverted lists, and the ith row storing the ith bit of the lists.

Suppose we have a query that requires one genuine term in Bkt,
with the remaining terms in the bucket serving as decoys. We send
to the server a row vector, filled with QR (quadratic residue) values
except for the column holding the genuine term which has a QNR
(quadratic non-residue) value. The output is a column of QR/QNR
values, corresponding to 0/1 bits in the target inverted list respec-
tively. The generation of the output involves all the terms in the
bucket, so the server cannot identify which term is being retrieved
because it is computationally infeasible to differentiate QR from
QNR without knowledge of the secret key.

Denoting the length (in bytes) of an inverted list Li by |Li| and
using a key size of KeyLen bits, the return message to the user
has a size of KeyLen × max

Li∈Bkt |Li| bytes. This protocol
can retrieve only one list per execution. Thus, if a query contains
multiple genuine terms from the same bucket, their inverted lists
have to be fetched one at a time.

5. EMPIRICAL EVALUATION
In this section, we present a two-part empirical evaluation of our

solution. The first part focuses on the effectiveness of the decoy
terms added to mask the user intent, and seeks to understand how
the bucket size and segment size should be chosen. The second part
of the evaluation quantifies the performance of the search engine
that executes our private retrieval scheme.

5.1 Evaluation of Privacy Risk
As presented in Section 3, our solution (denoted as “Bucket”)

embellishes a user query with decoy terms from the same buckets as
the genuine terms. We judge the plausibility of the resulting cover,
compared to that provided by the same number of random decoy
terms (denoted by “Random”). The evaluation metrics are:

• Difference in intra-bucket specificity values. This measures the
difference between the highest and lowest specificity values of
the terms in the same bucket. A small difference is desirable,
as it means that each genuine search term would attract decoy
terms that are similarly specific, thus countering any inference
from recurring high-specificity terms in a search session.
• Difference in inter-bucket distances. Recall that the terms in an

embellished query are permuted randomly, to deter the adversary
from recovering the logical grouping among the terms. Here, we
assume conservatively that the adversary succeeds nevertheless.
To counter any inference from them, all the groups should ex-
hibit similar semantic patterns among their terms. Specifically,
when a user queries for two terms t1 and t2 from a pair of buck-
ets, the semantic distance dist between t1 and t2 should be sim-
ilar to the distance dist′ between the other pairs of terms from
the two buckets. Again, we would like the distance difference
|dist − dist′| to be small, so that related query terms would
evoke similarly related decoy terms. The smallest |dist− dist′|
is reported as ‘closest cover’, and the largest as ‘farthest cover’.

We define the semantic distance between two terms t1 and t2 as
the length of the shortest path between their corresponding synsets.
We assign a weight of 1 to a hypernym-hyponym relationship, and
weights of 0.5, 2 and 3 for antonym, holonym-meronym, and domain-
member relationships, respectively, to reflect the different degrees
of association that they represent. For a given bucket organization,
we pick the terms in slot i of a pair of randomly selected buck-
ets as query terms, with i varying uniformly between 1 and BktSz,
and measure their semantic distance against that of the pairs of de-
coy terms at the other slots. (We pair the terms at the same slot

in the buckets because they are generally closer to each other in
the term sequence, and hence are closer semantically, compared to
word pairs across slots.) This measurement is repeated 1,000 times,
and the average distance difference is reported.

For our experiments, we run the WordNet database through Al-
gorithms 1 and 2 to generate the buckets. We first vary SegSz while
keeping BktSz fixed at 4. Figure 5(a) gives the intra-bucket speci-
ficity differences, averaged over all the buckets. As expected, a
larger segment size lowers the specificity differences by providing
more leeway to swap terms within segments. This explains the
lower specificity values compared to random decoy terms.

The corresponding distance differences are given in Figure 5(b).
The results show that, on the average, the semantic distance of
the closest cover differs from that of the user query by just one
hypernym-hyponym hop, whereas the farthest cover is about 4 times
longer. Surprisingly, the distance differences appear to be little af-
fected by SegSz. On closer examination, we discover this is be-
cause line 5 of Algorithm 2 preserves the relative order among
terms that tie on specificity, so a large SegSz causes entire synsets
of terms to be reordered (by specificity), and allows closely related
terms to remain clustered together in each segment. Again, the
cover provided is much better than that of random decoy terms.

2 6 10 14
0

1

2

3

4

5

log
2
(SegSz)

S
pe

ci
fic

ity
 D

iff
er

en
ce

Random
Bucket

(a) Specificity Difference

2 6 10 14
0

3

6

9

log
2
(SegSz)

D
is

ta
nc

e
D

iff
er

en
ce

Random (Farthest)
Random (Closest)
Bucket (Farthest)
Bucket (Closest)

(b) Distance Difference
Figure 5: Effect of SegSz on Bucket Formation (BktSz = 4)

Since a larger segment size improves the specificity difference
without worsening the difference in semantic difference, for the
next experiment we maximize the segment size to N /BktSz while
varying the bucket size. As shown in Figure 6, the specificity dif-
ference starts low. The implication is that small buckets tend to in-
troduce decoys that match the genuine terms in specificity. As the
bucket size increases, it becomes more difficult to maintain uni-
formity in term specificity within every bucket; nonetheless, the
specificity difference is still small relative to random decoy terms.

2 6 10 14
0

3

6

9

BktSz

S
pe

ci
fic

ity
 D

iff
er

en
ce

Random
Bucket

(a) Specificity Difference

2 6 10 14
0

4

8

12

BktSz

D
is

ta
nc

e
D

iff
er

en
ce

Random (Farthest)
Random (Closest)
Bucket (Farthest)
Bucket (Closest)

(b) Distance Difference
Figure 6: Effect of BktSz on Bucket Formation

5.2 Retrieval Performance
Having assessed the effectiveness of our decoy selection mecha-

nism, we now investigate the performance of our Private Retrieval
(PR) scheme. The experiment set-up is as follows:

• Algorithms: We benchmark PR against PIR. The two schemes
are described in Section 4.
• Dataset: The corpus for the experiments is WSJ, comprising

172,961 articles published in the Walls Street Journal from De-
cember 1986 to March 1992. The combined size of the articles

is around 513 Mbytes. We first load the corpus into the Lucene
search engine [17], which parses the documents, performs stop-
word (common words like ‘the’ and ‘a’ that are not useful for dif-
ferentiating between documents) removal but not stemming [2],
and creates an inverted index. Next, we write out Lucene’s index
into a dictionary of terms, along with an inverted list for each
term. This dictionary is intersected with the WordNet database,
giving us a list of searchable terms with known semantic rela-
tionships (from WordNet). Using our mechanism in Section 3,
the search terms are grouped into buckets.
• Workload: We form queries from the search terms randomly.

The number of query terms is an experiment parameter. The
queries are embellished systematically, according to Algorithm 3,
before submission to the search engine.
• System configuration: Our search engine runs on a Redhat Linux

box with dual Intel Xeon 3GHz CPUs, 1 Gbyte RAM, and a Sea-
gate ST973401KC 73 Gbytes hard disk formatted with default
1-Kbyte blocks. The user machine has an Intel 1.33GHz CPU
with 768 Mbytes of RAM, and runs Ubuntu Linux.
• Metrics: The performance metrics include the I/O and CPU costs

incurred by the search engine, the network traffic volume, and
the user computation time. Each performance result is averaged
over 1,000 queries.

For a start, we fix the query size at 12 terms and vary the bucket
size. The results are plotted in Figure 7. PIR appears to enjoy a
slight edge in server resource consumption; its I/O costs are vir-
tually the same as PR’s, while its server protocol imposes roughly
16% less CPU demand than the homomorphic encryption opera-
tions performed in PR. However, PR’s server-user communication
is an order of magnitude lower, whilst its saving in user compu-
tation ranges from 60% for BktSz=2, to 23% for BktSz=24. In
particular, PR’s increase in communication cost in Figure 7(c) is
only sublinear to the bucket size, because its output corresponds to
the union of the documents in the queried buckets.

0 8 16 24
120

125

130

135

140

BktSz

S
er

ve
r

I/O
 (

m
se

c)

PIR
PR

(a) Search Engine I/O

0 8 16 24
0

100

200

300

BktSz

S
er

ve
r

C
P

U
 (

m
se

c)

PIR
PR

(b) Search Engine CPU

0 8 16 24
0

10

20

30

BktSz

T
ra

ffi
c

(K
by

te
s)

PIR
PR

(c) Network Traffic

0 8 16 24
0

100

200

300

400

500

BktSz

U
se

r
C

P
U

 (
m

se
c)

PIR
PR

(d) User CPU
Figure 7: Performance Impact of BktSz

Next, Figure 8 profiles the sensitivity of the schemes to the query
size, with the bucket size fixed at 8. Clearly, the disadvantages of
PIR are exacerbated here, with its communication and user compu-
tation requirements both increasing linearly with the query size. In
contrast, PR scales much more gracefully to long queries.

The experiment results clearly point to the superiority of PR. If
most of the user queries comprise only a small number of terms,

0 10 20 30 40
0

100

200

300

400

Query Size

S
er

ve
r

I/O
 (

m
se

c)

PIR
PR

(a) Search Engine I/O

0 10 20 30 40
0

100

200

300

Query Size

S
er

ve
r

C
P

U
 (

m
se

c)

PIR
PR

(b) Search Engine CPU

0 10 20 30 40
0

2.5

5

7.5

10

Query Size

T
ra

ffi
c

(K
by

te
s)

PIR
PR

(c) Network Traffic

0 10 20 30 40
0

500

1000

1500

Query Size

U
se

r
C

P
U

 (
m

se
c)

PIR
PR

(d) User CPU
Figure 8: Performance Impact of Query Size

it is essential to adopt a large bucket size so that the embellished
queries include enough decoy terms to cover sufficiently diverse
topics. On the other hand, if query expansion techniques (e.g.,
those reported in [23], [28]) are employed, the queries could well
contain a few dozen search terms even before adding decoy terms.
In both cases, the substantially lower network traffic and user com-
putation imposed by PR would justify its server computation over-
heads. These advantages are particularly important in deployment
scenarios where the communication channel may be a cellular net-
work for which users are charged by traffic volume or the user
protocol is executed within resource-constrained devices, whereas
server computing resources can be provisioned much more easily.

6. CONCLUSION
This paper introduces a similarity text retrieval system that af-

fords anonymity protection for the query terms, and hence the user
intent, without compromising precision-recall performance. Our
approach is to embellish each user query with decoy terms before
submitting it to the search engine. Starting from a database of term
associations, e.g., WordNet, we present a mechanism for selecting
decoy terms that exhibit similar specificity spread as the genuine
terms, yet point to plausible alternative topics. We also provide a
novel retrieval scheme, using homomorphic encryption techniques,
that enables the search engine to compute the encrypted document
relevance scores with respect to only the genuine search terms, but
remain oblivious to their differentiation from the decoys. The ef-
fectiveness of our proposed methods are confirmed through exper-
iments involving real datasets.

7. REFERENCES
[1] E. Adar. User 4xxxxx9: Anonymizing Query Logs. In Query

Log Analysis Workshop, WWW, May 2007.
[2] R. Baeza-Yates and B. R. Neto. Modern Information

Retrieval. Addison Wesley, 1999.
[3] M. Barbaro and T. Z. Jr. A Face Is Exposed for AOL

Searcher No. 4417749. The New York Times, 9 August 2006.
[4] J. C. Benaloh. Dense Probabilistic Encryption. In Workshop

on Selected Areas of Cryptography, May 1994.
[5] J. Bethencourt, D. Song, and B. Waters. New Constructions

and Practical Applications for Private Stream Searching
(Extended Abstract). In IEEE Symposium on Security and
Privacy, May 2006.

[6] D. Boneh, G. D. Crescenzo, R. Ostrovsky, and G. Persiano.
Public Key Encryption with Keyword Search. In
EUROCRYPT, May 2004.

[7] D. L. Chaum. Untraceable Electronic Mail, Return
Addresses, and Digital Pseudonyms. Communications of the
ACM, 24(2), February 1981.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security
Symposium, August 2004.

[9] S. T. Dumais. Latent Semantic Indexing (LSI) and TREC-2.
In Second Text REtrieval Conference (TREC2), D. Harman,
ed., March 1994.

[10] M. J. Freedman, Y. Ishai, B. Pinkas, and O. Reingold.
Keyword Search and Oblivious Pseudorandom Functions. In
Theory of Cryptography Conference, Feburary 2005.

[11] T. Hasegawa, S. Sekine, and R. Grishman. Discovering
Relations among Named Entities from Large Corpora. In
ACL, July 2004.

[12] D. C. Howe and H. Nissenbaum. TrackMeNot.
mrl.nyu.edu/ dhower/trackmenot/.

[13] P. Husbands, H. Simon, and C. H. Q. Ding. On The Use Of
The Singular Value Decomposition For Text Retrieval. In
Proc. SIAM Computational Information Retrieval, 2001.

[14] H. Joho and M. Sanderson. Document Frequency and Term
Specificity. In Recherche d’Information Assistée par
Ordinateur Conference (RIAO), May 2007.

[15] F. Korn, B.-U. Pagel, and C. Faloutsos. On the
‘Dimensionality Curse’ and the ‘Self-Similarity Blessing’.
IEEE TKDE, 13(1), January 2001.

[16] E. Kushilevitz and R. Ostrovsky. Replication is NOT
Needed: SINGLE Database, Computationally-Private
Information Retrieval. In FOCS, October 1997.

[17] Lucene. Apache Lucene Search Engine.
http://lucene.apache.org/java/docs/.

[18] G. A. Miller. WordNet: A Lexical Database for English.
Communications of the ACM, 38(11), November 1995.

[19] M. Murugesan and C. Clifton. Providing Privacy through
Plausibly Deniable Search. In SDM, April 2009.

[20] P. Paillier. Public-Key Cryptosystems based on Composite
Degree Residuosity Classes. In EUROCRYPT, May 1999.

[21] H. Pang and K. Mouratidis. Authenticating Query Results for
Text Search Engines. In VLDB, July 2008.

[22] H. Pang, J. Shen, and R. Krishnan. Privacy-Preserving,
Similiarity-Based Text Retrieval. ACM Transactions on
Internet Technology, 10(1), February 2010.

[23] Y. Qiu and H.-P. Frei. Concept Based Query Expansion. In
ACM SIGIR, June 1993.

[24] S. E. Robertson, S. Walker, and M. Hancock-Beaulieu.
Experimentation as a way of life: Okapi at TREC.
Information Processing and Management, 36(1), 2000.

[25] B. Rozenfeld and R. Feldman. Self-Supervised Relation
Extraction from the Web. Knowl. Inf. Syst., 17(1), 2008.

[26] D. X. Song, D. Wagner, and A. Perrig. Practical Techniques
for Searches on Encrypted Data. In IEEE Symposium on
Security and Privacy, May 2000.

[27] TREC. Text REtrieval Conference. http://trec.nist.gov/.
[28] J. Xu and W. B. Croft. Query Expansion Using Local and

Global Document Analysis. In ACM SIGIR, August 1996.
[29] J. Zobel and A. Moffat. Inverted Files for Text Search

Engine. ACM Computing Surveys, 38(2), July 2006.

Appendix A. Cryptographic Primitives
A.1 Private Information Retrieval
The Private Information Retrieval (PIR) scheme employed in our
experiments is based on the construction by Kushilevitz and Ostro-
vsky (KO) in [16]. The scheme is defined as follows.

Given n which is the product of two primes p1 and p2, a number
b ∈ Z∗n is a quadratic residue (QR) modulo n if ∃w ∈ Z∗n such
that w2 = b mod n; otherwise b is a quadratic non-residue (QNR).
Without knowledge of p1 and p2, it is computationally infeasible to
distinguish a QR from a QNR.

Suppose that a server holds a private “database” B, organized
as a r × c matrix of bits. A user, wishing to retrieve privately the
bit bxy ∈ B in row x and column y of the database, executes the
following protocol with the server:
• The user starts by picking two (KeyLen/2)-bit primes p1

and p2, then computes n = p1p2. n is given to the server,
while p1 and p2 are kept secret.
• The user generates c random numbers q1, . . . , qc such that qy

is a QNR, and the other qj’s, j 6= y, are QRs. q1, . . . , qc are
sent to the server.
• The server computes, for every row 1 ≤ i ≤ r, a number
γi ∈ Z∗n as γi =

∏c
j=1 vij where

vij =

{
q2j if bij = 0
qj if bij = 1

γ1, . . . , γr are returned to the user.
• With p1 and p2, the user can efficiently test whether γx is a

QR. If so, he concludes that bxy = 0; otherwise bxy = 1.

A.2 Additively Homomorphic Encryption
Paillier’s [20] and Benaloh’s [4] are two of the well-known cryp-
tosystems that provide additively homomorphic encryption. Our
experiments employ the latter because it produces shorter cipher-
texts and hence lower communication costs.

The Benaloh cryptosystem is constructed as follows for mes-
sages in [0, r − 1] where r is an integer. For key generation,
• Pick two large prime numbers p1 and p2 such that r divides

(p1 − 1), r is co-prime with (p1 − 1)/r, and r is co-prime
with (p2 − 1).
• Set the modulus n = p1p2.
• Select g ∈ Z∗n such that g(p1−1)(p2−1)/r mod n 6= 1.
• (n, g) is the public key, and (p1, p2) is the corresponding pri-

vate key.
To encrypt a message m ∈ Zr ,
• Choose a random µ ∈ Z∗n.
• Set E(m) = gmµr mod n.

The random µ in the encryption function enables the same message
m to map to different ciphertexts through different invocations of
the function. This prevents an adversary from inferring m from
knowledge of its frequency.

To recover a messagem from its ciphertextE(m), the decryptor
exhaustively tests, for every i ∈ Zr , whether

(g−i · E(m))(p1−1)(p2−1)/r = 1 mod n

The equation above only holds whenm = i. Note that all g−i mod
n can be pre-computed by the decryptor. With the baby-step giant-
step algorithm, the decryption procedure requiresO(

√
r) time. How-

ever, for r = 3k for some k ∈ N, [4] gives an optimized decryption
procedure that requires only k modular exponentiations.

Given the ciphertext E(m1) = gm1µr
1 mod n and E(m2) =

gm2µr
2 mod n for two messages m1 and m2, anyone can compute

E(m1)⊗E(m2) = gm1+m2(µ1µ2)
r mod n = E(m1 +m2) to

get the ciphertext of (m1 +m2) mod r. Therefore the cryptosys-
tem is additively homomorphic.

Appendix B. Text Retrieval Models
This appendix gives a brief explanation of two classical text re-
trieval models that are related to existing work and our proposed
solution.

B.1 Boolean Keyword Matching
The Boolean model for text retrieval by keyword matching is based
on set theory and Boolean algebra. Suppose q is a query, in the form
of a Boolean expression of keywords. Let qdnf be the disjunctive
normal form of q, and qcc be a conjunct in qdnf . The “similarity”
between document d and query q is defined as:

Sd,q =

{
1 if ∃ qcc ∈ qdnf such that (∀ term t ∈ qcc, t ∈ d)
0 otherwise

The above function produces a binary decision without any notion
of ranking. In other words, a document either matches the query or
it does not; there is no degree of relevance that differentiates two
matching documents. The limitation hinders good retrieval perfor-
mance when users are not familiar with the exact terminology in
the documents, and is especially problematic with casual users or
large/heterogeneous corpora. This drawback of the Boolean model
prompted the development of similarity-based retrieval systems.

B.2 Text Retrieval by Similarity
Let D denote a set of documents. Let T be the set of all terms (or
keywords) in the dictionary for D. A search engine on D and T
takes a query q, which is a subset of T (i.e., q ∈ 2T), and returns
a set of documents whose similarity scores are above a pre-defined
threshold, e.g., the 20th highest score. Most text search engines
rate the similarity of each document d ∈ D to a query q, based on
these considerations:

• Terms that appear in many documents are given less weight;

• Terms that appear many times in a document are given more
weight; and

• Documents that contain many terms are given less weight.

The considerations are encapsulated in a similarity function, which
uses some composition of the following statistical values:

• fd,t, the number of times that term t appears in document d;

• ft, the number of documents that contain term t;

• N , the number of documents in the data set D.

A similarity function that is effective in practice defines the score
of a document d with respect to a query q, Sd,q , to be the cosine of
the angle between the corresponding document vector and query
vector in multi-dimensional term space. One of the most well-
known variations is:

Sd,q =

∑
t∈q wd,t · wt

Wd
(3)

where wt = ln
(
1 + N

ft

)
, wd,t = 1 + ln(fd,t), and Wd =√∑

t∈d w
2
d,t. Okapi [24] is another well-known scoring function.

Similarity models have been studied extensively and proven suc-
cessful in TREC experiments [29]. Note that our solution presented

Term t ft Inverted List for t
and 1 7→ 〈6, 0.159〉
big 2 7→ 〈2, 0.148〉 〈3, 0.088〉
dark 1 7→ 〈6, 0.079〉
did 1 7→ 〈4, 0.125〉
gown 1 7→ 〈2, 0.074〉
had 1 7→ 〈3, 0.088〉
house 2 7→ 〈3, 0.088〉 〈2, 0.074〉
in 5 7→ 〈6, 0.159〉 〈2, 0.148〉 〈5, 0.088〉 〈1, 0.088〉 〈3,

0.088〉
keep 3 7→ 〈5, 0.088〉 〈1, 0.088〉 〈3, 0.088〉
keeper 3 7→ 〈4, 0.125〉 〈5, 0.088〉 〈1, 0.088〉
keeps 3 7→ 〈5, 0.088〉 〈1, 0.088〉 〈6, 0.079〉
light 1 7→ 〈6, 0.079〉
never 1 7→ 〈4, 0.125〉
night 3 7→ 〈5, 0.177〉 〈4, 0.125〉 〈1, 0.088〉
old 4 7→ 〈2, 0.148〉 〈4, 0.125〉 〈1, 0.088〉 〈3, 0.088〉
sleep 1 7→ 〈4, 0.125〉
sleeps 1 7→ 〈6, 0.079〉
the 6 7→ 〈5, 0.265〉 〈1, 0.263〉 〈3, 0.263〉 〈6, 0.159〉 〈2,

0.148〉 〈4, 0.125〉
town 2 7→ 〈1, 0.088〉 〈3, 0.088〉
where 1 7→ 〈4, 0.125〉

Figure 9: Example of Impact-Ordered Inverted Index

in this paper applies generally to similarity retrieval models that
judge similarity from the query and document vectors, including
Okapi.

Given a query, a straightforward evaluation algorithm is to com-
pute Sd,q for each document d in turn, and return those documents
with the highest similarity scores at the end. The execution time of
this algorithm is proportional to N , which is not scalable to large
collections. Instead, search engines typically make use of an index
that maps the search terms to the documents containing them. The
most efficient index structure for this purpose is the inverted index.
Our work uses the impact-ordered inverted index, one of the varia-
tions recommended in [29] which provides a comprehensive survey
on search engine algorithms.
Impact-Ordered Inverted Index. The index consists of two com-
ponents – a dictionary of terms and a set of inverted lists. The
dictionary stores, for each distinct term t,

• a count ft of the documents that contain t, and

• a pointer to the head of the corresponding inverted list.

The inverted list for a term t is a sequence of impact pairs 〈d, pd,t〉
where

• d is the identifier of a document that contains t,

• pd,t is the associated impact of the term t in document d, de-
fined as

pd,t =
wd,t · wt

Wd
(4)

Note that wt is independent of q. Moreover, each inverted list is
sorted in decreasing pd,t values. Figures 9 and 10 give an exam-
ple of an impact-ordered inverted index and an algorithm for find-
ing the top-k matching documents with the inverted index, both
adapted from [29]. The algorithm repeatedly pops the highest im-
pact value from the inverted lists involved in a query, and accu-
mulates the relevance score of the documents encountered. This
continues until all the inverted lists are exhausted, at which point
the documents with the highest cumulative scores are identified for
the query result.

The similarity scoring model with the inverted index implemen-
tation are used extensively in modern document retrieval systems.

To find the top k matching documents for a query q, using an
impact-ordered inverted index.

(1) Fetch the first 〈d, pd,t〉 entry in each query term t’s inverted list.
(2) While there remain entries on any query term’s inverted list,

(a) Identify the inverted list entry 〈d, pd,t〉 with highest pd,t,
breaking ties arbitrarily.

(b) If d has not been encountered before, create an accumula-
tor Ad and initialize it to zero.

(c) Ad ← Ad + pd,t.
(d) Fetch the next entry in term t’s inverted list.

(3) Identify the k largest Ad values and return the corresponding
documents.

Figure 10: Query Evaluation on Impact-Ordered Inverted In-
dex
They also form the foundation of Web search engines. That is why
we pick the model as basis for our privacy-preserving text retrieval
solution in this paper.

Appendix C. Merging Multiple Sources of Term
Relations
Our decoy injection mechanism requires as input a database of term
relations. For this paper, we use the database from WordNet [18].
As the term relations in this database have been derived manually,
they are accurate but may not be comprehensive enough. Depend-
ing on the search application, it may be necessary to additionally
incorporate domain-specific or emerging term relations. These can
be obtained through relation extraction from text corpora [11] or
the Web [25]. To combine the two sets of term relations, one way
is to translate the various types of term relations in WordNet to
appropriate numeric strengths; then, the extracted relations are also
assigned ratings in the same strength scale according to their occur-
rence counts. Finally, line 18 of Algorithm 1 needs to be modified
to iterate from the strongest term relations, down to some minimum
strength threshold. The detailed procedure for merging multiple
sources of term relations is left to a future extension of the paper.

