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ABSTRACT
Remote attestation provides the basis for one platform to
establish trusts on another. In this paper, we consider the
problem of attesting the correctness of program executions.
We propose to measure the target program and all the ob-
jects it depends on, with an assumption that the Secure
Kernel and the Trusted Platform Module provide a secure
execution environment through process separation. The at-
testation of the target program begins with a program anal-
ysis on the source code or the binary code in order to find
out the relevant executables and data objects. Whenever
such a data object is accessed or a relevant executable is in-
voked due to the execution of the target program, its state
is measured for attestation. Our scheme not only testifies
to a program’s execution, but also supports fine-granularity
attestations and information flow checking.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection; D.2.4
[Software Engineering]: Distribution, Maintenance, and
Enhancement—Restructuring, reverse engineering, and reengi-
neering

General Terms
Security
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Remote attestation was initially introduced as one of the
basic functions of the trusted computing model proposed by
the Trusted Computing Group (TCG) [22]. According to
its specification, a TCG-compliant platform (the attester),
with an embedded Trusted Platform Module (TPM) chip,
attests to a remote platform (the challenger) with a digital
signature upon the hashes of the states of its software com-
ponents. The challenger evaluates the trustworthiness of the
attester by verifying the signatures.

The challenger may require the attester to testify to a
specific security property according to the application. The
most primitive property, namely the platform integrity, can
be measured by TPM directly. Nonetheless, many applica-
tions require security assertions on more sophisticated secu-
rity properties, for example, program semantics [7], behavior
[24], or security policy enforcement [11]. The attestations of
these properties make use of the basic TCG attestation as
a building block and augment it with other security mecha-
nisms.

In this paper, we deal with how to validate the correctness
of a program’s output. We design an attestation mechanism
whereby a platform attests that the output of a program is
the expected result of its execution which is not manipu-
lated or tampered with. To motivate our work, we use the
information auditing as an example. One of the main rea-
sons why auditing is expensive in terms of manpower cost
is that it requires step-by-step manual checking the entire
data process including intermediate steps and results, the
inputs and the final outputs. Our scheme allows a plat-
form to attest its data processing to an auditor, which not
only significantly speeds up the process, but also reduces
the errors due to human negligence. Another application is
the distributed computing projects, such as the well-known
SETI@Home project [1] and the Great Internet Mersenne
Prime Project [5]. These projects usually involve a job su-
pervisor and many participants, usually volunteers on the
Internet. The supervisor splits a computation intensive task
into sub-tasks and assigns them to the participants. It is
desirable for the supervisor to have a mechanism which is
able to verify the correctness of the results generated by the
participants so that they can be safely used for its scientific
purpose.

We emphasize that our objective is not to authenticate
the integrity of the output of a program, which can be triv-
ially obtained by using digital signatures. Neither does our



scheme attest the security of the platform. We observe that
the assurance on a platform’s security does not always lead
to the assurance of a program’s correct execution. Even in
a secure platform with a reasonable security policy enforce-
ment, a malicious administrator is still able to tamper with
or manipulate a program execution on the platform under
her control.

In this paper, we propose a TCG-based remote attestation
for the correctness of the execution of a target program. The
basic rationale is as follows. If a program is modeled as a
deterministic Turing machine, its execution, or its output,
is determined by the sum of two factors: its binary code
and the input data. Our attestation scheme measures not
only the binary code of the target program, but also all the
inputs. Although a program is fed with the input when it is
started, it also exchanges data with other processes during
the course of the execution. Therefore, our scheme attests
the validity of those data as well, which may be the output
from another program. In short, with a recursive fashion,
the proposed attestation measures all relevant data in the
platform that affects the final outcome of a target program.

The organization of the paper is as follows. In the next
section, we discuss related work. In Section 3, we briefly ex-
plain the background of program dependency, which helps
to find all relevant data flow. A synopsis of the proposed at-
testation scheme is provided in Section 4. Then, we present
its details in Section 5 and Section 6. We conclude the paper
in Section 7.

2. RELATED WORK
In the literature, a number of attestation mechanisms

based on TPM have been proposed. Terra [4] uses a Trusted
Virtual Machine Monitor (TVMM) to transform a tamper
resistant hardware platform into multiple virtual machines
(VMs) that are isolated from each other. With the protec-
tion of the trusted hardware, TVMM offers both the open-
box VM and the closed-box VM. The attestation in TVMM
only measures the programs before their executions and is
not able to check their behaviors after attestation. Sailer
et al. [15] introduced an integrity measurement architecture
(IMA) which employs a loading time integrity measurement
mechanism to prove the integrity of a remote system. IMA
was the first scheme to extend the TCG specified measure-
ments which include BIOS, the OS loader and the operat-
ing system, to programs at the application layer. However,
IMA attests the integrity of the entire system and is in-
capable of testifying to a program’s execution. Haldar et
al. [7] introduced a semantic attestation mechanism based
on the Trusted Virtual Machine (TVM). The TVM based
semantic attestation mechanism enables the remote attesta-
tion of high-level program properties. However, they only
introduced the framework and did not clearly spell out the
methods to effectively attest a remote program to guaran-
tee its behaviors. Shi et al. proposed BIND [20] which is
a fine-grained attestation mechanism. It provides evalua-
tion interfaces to attest the security-concerned segments of
code. Jaeger et al. [11] introduced the Policy-Reduced In-
tegrity Measurement Architecture (PRIMA) based on the
information flow integrity checking against the Mandatory
Access Control (MAC) policies. However, as Hicks et al. [9]
observed that these system level mandatory access controls
only seek to enforce security at application granularity and
can not monitor the data handled within an application.

Therefore, it still does not resolve the problem we target at.
Software based attestation mechanisms do not rely on

TPM. Mark et al. [19] proposed to use obfuscation routines
to perform static and dynamic analysis for remote attesta-
tion of sensor nodes. SWATT [18] performs attestation on
embedded devices using a software verification function to
verify the memory of embedded devices. Seshadri et al. [17]
employed a specially designed checksum function to evalu-
ate the state integrity of the remote programs on an un-
trusted platform. SCUBA [16] employs attestation to de-
tect compromised nodes without false negatives and repairs
the compromised ones with secure code update. Most of
the existing software-based attestation mechanisms focus on
providing a trustworthy routine to guarantee the trustwor-
thiness of the attestation process. It is a commonly agreed
that software-based solutions are more vulnerable to attacks
than hardware-based solutions.

3. PRELIMINARY OF PROGRAM DEPEN-
DENCY

In this section, we briefly explain program dependency,
which is the cornerstone of our attestation scheme. Infor-
mally, dependency describes the relevance between two ob-
jects such as instructions, procedures, processes in one plat-
form or even across two platforms. In this paper, we are
particularly interested in the dependences at two levels, the
program language level and the operating system level. The
former refers to the dependences among instructions within
a program [3, 10, 12], while the latter refers to the depen-
dences among software components within a system archi-
tecture [6]. Although it is the system level dependence that
enables us to find those relevant objects which affect the ex-
ecution of the target program, we need the language level
dependences as the starting point to derive them.

The language level dependences of a program are usually
represented by the Program Dependence Graph (PDG) [10].
A PDG is a directed graph denoted by G = {V, E} where
V and E are the node set and the edge set respectively.
A PDG visualizes the dependences among instructions of a
procedure or a segment of code. A node in G represents one
instruction of the program. An edge starting from vi and
ending at vj means that vi is dependent on vj . The depen-
dences among instructions can be either control dependence
or data dependence. Control dependence refers to the rela-
tionship among instructions that one instruction determines
whether another can be executed or not, whereas data de-
pendence refers to the relationship among instructions that
one’s data is used by another.

The System Dependence Graph (SDG) [10] represents the
data dependences and the control dependences among pro-
cedures of a program. An SDG is constructed by joining all
procedures’ PDGs at the inter-procedural dependent nodes.
These inter-procedural dependences include: 1) parameter-
out/write: the data flows from the first party to the second
one; 2) parameter-in/read: the data flows from the second
party to the first; 3) non-parameter method/function call:
the first party calls the execution of the second one, with-
out data exchange. Data dependence in an SDG refers to a
program’s read or write access to data objects such as config-
uration files. Throughout this paper, we use αw, αr, αc and
βw, βr to denote three types of inter-procedural dependences
and two types of data dependences, respectively. These de-



pendences depict the information flows between a program
and other objects involved in its execution.

4. SYNOPSIS
Our attestation scheme has two participating platforms,

the challenger denoted by C and the attester denoted by H.
H is equipped with a TPM module coupled with the secure
kernel [2]. Among the executables running on H, P is the
target program of the attestation. We consider P as a de-
terministic Turing machine. The objective of the proposed
attestation scheme is to allow C to verify the trustworthi-
ness of the outputs of P . The adversary in our model has
full privileges in controlling the software system on H, except
the secure kernel and TCG software. In other words, the ad-
versary is able to modify and manipulate all the programs
and data files on H for her own benefits.

The main idea of our scheme is as follows. Since P is a
deterministic program, its state and outputs are determined
jointly by its binary code and all inputs. The initial input
to P is static data, which are generated before P is invoked.
During its execution, P may receive inputs from other pro-
grams or data objects. Like the initial input, these runtime
inputs also have impacts on P ’s output. Therefore, our at-
testation scheme measures not only the binary code of P and
its initial input, but also, in a recursive fashion, checks both
the correctness and the timing of runtime inputs from rele-
vant sources. In other words, for every data relevant to P ’s
execution, our scheme measures the data itself, its generator
and the inputs which result in the data.

We build an attestation agent, denoted as AA, running
in the kernel space of H. AA makes use of the OS kernel
services such as process management and file system man-
agement, to monitor and measure the execution of P and
other relevant programs. The functioning of AA relies on
the secure kernel which provides a secure execution envi-
ronment by memory curtaining and process isolation so as
to protect the program executions from attacks by malicious
processes. The agent AA operates in two consecutive phases:
the preparation phase, and subsequently, the measurement
phase. Initially, in the preparation phase, AA derives the
programs and data files the execution of P depends on, by
checking its binary code (or source code if available). It then
registers all related system calls according to the discovered
dependences. In the measurement phase, it monitors all sys-
tems calls. For those system calls which are registered, AA
makes an attestation on the relevant states.

In specific, the attestation of P ’s execution consists of the
following steps.

Step I: AA executes in its preparation phase before P is
invoked. AA uses the algorithms described in Section 5 to
register all relevant system calls into a table. This task is
only executed once for P . The table saved in the secure
storage protected by TPM. On P ’s follow-up invocations,
AA checks the integrity of the table before loading it.

Step II: On starting P ’s execution, AA proceeds into its
measurement phase. It monitors P ’s execution and the sys-
tem calls and makes timely measurements. All measurement
results are deposited into the secure storage protected by
TPM. The details are shown in Section 6.

Step III: On the exit of P ’s execution, AA requests H’s
TPM to sign all measurements. When the challenger C re-
quests an attestation on P ’s execution, the signatures and
the measurements are reported to C as in a normal remote

attestation.
Since the last step is a standard remote attestation pro-

cess, the rest of the paper only focuses on the first two steps
in order to avoid verbosity. The system architecture of our
framework is depicted in Figure 1.

5. THE PREPARATION PHASE
In this section, we first define a set of rules of program de-

pendence, which form the theoretic basis of our algorithms.
Then, we show the details of the algorithm executed by AA
during the preparation phase.

5.1 Program Dependence
In the following, we use Tp to denote the inter-procedural

dependence type set {αw, αr, αc} and use Td to denote the

data dependence type set {βw, βr}. We say Pi
t−→ Pj , when

a programs Pi has a t-type inter-procedural dependence on

another program Pj , t ∈ Tp. Similarly, we say Pi
t−→ Fj ,

when Pi has t-type data dependence on a data file Fj , t ∈ Td.
A program Pi is treated as a set of instructions. We use Ci

to denote a subset of Pi. Similar to the dependences among

programs, we use Ci
t−→ Cj and Cj

t−→ Fj to denote Ci’s
dependence on Cj and Fj respectively, where t ∈ Tp ∪ Td.

Recall that P ’s System Dependence Graph (SDG) de-
scribed in Section 3 depicts all dependences among instruc-
tions, some of which invoke relevant processes or read data
from files. In order to testify to the inputs from relevant
processes, it is not sufficient to only check P ’s instructions.
Therefore, we define a set of rules below to derive the de-
pendence relations among executables from the dependences
among instructions.

Clearly, if Ci of Pi has a dependence on Cj of Pj , Pi

has the same dependence on Pj . This rule also applies to
dependences on file objects. We summarize them in Rule 1
and Rule 2, respectively.

Rule 1. ∀Ci ⊂ Pi, Cj ⊂ Pj , tp ∈ TP , Ci
tp−→ Cj =⇒

Pi
tp−→ Pj.

Rule 2. ∀Ci ⊂ Pi, td ∈ Td, Ci
td−→ Fj =⇒ Pi

td−→ Fj.

The above rules only capture the dependences from the
direct links in an SDG. Another type of dependence is due
to sharing a common resource. Program Pi is indirectly
dependent on program Pj if Pj ’s execution affects the input
to Pi. We use Rule 3 and Rule 4 to reflect this.

Rule 3. ∀Ci ⊂ Pi, Cj ⊂ Pj , Ck ⊂ Pk, ∀tp ∈ {αr, αc},
Ci

αr−−→ Cj ∧ Cj
tp−→ Ck =⇒ Pi

αr−−→ Pk.

Rule 4. ∀Ci ⊂ Pi, Fj , Ck ⊂ Pk, Ci
βr−→ Fj ∧ Ck

βw−−→
Fj =⇒ Pi

αr−−→ Pk.

Rule 3 above shows that program Pk affects Pi whenever
it affects Pj ’s execution which Pi depends on. Rule 4 shows
Pk affects Pi whenever it produces any data which Pi relies
on. Similarly, one program’s execution may impact another
program’s execution through the chain of invocation. We
express this with Rule 5 and Rule 6.

Rule 5. ∀Ci ⊂ Pi, Cj ⊂ Pj , Ck ⊂ Pk, tp ∈ {αr, αc}, Ci
αc−−→

Cj ∧ Cj
tp−→ Ck =⇒ Pi

αc−−→ Pj.
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Rule 6. ∀Ci ⊂ Pi, Cj ⊂ Pj , Fk, Ci
αc−−→ Cj ∧ Cj

βr−→
Fk =⇒ Pi

βr−→ Fk.

With Rule 3 and Rule 5, it is straightforward to derive
the following transitiveness rule.

Rule 7 (transitiveness of αr and αc). ∀Ci ⊂ Pi, Cj ⊂
Pj , Ck ⊂ Pk, ∀t1, t2 ∈ {αr, αc}, Ci

t1−→ Cj ∧ Cj
t2−→ Ck =⇒

Pi
t1−→ Pj.

This rule claims that both αc-type and αr-type depen-
dences are transitive relations with respect to themselves.
As shown later, this rule allows us to construct a dependence-
closure set of objects the target program depends on.

5.2 Constructing the Set of Dependences and
System Calls

To facilitate the discussion, we first explain the notations

used in this section. We write 〈Pi
tp−→ Pj , O〉 or 〈Pi

td−→
Fk, O〉, if O is the system calls set which establishes Pi’s
dependence on Pj or Fk. For example, suppose that Pi

reads file Fk using the system call sys read(). Then we have

〈P td−→ Fk, {sys read}〉. For easiness of presentation, we call

〈Pi
tp−→ Pj , O〉 a dependence tuple. We define LP as the

set of dependence tuples which affect P ’s execution. Obvi-
ously, LP includes those objects P directly interacts with.
According to the rules above, an object may indirectly af-
fect P . Therefore, those objects are enclosed in LP as well.
Similarly, for a component C, its dependence tuple set is
denoted by LC .

Given LP , AA is able to check all data exchanges and
process executions affecting P . In the preparation phase,
AA’s mission is to compute LP , so that it is able perform
measurement when P starts to run. The construction of LP

relies on the SDG described in Section 3, which requires code
analysis on P . Therefore, we consider two possible scenarios:
with the source code of P and only the binary code of P is
available. Obviously, with the source code, the analysis of
P is more efficient and precise. In the following, we define
Dp

P and Dd
P as the executable object set and data object set

that P ’s execution depends on, respectively. More formally,

Dp
P = {(P̄ , t) | t ∈ Tp, P

t−→ P̄} and Dd
P = {(F̄ , t) | t ∈

Td, P
t−→ F̄}. Let DP = Dp

P ∪ Dd
P .

Source code based approach.
Given the source code of P , the objects which P directly

depends on can be easily obtained via a static program anal-
ysis. These objects are inserted to DP and these direct de-
pendences are inserted into LP . For every newly inserted
object in DP , we then analyze its dependence and find out
the objects it depends on. Among them, some objects which
have relations with P according to the aforementioned rules
are inserted into DP and LP as well. With this recursive
approach, DP and LP are completed until no new object is
inserted. We present an outline of the steps below.

• Step(1): Use the target program P ’s source code to
generate the Abstract Syntax Tree (AST) of P with
the approach proposed in [13]. Then use the resulting
AST to construct the program dependence graph of
all P ’s procedures [12, 8]. Connect these PDGs to
construct the System Dependence Graph (SDG) of P ,
GP = {V, E} using the method introduced in [10];

• Step(2): Compute the direct dependent objects set
of P by executing Algorithm 1, i.e. ( DP ,LP ) ←
Direct Dependent Object Set(r,GP ), where r is the
root of P ’s AST. Following Rule 1-7 introduced in Sec-
tion 5.1, Algorithm 1 checks GP to determine P ’s di-
rect dependences on other executable and data objects.



• Step(3): For every executable objects Pi newly in-
serted into DP , generate GPi recursively. Following
Rule 3-7, add P ’s indirected dependent objects and
dependences into DP and LP accordingly.

The detailed description of computing LP is given in Al-
gorithm 2, which calls Algorithm 1 to generate the object
set a program directly depends on. In the Step (2), chal-
lenger first obtains the direct dependent objects set of the
target program by Algorithm 1 whose complexity is O(N),
where N is the number of nodes in the target program’s SDG
graph and is linear with target program’s Line-of-code. In
practical usages, if the direct dependent object set of a tar-
get program is generated and distributed by the program
provider, the Algorithm 1 can only be executed for once be-
fore all remote attestation processes. Algorithm 2 employs a
recursive procedure to get the indirected dependencies of the
target program. The complexity of this procedure is deter-
mined by two factors: first is the number of programs which
the target program and its dependent programs depend on;
second is the Line-of-code of these dependent programs. It
is the worst situation when the target program depends on
all the programs in a system. However, in a multi-task op-
erating system, when independent applications run simulta-
neously, a target program usually depends on only a part of
the system. For example, a distributed client can runs on
a personal computers with other independent applications
simultaneously, like email clients and browsers, and these
independent programs depend on specific parts of the whole
system.

In practical usages, the complexity of the whole process
for generating all the dependences of different programs can
be reduced by following approach: first, for these programs
which are commonly used as fundamental services for other
programs, like the kernel modules in Linux, their DP and
LP can be first generated and distributed by the program
provider; second, in order to get the set of dependences for
a specific application, the challenger may simply use these
available DP and LP to generate the target application’s set
of dependences. For different programs, the average com-
plexity of constructing the sets of dependences can be obvi-
ously reduced in this approach.

According to LP , a system trap table called SysTrap, is
built as shown in Table 1. SysTrap contains four columns:
System calls, Caller, Callee, and Dependence type. For every
element in LP , we insert to SysTrap one entry accordingly,
or multiple entries if several system calls are used.

Binary Code based Approach.
In remote attestation applications, it is not rare that only

the binary code of the target program is available. In this
case, reverse engineering is needed to get the binary code’s
higher level imperative representation [14], which is usually
in an assembly language1. The assembly code can be treated
almost in the same way as a high-level source code program.
Algorithm 2 is equivalently applicable to the assembly lan-
guage for generating the target program’s dependence tuple
set.

Generating DP and LP of P by the binary code analysis
consists of four major steps:

1. Disassemble the binary code and get the assembly codes
of the target program;

1For Java bytecode, it can be directly analyzed [25].

2. Construct the assembly code’s program dependence
graph and system dependence graph;

3. Identify all direct dependent objects set;

4. Identify all indirect dependent objects using Rule 3-7.

6. MEASUREMENT PHASE
The task of AA in its measurement phase is to take a snap-

shot of data generation by measuring the related objects.
The structure of AA is shown in Figure 2. We place AA at
those system call hooks, so that AA is able to intercept all
system calls in SysTrap table. These hooks call the analyzing
procedure in AA and transfer the system call type and pa-
rameter information to AA’s analyzing procedure. Accord-
ing to the system call information, AA’s analyzing procedure
checks whether the system call, its caller and callee appear
in SysTrap. If so, AA’s measuring procedure is activated to
perform the measurement. A measurement involves states of
the caller and the callee, which can be either an executable
object or a data file. Meanwhile, AA also records the time
of invocation which is useful for later verification. After the
measurement, AA forwards the system call to the OS kernel
to resume the normal process and deposits the results into
a sealed storage.

6.1 Linux System Call Trapping
We build AA with the Linux Security Module (LSM) [23].

LSM provides a set of hooks to enforce system access con-
trol policies for the kernel. For example, SElinux [21] has a
typical Mandatory Access Control implementation of LSM,
which supports dynamic security polices. In our scheme, all
dependence related system calls are classified into the fol-
lowing categories: program execution, file operation, socket
operation, inter-process communication, and kernel module
operation. For the first four kinds of system calls, AA makes
use of existing hook interfaces provided by LSM to trap a
call. As LSM does not provide any hooks to monitor kernel
modules operation, we implement two new hooks to monitor
kernel modules operation.

Program Execution.
User space executables are invoked via the system call ex-

ecve(). The bprm alloc security() hook is located in do execve(),
so the AA’s analyzing procedure is called by bprm alloc security()
to monitor program invocation. The loading of the dynam-
ically linked binaries is transparent to the kernel. However
the dynamic linker needs to map the dynamically loadable
libraries into the virtual memory via mmap() system call.
Therefore, we use file mmap() to call the analyzing proce-
dure to monitor dynamically loadable libraries. Script pro-
grams, such as shell or perl scripts, are executed by the
corresponding interpreters. The execution of a script is a
result of its interpreter’s execution and the script loading is
essentially a file loading process. For these program execu-
tion related system calls, AA’s analyzing procedure needs to
identify these with corresponding caller program and called
program in SysTrap.

As a process is likely to be scheduled off from CPU due to
time-sharing, it is desirable to re-measure the process when
it is re-loaded to CPU. In that case, we use task prctl() to
call the analyzing procedure to check the states of process.
If the process’s state is changed, a new measurement will be
performed.



Algorithm 1 Direct Dependent Object Set(C, T,GP )

Input: C is a component of executable P ; T is abstract syntax tree of P ; G(P ) is P ’s SDG;
Output: C’s direct dependent objects set DP =Dp

P

⋃Dd
P , and LP ;

if C is the root of T then LP = ∅; endif
set DC = {Dp

C ,Dd
C} = {∅, ∅}; LC = ∅;

if C has subcomponents in T then
for every subcomponent Ci of P do
{Dp

Ci
,Dd

Ci
,LP } =Direct Dependent Object Set(Ci, T,GP );

For Ci’s each program dependence 〈Ci
tp−→ P , O〉 in Dp

Ci
, add (P , tp) into Dp

C , add 〈C tp−→ P , O〉 into LC ; / ∗ ∗ Rule 1

∗ ∗ /

For Ci’s each data file dependence 〈Ci
td−→ F , O〉 in Dd

Ci
, add (F , tp) into Dd

C , add 〈C td−→ F , O〉 into LC ; / ∗ ∗ Rule 2
∗ ∗ /

end for
else

if C has only an instruction node then
if C has a tp dependence on program P ’s component C by system calls O then

According to Rule 1, add (P , tp) into Dp
C , add 〈C tp−→ P , O〉 and 〈C tp−→ C, O〉 into LC , add 〈P tp−→ P , O〉 into LP ;

end if
if C has a td dependence on data file F by system calls O then

According to Rule 2, add (F , td) into Dd
C , add 〈C td−→ F , O〉 into LC , add 〈P td−→ F , O〉 into LP ;

end if
end if

end if
return {Dp

C ,Dd
C ,LP };

Algorithm 2 Get All Dependent Objects(P ):

Input: Target program P ’s source code;
Output: P ’s dependence set LP ;

Construct P ’s abstract syntax tree TP and its dependence graph GP ;
{Dp

P ,Dd
P ,LP } = Direct Dependent Object Set(r, TP ,GP );

for every (Pi, tp) ∈ Dp
P in which Pi has not been analyzed do

Construct Pi’s abstract syntax tree TPi and its dependence graph GPi ;
{Dp

Pi
,Dd

Pi
,LPi} = Direct Dependent Object Set(rPi , TPi ,GPi);

for ∀C̄ ⊆ Pi do

if ∃C ⊆ P, ∃〈C tp−→ C̄, O〉 ∈ LC then
According to Rule 3, 5, 6, 7, check all dependences in LC̄ , find P ’s indirected dependent objects and add them
into Dp

P and Dd
P , and add these indirected dependences into LC ; all Pi’s direct dependences which contribute to

identifying P ’s indirected dependences should be added into LP .
end if

if ∃C ⊆ P, ∃〈C βr−→ Fk, O1〉 ∈ LC , ∃〈C̄ βw−−→ Fk, O2〉 ∈ LC̄ then

According to Rule 4, add (Pi, αr) into Dp
P , add 〈Pi

βw−−→ Fk, O2〉 into LP ;
end if

end for
end for
return LP ;

File Operation.
In order to monitor the runtime dependences among pro-

cesses and files, file operations are monitored. When a pro-
cess accesses a file, the LSM hook file permission() is trig-
gered to check the permissions of specific operation on the
target file. We use this hook to call the analyzing procedure.

Inter-Process Communication (IPC).
To monitor inter-process communications, we use IPC re-

lated hooks to call the analyzing procedure. The IPC related
LSM hooks are ipc permission(), msg queue msgrcv() for sys-
tem IPC message queues, shm shmat() for shared memory

segments, sem semctl() for semaphore operations. For asyn-
chronous IPC operations, which are carried out in different
parts, the analyzing procedure separately monitors them.
If the part of an asynchronous IPC operation matches Sys-
Trap, the analyzing procedure calls the measuring procedure
to record the states this IPC operation.

Socket Operation.
The socket objects can be considered as data objects. The

reading from and writing to socket should also be monitored.
We use two hooks: socket sendmsg() and socket recvmsg() to
call the analyzing procedure.



System Calls Caller Callee Dependence
Type

sys read P1 F1 βr

sys execve P2 P3 αc

... ... ... ....

Table 1: System Trap Table

Selected Hooks
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Procedure

OS kernel

AA

Analyzing 

Procedure

SysTrap

Figure 2: Attestation Agent

Kernel Module Operations.
Some applications involve modules of the operation sys-

tem. When a kernel module is required, the kernel locates
and loads the right module into the memory. As there is
no LSM hook for kernel modules operations, we modify ins-
mod() and modeprobe() to invoke the analyzing procedure to
monitor the runtime dependences on kernel modules. The
analyzing procedure deals with these operations in the same
manner as with the program execution system calls.

6.2 Measurement Process
The measurement process is triggered when the trapped

system calls match SysTrap table. AA may measure a pro-
cess, a file or a segment of data. There are two types of
data: external data which refers to external data input into
the system; inter-process data which refers to the data com-
municated among objects in the system. The approach to
record the state of external data is trivial. Thus, we elab-
orate the details of process and file measurement as well as
the inter-process data among them. Table 2 shows the steps
to measure a process Q before its once execution, where
SK denotes the Secure Kernel, r is a random value received
from the challenger, and AIKpr is the private AIK of TPM
on the target platform. We employ the same cache mecha-
nism in [15] to measure a target process before it executes.
Since a process can be offloaded from a CPU due to process
scheduling, a cache is used to temporarily keep all the mea-
surements when the process is schedule out. A new measure-
ment is performed only if the target process or data file have
been changed before being reloaded. Otherwise, the mea-
suring procedure directly re-uses the measurement stored in
the cache. On Q’s execution, AA first suspends the process
and measures the process. Then AA checks the cache, and
records the cached measurement if cache-hit happens; oth-
erwise, AA utilizes the platform configuration registers in
TPM to store the results. After the measurement is stored,
the Secure Kernel enables the trusted execution mode for Q.

When Q’s execution stops, the Secure Kernel exits from the
trusted execution mode and the operating system regains
the control. For data files, AA also employs the cache mech-
anism to measure them immediately when they are accessed.
The steps are outlined in Table 3.

For different dependence types, AA measures different ob-
jects accordingly.

• αc dependence: This type of dependence only involves
two processes. Therefore, AA employs the process in
Table 2 to measure the states of both the caller and
the callee.

• αr or αw dependence: These two types of dependences
involve data exchange between two processes. Thus,
AA measures the states of both processes and the data
exchanged between them. AA employs the process in
Table 2 to measure the states of processes. For αw,
its exchanged data can be directly recorded. For αr,
the exchanged data is only available when the system
call returns. Therefore, for αr related system calls, we
insert a hook at the end of the system call handler to
catch the returned data.

• βr or βw dependence: These two types of dependences
involve file operations. Accordingly, AA measures the
state of the process, the state of the file, and the data
read from or written to the file, using the algorithms
in Table 2 and 3. The data written to the file can
be directly recorded. For the data read from the file,
we have to handle βr related system calls to get the
returned data immediately after they finish the task
and before they return the data to application. If the
βr or βw dependences are between a process and the
socket objects, AA measures the state of the process,
the data read from or written to the socket object. The
state of the socket object is represented by the data.

Our measurement minimizes the gap between time-of-measure



Table 2: Process measurement procedure: MEASURE(Q, r)
Steps Players Messages and Actions
1 AA Suspends Q , checks the measurement cache, if cache-hit hap-

pens, records the cached measurement and jumps to step 6
2 AA → SK Disables interrupt
3 SK → TPM PCR Reset
4 TPM PCR Extend ( Address(Q), Q’s code)
5 TPM → AA PCR, Quote = Sig{PCR, r}AIKpr ;
6 SK SK enables the Trusted Execution Mode, enables interrupt
7 AA → Q Q obtains control and resumes execution
8 SK After Q stops its execution, SK disables the Trusted Execution

Mode
9 OS OS re-obtains control

Table 3: File measurement procedure : MEASURE(F, r)
Steps Players Messages and Actions
1 AA Checks the measurement cache, if cache-hit happens, records the

cached measurement and jumps to step 6
2 AA → SK Disables interrupt
3 SK → TPM PCR Reset
4 TPM PCR Extend ( Address(F ), F ’s data)
5 TPM → AA PCR, Quote = Sig{PCR, r}AIKpr ;
6 SK Enables interrupt
9 OS OS re-obtains control

and time-of-use. The secure kernel provides isolated mem-
ory spaces to quarantine the process at runtime when run-
ning at the Trusted Execution Mode. It is able to prevent
the target process’s space from being accessed by other pro-
grams when it is being executed. If the target program’s
execution requires a long duration, the OS may divide the
task into several smaller slots. In order to protect the mea-
sured program from a malicious OS’s modification when it is
suspended, we employ the securely restoring execution en-
vironment mechanism introduced in [20] to deal with this
situation. Therefore, the invoking time measurement guar-
antees that the measurement indeed reflects the state of the
one being executed.

7. CONCLUSION
Before we conclude this paper, we discuss several interest-

ing features of the proposed scheme.
Fine Granularity Fine-granularity attestation is known
for its flexibility in software update and light-weight known-
good fingerprints management. Our scheme can be adapted
to provide fine-granularity, since we use the code to obtain
the target program’s dependent objects. To support fine-
granularity, the programmer or the challenger annotates the
sensitive parts of target program. AA only checks the de-
pendences relevant to the annotated part.

Dependent Objects Set Distribution A compiler usu-
ally builds AST and the program dependence graph for the
optimization purpose. The program developer may generate
the software’s dependent object set during its compilation.
Once being generated, the dependent object set can be dis-
tributed by the software vendor together with the released
software.

Information Flow Checking As our attestation agent
dynamically records the processes and the objects related
to the target program, it allows the challenger to verify the
interactions between the target program and the objects it
depends on. To support information flow checking, we mod-
ify the measurement phase to include the security labels of
the processes as well.

In short, we propose in this paper a new method for at-
testing the execution of programs. We design an attestation
agent which resides in the attester’s platform. The agent
analyzes the target program as well as its runtime environ-
ment to find out relevant processes and objects which affect
the target program’s execution. When the target program
starts, the agent measures the state of the processes and
data by trapping the corresponding system calls, with the
assumption that the Secure Kernel and TPM jointly provide
a secure computing environment. Our scheme also allows for
fine-granularity attestation and information flow checking.
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