SMILE: Secure Memory Introspection for Live
Enclave

Abstract—SGX enclaves prevent external software from ac-
cessing their memory. This feature conflicts with legitimate
needs for enclave memory introspection, e.g., runtime stack
collection on an enclave under a return-oriented-programming
attack. We propose SMILE for enclave owners to acquire live
enclave contents with the assistance of a semi-trusted agent
installed by the host platform’s vendor as a plug-in of the System
Management Interrupt handler. SMILE authenticates the enclave
under introspection without trusting the kernel nor depending on
the SGX attestation facility. SMILE is enclave security preserving
as breaking of SMILE does not undermine enclave security.
It allows a cloud server to provide the enclave introspection
service. We have implemented a SMILE prototype and run
various experiments to read enclave code, heap, stack and SSA
frames. The total cost for introspecting one page is less than 300
microseconds.

I. INTRODUCTION

Recent years have seen a booming adoption of Intel SGX
among a wide range of applications deployed in a cloud
platform, such as machine learning model development [1],
[2], access control [3], [4] and secure multi-party computa-
tion [5]. In these applications, security-sensitive data and code
are placed into an enclave whose hardware based isolation
prevents external software, including the kernel/hypervisor,
from tampering with its internals. Nonetheless, the security
strength of SGX does not fully relieve users from security
concerns. An adversary may feed a victim enclave thread with
poisonous inputs to exploit its code vulnerabilities leading to
control flow hijacking, data leakage, or even code injection.
The recent use of enclave libraries such as 1ibOS [6], [7], [8]
expands the enclave code and leads to a higher risk of software
exploiting.

For non-SGX applications, such threats can be coped with
by memory introspection which provides the data needed for
attack diagnosis. However, for SGX applications, it is highly
challenging to use the same method due to the compound of
several factors. First, SGX shields the enclave contents against
any software access from the outside. Even if the security
requirement is relaxed to trust the kernel, it still cannot read
the contents stored in the Enclave Page Cache (EPC) pages.
Second, it is imprudent to unconditionally trust the self-report
made from the inside. Since there is no hardware-enforced
privilege separation within the enclave code, a vulnerability
exploit may affect all code. As SGX2 even allows new EPC
pages to be added to a running enclave, an exploit can lead
to code injection. Third, when the kernel is untrusted, there is
no known solution to determine which enclave an EPC page
belongs to. SGX local/remote attestation is barely helpful as

it is designed for launching time integrity and measures the
enclave’s virtual memory without asserting physical addresses
of EPC pages. Moreover, it is susceptible to side-channel
attacks [9], [10], [11], [12], [13] which extricate cryptographic
keys from an enclave. For instance, Ragab et al. [14] have
demonstrated how to make arbitrary remote attestation after
extracting the root provisioning key. Lastly, an introspection
result is useful only if it is from the expected running instance
of the enclave. If the server’s kernel is malicious, it can use
the same enclave image and launch it in the adversary’s own
computer. Replay attacks [15], [16] can divert the introspection
request and respond with fake data from the relocated enclave.

In this paper, we overcome the challenges above and present
a system called Secure Memory Introspection for Live Enclave
(or SMILE). A cloud service provider can deploy SMILE-
compliant platforms from OEM vendors to provide the en-
clave introspection service to its clients. SMILE allows the
owner of an enclave — and only the owner — to retrieve her
enclave contents at runtime. Against both enclave software
compromise and kernel’/hypervisor compromise, it ensures
that introspection is upon the expected enclave (enclave au-
thenticity) and that the results are not faked by corrupted
enclave code (introspection genuineness). Moreover, while
SMILE security failure compromises enclave authenticity and
introspection genuineness, it does not undermine the default
enclave security. We name this property as security preserv-
ing. SMILE relies on an agent running in the enclave platform’s
System Management Mode (SMM). The agent is semi-trusted
as it is trusted to run SMILE but not trusted to learn enclave
secrets, resembling the honest-but-curious server widely used
in privacy-preserving outsourced database systems.

The Trusted Computing Base (TCB) of SMILE is the
union of the default TCBs for SGX and for SMM [17].
We highlight that the SGX TCB alone is insufficient for
memory introspection because SGX neither deals with enclave
software compromise nor supports runtime measurement. To
use SMILE, enclave users are expected to trust the enclave
hosting platform’s OEM vendor (e.g., DELL) which has duly
checked the SMM agent’s security and ensured its loading
time code integrity. We also stress that, thanks to the security
preserving property, the trust on the OEM and its authorized
SMM code only determines the security of introspection. The
trust model on Intel SGX remains unchanged.

We have implemented a prototype of SMILE on a Gigabyte-
Q170M motherboard. Depending on the introspection work-
load used in our experiments, a SMILE based enclave intro-
spection takes a system-wide performance toll varying from

about 160 microseconds to a dozen milliseconds, which makes
it ill-suited for large scale memory introspection or continuous
enclave monitoring. It is a useful tool for scenarios wherein
the security or functionality needs dominate performance
considerations, e.g., live forensics on enclaves under a software
exploitation attack or debugging data collection from enclaves
throwing out exceptions. We have also conducted four case
studies to show how SMILE is applied to report the enclave’s
call stack, the SSA region and the code region. Note that
the techniques using introspection results for various security
purposes are orthogonal to and beyond the scope of our study.
We summarize our key contributions as follows:

o We study the problem of how an enclave owner intro-
spects her live enclave memory with enclave authenticity,
data genuineness, and enclave security preserving, and
propose SMILE as a solution that leverages a semi-trusted
agent running in SMM.

o We innovate the confined interrogation protocol which
harnesses both system security and cryptography to se-
curely bootstrap trust on an enclave, authenticate its
identity, and verify runtime code integrity. The protocol
does not use SGX local or remote attestation facility.

o We implement SMILE and and measure its performance.
We also run several test cases to show its applications.

ORGANIZATION. The next section briefly explains the back-

ground on SMM and SGX. Section III overviews SMILE
including the adversary/trust models, problem statement, and
our approach. The details of SMILE are presented in Sec-
tion IV. Section V shows the security evaluation. We describe
our prototype implementation in Section VI. Section VII
presents the performance overhead, introspection speed, and
four case studies of SMILE. We survey the related work in
Section VIII. Section IX discusses the limitations. Finally,
Section X concludes the paper.

II. BACKGROUND

This section provides a preliminary explanation of Intel
SMM and SGX. Experienced readers may skip it.

A. System Management Mode

System Management Mode (SMM) [17] is a highly-
privileged CPU execution mode available in all current x86
machines. Its main usage is to handle system-wide functions
such as power management and special functions needed by
OEM. Only the SMM code with an OEM signature can be
accepted and installed by the BIOS/UEFI firmware. It is loaded
into a special memory region named System Management
RAM (SMRAM). The hardware ensures the SMM code’s
exclusive access to SMRAM. Namely, no system software can
read or write contents in SMRAM. Upon receiving a System
Management Interrupt (SMI), the CPU switches from Pro-
tected Mode (PM) to SMM and executes the SMI handler. The
hardware automatically saves the CPU state in the SMRAM
state save area. After handling the SMI, the handler uses RSM
instruction to exit from SMM to PM so that the interrupted
threads continue their executions. The SMI handler’s access to

the platform’s physical memory of the platform is not subject
to the kernel’s paging access control.

An important property about SMI is that, whenever one core
receives it, all cores switch to SMM in a synchronous way.
Each core can have its own separate SMI handler as well as
a separate SMRAM region to save its own state.

B. Software Guard eXtensions (SGX)

With SGX [18], [19], [20], developers can designate a
continuous virtual address region as an SGX enclave. The
hardware ensures that no other software including the OS-
/hypervisor can read or write the contents inside.

The enclave code and data reside in the Enclave Page
Cache (EPC) pages in a region of Processor Reserved Memory
(PRM) [21]. Enclave execution can be multithreaded. Like
normal application threads, enclave threads share the code
section and the heap but have their individual stack. Each
thread has its own State Save Area (SSA) which saves the
CPU states upon an exception, and its own Thread Control
Struct (TCS) which is used exclusively by the hardware to
manage thread execution. The enclave code can freely access
data outside of the enclave whereas it cannot pass the control
to the outside which will trigger an exception.

Enclaves are initialized, launched and managed by the OS.
Enclave code’s internal memory access still involves the MMU
which enforces access controls based on the permission bits
saved inside the enclave’s metadata during enclave initializa-
tion. Nonetheless, the MMU consults the outside page table
to determine whether the EPC page to access is present.

III. SYNOPSIS

We consider the following application setting. A cloud
service provider has its SGX platform (denoted by H) installed
with the SMM code for SMILE (denoted by the SMM agent)
and provides the security-preserving enclave introspection
service to its users. A user (denoted by the owner) builds
her SMILE-compliant enclave £ and deploys it on H.

A. Models

Adversary Model. The adversary is malware in H with
the kernel and the hypervisor privileges. It launches various
software attacks, e.g., return-oriented programming attacks
[22], [23] and heap buffer overflow [24], by exploiting &’s
vulnerabilities. It also aims to defeat the enclave introspection
mechanism by using an imposter enclave and/or manipulating
the introspection outcome. It is capable of launching replay
attacks [15], [16] by colluding with a remote platform under
its full control. In the worst case, the malware possesses a
leaked signing key belonging to one of CAs in Intel Attestation
Service so that it can make arbitrary attestation. Denial-of-
service attacks are out of our scope.

Trust Model. The security of SMILE is built upon the
hardware TCB of SGX and the assumed security of the SMM
code! in H. Since the SMM code cannot be independently

INote that the real-life SMM code in several platforms is found to be
exploitable.

verified by a third-party, our trust model for SMILE depends on
OEM’s liability to govern SMM code installation, an unneeded
assumption for trusting SGX. Hence, we suppose that the
OEM vendor of H has duly validated and authorized the entire
SMM code which encloses the SMM agent as a plug-in. We
also suppose that the hardware only loads and launches OEM
authorized code in SMM. Moreover, the vendor certifies the
agent’s signing key, so that an agent’s signature is accepted
by an enclave owner if a valid certificate is presented.

CAVEAT. Similar to existing SMM-based systems [25], [26],
SMILE expands the attack surface against SMM. Nonetheless,
SMM compromise does not affect the enclave security. Our
design is in line with the trust on honest-but-curious servers
in privacy-preserving outsourced databases.

B. Problem Statement

Our research problem is how to securely introspect &’s
memory under the aforementioned adversary model. A secure
enclave memory introspection is expected to meet the follow-
ing requirements. (a) The returned bytes are indeed fetched
from the desired EPC pages of £ running in H (authenticity).
They should not be from other enclaves or other instances of
£. (b) The introspection result is not tampered with or faked
by the corrupted code inside £ (genuineness). In our attack
model, the code and data in £ running in H may have been
altered before introspection. (c¢) The introspection does not
undermine the enclave security. Namely, the adversary cannot
take advantage of introspection to break secrecy and integrity
of £ (security-preserving).

Obviously, authenticity is the prerequisite of a secure in-
trospection and also presents the hardest challenge. Since the
enclave authentication cannot use SGX attestation facility, au-
thenticity demands genuine data acquisition from the relevant
EPC pages. Hence, we have to break the cyclic dependence
between authenticity and introspection. Genuineness is an
indispensable mandate for any memory introspection setting,
because the security objective of introspection is to cope with
potential compromise of the target. The challenge arises from
the fact that all enclave code has the same privilege. It is
thus infeasible to assume that some enclave code is free
from tampering and always runs as expected. The security-
preserving requirement is from the usability perspective since
enclave introspection should not be realized at the expense of
enclave security.

C. The Approach

Overview. The high-level workflow of using SMILE is as fol-
lows. An enclave owner submits to the cloud her enclave and a
public configuration file supplying all information needed for
her enclave introspection. The cloud launches the enclave at
H and passes the configuration to the SMM agent. At runtime,
the introspection proceeds in the following steps.

I. The owner submits an introspection request which spec-
ifies her enclave’s identity (i.e., MRENCLAVE) and the
enclave memory addresses and sizes for introspection.

II. The kernel at H passes to the agent the request and the
enclave thread’s CR3 which serves as a reference for the
agent to locate the enclave.

III. Using the corresponding configuration file, the agent au-
thenticates the referred enclave against the identity in the
request, and checks whether the enclave’s introspection
code is intact. If both affirmed, it signs the request and the
configuration and passes the signature with the request
to the enclave. The signature is a token proving that the
agent has approved the ensuing introspection.

IV. The introspection code in the enclave reads the requested
contents and encrypts them together with the agent’s
signature using the owner’s public key. The ciphertext is
returned to the owner via an open network channel. The
owner accepts the introspection result after verifying the
signature with the agent’s public key certificate.

As shown in the workflow, the SMM agent’s responsibility
is to authenticate the enclave and assess the trustworthiness of
the introspection code therein. It does not access the enclave’s
private data, which makes enclave security-preserving feasible.
The SMM agent is not enclave specific. It can handle multiple
enclaves after receiving their public configurations.

Next, we briefly explain how SMILE achieves authenticity,

genuineness, and security preserving. The details and a deeper
analysis are presented in subsequent sections.
Enclave Authentication. The security of the workflow above
hinges on the security of the agent’s authentication against
the involved enclave and its introspection code. In SMILE,
we introduce the confined interrogation protocol wherein the
agent sets up the confined environment to restrict the enclave’s
capability (e.g., to restrict the available code page and data
page to be used) and challenges it to perform a task only the
expected enclave can accomplish.

SMILE requires that £ has two pieces of code participating
in the confined interrogation: the anchor for trust inception and
the worker for enclave identity report and memory introspec-
tion. The outline of the confined interrogation is as follows.
The agent first verifies the anchor’s code integrity followed by
the worker’s, and then verifies the enclave identity reported
by the worker. The crux is the first step which, like a trust
foothold, lays the security foundation for subsequent steps.

SMM SMM
Agent Agent

O QO cpucores

YIVINNTN[N N| memory pages

Confined Environment

worker_|
anchor |

trampoline

Fig. 1. A system view of confined interrogation. Grey boxes represent EPC
pages of £. Only Pages labelled with ‘Y’ are accessible to £.

Figure 1 illustrates a system view of the confined interroga-
tion on host A having four CPU cores. Besides the anchor and
the worker in £ and the SMM agent, SMILE also comprises
the trampoline which is launched by the agent to set up
the confined environment (details in Section IV-B). During
interrogation, £ occupies one core and the agent occupies all

others. The confined environment imposes resource restriction
on &£. It also ensures that the agent directly interrogates
the enclave without facing the risk of replay attacks [15],
[16] as the enclave is blocked from colluding with other
entities including the kernel. Thus, the authentication outcome
derived by the agent truly reflects the status of the enclave in
engagement.

The confined interrogation protocol (details in Section IV-C)
is in the similar vein to software based attestation [27], [28]
in the sense that it securely bootstraps the trust on the anchor
and then extends the trust chain to the worker. The difference
is that our protocol revolves on the space constraint imposed
by the confined environment instead of the time constraint
[27], [28]. To ensure that only the anchor can pass the
checking, we handcraft it with our best expertise so that its
memory size is as small as possible. An imposter is forced to
occupy more storage and therefore fails to pass the checking
due to its conflict with the confined environment. In short,
SMILE relies on the interrogation protocol running in tandem
with the underlying environment and the anchor to break the
aforementioned cyclic dependance.
Genuineness and Security Preserving. Since confined inter-
rogation verifies the code integrity of the introspection code
(i.e., part of the worker), genuineness ensues from its confined
environment which stalls all untrusted executions. Enclave
security is preserved since the SMM agent neither accesses
the introspection results nor shares any secret with the owner.
All outputs from the enclave during the interrogation are pub-
licly available from the enclave image, and the introspection
outcome is encrypted under the owner’s public key. Hence,
neither a corrupted SMM agent nor an imposter can exploit
SMILE to gain any advantage to break £. A comprehensive
security analysis is presented in Section V.

IV. DETAILS OF SMILE

An enclave introspection transaction using SMILE starts
when the kernel in H fires an SMI upon receiving the
introspection request from the enclave owner. All the CPU
cores are subsequently trapped to SMM, and the SMM agent
takes the full control. Next, the agent sets up the confined
environment in one of the cores for enclave introspection.
We denote it as the enclave core for ease of presentation.
Then, the agent in one of the remaining cores (denoted as the
interrogation core) runs the confined interrogation protocol
against the enclave in the confined environment. At the end
of the protocol, the agent terminates the SMILE transaction by
exiting from SMM and returning all cores to the kernel.

In the following, we first describe the enclave internals,
before elaborating the confined environment and the interro-
gation protocol.

A. Enclave Internals

To successfully run in SMILE, the enclave is required to be
multithreaded with one thread reserved to launch the anchor.
Hence, the developer of £ adds four EPC pages for introspec-
tion to the suite of EPC pages for the application logic. The

software’s view of the enclave layout with access permissions
is shown in Figure 2. Specifically, a TCS page and an SSA
page are used to launch the introspection thread. Note that
SGX denies any software access to TCS pages while it requires
the SSA pages to be fully accessible, i.e., with read/write
permissions. The new SSA, page is filled with random bytes
chosen by the developer of £. The anchor page and the worker
page are adjacent which is to facilitate enclave authentication
as explained shortly. Note that the virtual address layout of £
is not a secret as it is available in the enclave image.

o
data } rw

worker
anchor X
Low code

High SSA
SSA,

[] rpages added for introspection

I:I pages for enclave application

O VA range of the enclave

Fig. 2. Software view of the address space layout of an application enclave
using SMILE. Only EPC pages accessible to the enclave are shown.

Anchor. The anchor consists of ten instructions only as
shown in Figure 3. It begins with copying the SSA page
and itself to the non-EPC destination specified by the SMM
agent. It then continuously polls a memory location shared
with the agent in order to get synchronized with it. It either
outputs the worker to a non-EPC destination or jumps to the
worker, depending on the bytes in the shared memory. The
details of how the segment of instructions run are relevant to
the confined environment and the interrogation protocol. We
elaborate them in Section IV-B and Section IV-C, respectively.
The anchor code page has two security critical properties.
Firstly, the anchor’s code size must be as small as possible (i.e.,
35 bytes in our implementation). It is within one code page and
has no data page. Secondly, besides the instructions, the page
is fully padded with random bytes and no transfer instruction
appears in them?’. Intuitively, the two properties allow the
anchor to respond correctly in the confined environment with
a memory constraint. More security details are provided in
Section V.
Worker. The worker reports the enclave’s identity to the
SMM agent and makes the due introspection on the enclave.
Specifically, it first uses the EREPORT instruction to get an
SGX-generated REPORT object whose MRENCLAVE member
is returned to the agent as the enclave identity. It then makes
introspection on the enclave according to the owner’s request.
The worker page comprises its code and the static data. The
code is embedded with the owner’s public key, pk, so that the
introspection outcome is encrypted using it and safely stored
in non-EPC pages before being returned.

B. Confined Environment Initialization and Enclave Entering
After all cores are trapped to SMM, the agent at the

enclave core initializes the confined environment and passes

2The developer can scan the random bytes to detect any opcode of transfer
instructions. If found, she can either replace it with other bytes or change the
operand bytes so that it does not form a legitimate instruction.

1: mov %rl0, %rcx } Output SSA
2: lea ssa_offset(%rip),%rsi
3: rep movsd
4: mov %r10, %rcx
5: lea anchor_offset(%rip), %rsi } Output anchor
6: rep movsd
loop:
7: lock xadd %rcx, (%r9) Output Worker
8: jnp worker and pass the
control to it

9: rep movsd
10: jmp loop

Fig. 3. The anchor code.

the control from SMM all the way down to the enclave
execution. Basically, the confinement is imposed by the page
tables configured by the SMM agent for the enclave core.
Since the agent cannot intervene in runtime events occurring
in enclaves (e.g., an exception raised from the enclave), it
delegates the runtime checking to the trampoline which is
loaded by the agent at the enclave core. The trampoline is
granted with Ring O privilege and intercepts all exceptions
and interrupts throughout the interrogation which are abnormal
behaviors (e.g., an imposter enclave’s attempt to trap to the
kernel). The confined environment initialization proceeds in
three steps as below.

First, the agent copies the trampoline instructions from
SMRAM to the main memory and configures the page table
to map it with the supervisor privilege. It modifies the rip
value in the SMRAM state save area with the trampoline entry
address, and exits from SMM. As a result, the trampoline takes
the control of the enclave core in Protected Mode.

Next, the trampoline configures the page tables as follows.
It sets both the SSA frame and the anchor page as present
and all other EPC pages as non-present so that they are not
accessible. Since SGX enforces access permissions for EPC
pages according to the mappings stored inside the enclave, the
trampoline cannot grant or deny permission via the paging
tables. However, any reference to a non-present EPC page
still triggers a page fault. For non-EPC pages, the trampoline
maps four pages with priorly prepared contents: one non-
writable code page P and three read-writable pages Py, P
and P,. P only has one instruction which is EENTER and
is padded with zero for the rest of the space. It provides
the inputs for interrogation whereas Py, P and P» are empty
pages to store the enclave’s interrogation output. No other non-
EPC page is mapped for the enclave core. Figure 4 depicts
the address space layout with page permissions and presence
statuses initialized for the confined environment.

Thirdly, the trampoline sets itself as the default exception
handler and interrupt handler to intercept any attempted enter-
ing to the kernel mode. It prepares the CPU context for the user
space execution. Specifically, it sets rdi with the address of
Py, rcx with 1024, and r9 with the address of a buffer in P
providing interrogation inputs to the enclave. Then, it flushes
the TLB to prevent the enclave code from using any cached
mappings, which ensures the effectiveness of the page tables
prepared for the confine environment. Finally, it launches &

. unmapped SSA —l non-present
High A
rw P, | - | W
rw P, i
wl__Po data @] %non-present
endave | ==
""""""" worker @ non-present
x 2 ey rx
Low unmapped| | non-present

Fig. 4. Initial memory layout for launching the introspection thread of £.
Only two EPC pages and four non-EPC pages are made accessible.

via the EENTER instruction in P with the TCS dedicated for
introspection.

The whole initialization procedure above is not subject to
runtime attacks because, except the enclave core, all other
cores are occupied by the SMM agent. Hence, no adversary is
live during the procedure. In the end, the enclave core enters
& with no TLB entry storing non-EPC mappings. Since SGX
invalidates all TLB entries for EPC mappings upon an enclave
exit, this new thread of £ does not use cached EPC mappings
either. The enclave thread can only access two EPC pages.
The permissions for EPC pages are locked inside the enclave
and are in fact unknown to the SMM agent while permissions
for non-EPC pages follow the aforementioned setting.

C. Confined Interrogation Protocol

In the confined interrogation protocol, the SMM agent

authenticates whether the enclave under interrogation is indeed
E. The protocol proceeds in three steps: (i) anchor integrity
checking; (ii) worker integrity checking; (iii) enclave identity
authentication. Along these steps, the agent progressively
builds up trust on the enclave and relaxes the imposed re-
strictions in the confined environment. The checking against
the anchor is the security bedrock because the anchor, after
passing the verification, becomes the very first trust foothold
in the enclave for subsequent verifications. Consequently, it
turns the enclave under interrogation from a black box to a
white box.
Anchor Integrity Checking. Since there is no trusted code
in the enclave when the interrogation starts, we follow an
approach similar to software based attestation [27], [28], [29]
to authenticate the anchor. Nonetheless, our mechanism hinges
on memory space restriction instead of on execution time as in
those schemes. The rationale behind is that only the genuine
anchor is small enough to produce the expected result under
the stress of memory limitation. Both the anchor page and
the SSA frame in £ are fully filled with random bytes except
the anchor instructions. The anchor is expected to copy and
reproduce all random bytes in these two pages to non-EPC P
and P;.

Specifically, when the enclave core enters the enclave for
interrogation, the anchor is the first piece of code to run and
inherits the CPU context prepared by the trampoline. The
relevant registers are shown in Table I. With the memory
layout shown in Figure 4, the anchor’s first three instructions
copy all 4096 bytes in the SSA page to Py, and then the next

three instructions copy all 4096 bytes in the anchor page to
P;. Figure 3 shows the copy instructions.

TABLE I
THE CPU CONTEXT IMMEDIATELY PASSED INTO THE ENCLAVE

Registers Content

rdi Address of Py

r9 Address of the shared buffer in P
rl0 1024

Others including rsp, rsi 0

The agent on interrogation core verifies whether Py is
identical to £’s SSA page and whether P; is identical to £’s
anchor page. If each and every byte is matched, the agent
asserts that the presently running code in the enclave is indeed
the expected anchor, though no conclusion can be drawn about
the enclave identity.

Note that rcx becomes zero after the anchor page is

copied. Since the word pointed to by r9 is also set as zero,
the subsequent instructions forms a loop whose payload is
equivalent to no operations.
Worker Integrity Checking. After the anchor’s code integrity
is verified, the agent proceeds to the second phase of the
interrogation, i.e., to verify the worker integrity. Specifically,
it runs the following steps.

I. Set the present bit in the page table entry corresponding
to the worker page, As a result, the worker page is
released from restriction. The new memory view is
shown in Figure 5(a).

II. Write 1024 to the shared buffer pointed to by r9.
III. Repeatedly detect any change on the first byte of P,. If
any, write O to the shared buffer.

N
SSA ; } non-present Anchor Agent
SSA, rw |:
RRRRRRRRORGE loop (r9)=1024
rcx=1024 - —
data @ non-present (r9)=0
............ copy
worker rx rcx:o...l.......__
anchor X 0Py
code non-present Time

(a) View of enclave memory with
the worker page being released

(b) The interaction between the
agent and the anchor

Fig. 5. Worker Integrity Checking

Figure 5(b) depicts the interactions between the agent and
the anchor in this phase of checking. The agent’s first write
to the shared buffer allows the anchor code to load 0x1000
to rcx, which leads to the worker page to be copied over to
P,. After the copy operation, rcx is reduced to 0 again. By
then, the agent has cleared the shared buffer to 0. Hence, the
report’s loop make no more copy operations.

The agent verifies the outputs in P» against the bytes of £’s
worker. If all are consistent, it asserts that the enclave under
interrogation has the expected worker code.

Enclave Identity Checking. After verifying integrity of the
worker, the agent proceeds to authenticate the enclave entity.
Specifically, it runs the following steps.

I. Release the EPC data page used for enclave report
generation.
II. Write OxFF to the shared buffer pointed to by r9.

As a result, the anchor breaks out of the loop and jumps to the
worker (Line 8 of the anchor code in Figure 3). The worker
initializes its context including the stack and then executes the
EREPORT instruction to generate its enclave report. It then
returns the MRENCLAVE member within the report structure
to page Fj.

The agent checks the returned value against £’s known
identity. If matched, the agent has successfully authenticated
the enclave without using the default SGX local or remote
attestation. This completes the confined interrogation protocol.

D. EPC Introspection

After the confined interrogation, the SMM agent prepares
for EPC introspection. To avoid straining the agent with the
communication task, SMILE is designed to use the normal
network channel to submit the introspection result to the
owner. The main sec